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Abstract: Local climate zones (LCZs) provide a comprehensive framework to examine surface urban
heat islands (SUHIs), but information is lacking on their thermal contributions and spatial effects in
different macroclimate cities. A standard framework for distinguishing between the cooling effect
and heating effect and spatial effect analysis based on the LCZ scheme was conducted in five distinct
macroclimate cities, i.e., Yuanjiang (arid climate), Jinghong (tropical climate), Kunming (subtropical
climate), Zhaotong (temperate climate), and Shangri-La (alpine climate). The results indicated that
(1) built-up zones presented heating effects in Jinghong and Shangri-La, but opposite results were
observed in Yuanjiang and Zhaotong. (2) The thermal contributions of natural zones with dense
trees (LCZAs) and waterbodies (LCZGs) showed cooling effects in the five cities regardless of season.
(3) The spatial effect of heating LCZs on land surface temperature (LST) was more significant than
that of cooling LCZs in Jinghong and Shangri-La, but the opposite results occurred in Yuanjiang and
Kunming. Moreover, the spatial effect was lower in Zhaotong than in other cities. (4) Lower LST
differences between natural zones and built-up zones in winter than in summer decreased the spatial
effects. In summary, the thermal contributions of LCZs and their spatial heating/cooling effects were
different among five distinct climate backgrounds, which implies that targeted measures must be
used in different macroclimates.

Keywords: local climate zones; climate background; surface heat island; heat mitigation; land use

1. Introduction

The global population increased from one billion people in 1800 to more than seven
billion people in 2015 [1]. Rapid urbanization and global population increases have been
accompanied by an increase in the intensity of landscape changes. This in turn has driven
the development of urban heat islands (UHIs), which are defined as metropolitan areas
with a higher temperature than that of surrounding areas [2]. UHIs notably affect the
regional climate, vegetation growth, and water and air pollution, all of which are closely
related to human health and the livability of cities [3–5]. Moreover, these negative impacts
can be amplified by global warming [6]. Many studies have long remained interested in
SUHI investigations because LST data can comprehensively cover entire cities [5].

The SUHI refers to the LST differences between different land uses and land covers
(LULC) [7]. Different conditions across large areas can lead to different thermal charac-
teristics, especially the macroclimate background. On the one hand, weather conditions
alter the cooling effect of natural land cover by influencing evapotranspiration and vege-
tation conditions [8,9]. On the other hand, previous studies suggest that the relationship
between LULC and LSTs exhibits spatial–temporal differences owing to climatic condition
differentiation, which implies that the LSTs of built-up areas with various forms have
different responses to macroclimate change [10–12]. Therefore, both artificial surfaces and
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natural land cover could present an opposite thermal contribution due to macroclimate
differentiation and further contribute to different spatial effects [13].

In addition to the thermal contributions of different LULC types, previous studies
have quantified the relationship between LSTs and landscape patterns. Studies on the
spatial effects of heating/cooling LULC are crucial for urban planning and influencing
mechanism analysis. Many landscape metrics concerning composition and configuration
have shown large impacts on LSTs [14,15]. However, the correlation between LSTs and
landscape patterns showed different results in some studies. For example, the density of
the built-up areas had a positive correlation with LSTs [15,16], but a different result was
shown in another study [16]. Furthermore, natural land cover had different spatial effects
on LSTs in different cities [13]. Some studies suggest that seasonal and climate factors
notably affect the relationship between urban landscapes and heat island effects [17,18].
For this reason, it is very important to determine the spatial effects of both heating and
cooling LULC on LST variations in different macroclimate cities for better urban planning.

Many studies focus on the cooling effects of water bodies/green spaces and the
heating effect of built-up areas [7,19,20], but the coupling of highly heterogeneous land
with special physical properties and macroclimate backgrounds could lead to different
thermal contributions and spatial effects, and it remains to be studied due to the lack
of a uniform and comprehensive LULC classification scheme to quantify the thermal
contributions and spatial effects. Inconsistencies in SUHI results among different studies
pose a challenge in this field owing to the lack of a general LULC classification scheme
reflecting the surface climate properties [21]. Thus, the concept of the local climate zone
(LCZ) has been widely applied in urban climatology [22]. An LCZ is defined as a region
with a uniform surface cover, structure, material, and human activities ranging in area
from hundreds of meters to several kilometers on a horizontal scale [23,24]. Geometric
and surface properties comprise the basis of LCZ classification. Therefore, this concept is
more suitable for SUHI research than other frameworks, such as the national land cover
database in the USA, the Urban Atlas, and the European CORINE land cover database [25].
Relevant studies have further revealed the relationship between LSTs and LCZs with
different urban forms and surface properties [10,11,25–29]. However, few studies have
systematically analyzed the thermal contributions of LCZs, and their spatial effects in
different macroclimate cities are lacking [30,31].

The objectives of this study are thus to distinguish the cooling and heating effects of
LCZs and investigate the relationship between the spatial distribution of heating/cooling
LCZs and LST in five cities in Yunnan Province, China, with different background climates,
namely, tropical, subtropical, temperate, alpine, and arid climates. Subsequently, the
thermal distribution index (TDI) was used to quantify the magnitude of the heating/cooling
contribution per LCZ. In addition, a thermal-weighted gravity index (TWGI) was proposed
to reliably explain the LST variations. Particularly, the questions in this study are as follows:
(1) Does the heating/cooling effect of LCZs differ among different macroclimate cities?
(2) Should urban planners pay more attention to optimizing the spatial distribution of
cooling LCZs or heating LCZs in different macroclimate cities?

2. Materials and Methods
2.1. Study Area

Yunnan Province (21◦09′–29◦15′N and 97◦32′–106◦12′E), located in Southwest China,
is a highland at a low latitude characterized by a highly heterogeneous terrain and fragile
mountainous environment with a large difference in altitude, sharp changes in vertical to-
pography, and a wide diversity of climate zones ranging from tropical to alpine zones [32].
A significant UHI phenomenon has been observed in Yunnan because of the rapid ur-
banization prompted by policies issued by the central government. Yunnan is divided
into four climatic zones based on the number of days of the year with a temperature
above 10 ◦C and an annual cumulative temperature above 10 ◦C (ATC10 ◦C), as obtained
from China Green House Data (http://data.sheshiyuanyi.com/WeatherData/ (accessed on
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19 May 2019)) [33]. Five cities were selected in this study. Jinghong is situated in a tropical
area, Kunming and Zhaotong are cities in subtropical and temperate zones, respectively,
and Shangri-La is located in an alpine climate zone (Figure 1). Yuanjiang was selected due
to its arid climate. Table 1 lists data on the selected cities.

Figure 1. Geographic distribution of the cities considered in this study along with their background
climate (SRL: Shangri-La; ZT: Zhaotong; KM: Kunming; YJ: Yuanjiang; JH: Jinghong; MATP: Mean
annual precipitation; Data source: http://www.resdc.cn/ (accessed on 12 October 2021), DOI:
10.12078/2017121301).

Table 1. Information on the selected cities.

City Days of ATC10 ◦C ATC10 ◦C (◦C) Altitude (m) MATP 1 (mm) Climate Zone

Yuanjiang >218 8844.2 <500 864.4 Tropic (Arid)
Jinghong >218 8373.6 500–3000 1198.0 Tropic
Kunming >218 5558.6 500–3000 1002.2 Mid-subtropic
Zhaotong >218 3914.8 ≥3000 742.8 Temperate zone

Shangri-La >140 1916.0 ≥3000 617.0 Alpine zone
1 MATP: Mean annual precipitation.

2.2. Methods

The overall research framework was divided into four steps in this study. First, reliable
LCZ and LST maps were generated by using the modified World Urban Database and
Access Portal Tool (WUDAPT) method and modified split-window algorithm, respectively.
Second, the heating and cooling effects of each LCZ were differentiated by the threshold of
the TDI value. Third, the spatial distribution of the heating/cooling LCZ was quantified by
TWGI. Finally, ordinary least squares (OLS) and spatial regression were used to determine
whether the spatial distribution of the heating/cooling LCZ has an impact on LST.

2.2.1. Map LCZ and LST

To study the LST difference among the five cities with different climatic backgrounds,
Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) C1 Level-
1 images were downloaded from the United States Geological Survey website (https:
//earthexplorer.usgs.gov/ (accessed on 12 October 2021)). Images featuring a cloud cover
lower than 10% were selected for radiometric calibration and fast line-of-sight atmospheric
analysis of spectral hypercubes (FLAASH) atmospheric correction in ENVI software. Im-
ages in summer and winter were selected in May and December, respectively, for LST
retrieval in most cities except Shangri-La, where August and January are the hottest and
coldest months, respectively (Table A1).

http://www.resdc.cn/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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The workflow of LCZ mapping is shown in Figure 2. Seventeen standard LCZs were
divided into 10 built-up type zones and seven land cover type zones. An extra natural
LCZ, Greenhouse (LCZH), was defined due to its thermal response uncertainty. Owing
to internal differentiation and horizontal heterogeneity in urban environments, especially
in many rapidly developing cities of Yunnan, different LCZs mingle together on small
surface areas, which degrades the quality of LCZ maps. The moving window method,
which complies with the workflow of the WUDAPT, was used to capture information on
neighborhoods for more accurate LCZ mapping [34]. Step 1 of the workflow involved
the definition of the urban domain to be examined and the selection of training polygons
for the different LCZs on Google Earth. To ensure the authenticity of the training data,
the initial samples were selected based on field investigations and street-view Baidu Map
images (https://map.baidu.com/ (accessed on 15 October 2021)). At least 10 representative
samples were selected for the different LCZs in each city. Finally, 1768 training polygons
and 732 evaluation polygons were collected. In Step 2, a contextual classifier was applied
through the moving window method to obtain information. Six features (maximum,
minimum, median, mean, and 25th and 75th quantile values) were calculated from all
pixels within the moving windows of the predefined kernel size in Python 3.8. In Step
3, random forest classification was conducted in ENVI software. In Step 4, an accuracy
assessment was conducted, and appropriate kernel sizes were used to map the LCZ for
each city.

Figure 2. (a) LCZ scheme adapted with permission from Ref. [35]. 2022, Stewart; (b) Workflow
of the moving window method based on the WUDAPT adapted with permission from Ref. [34].
2022, Verdonck.

LST estimation was conducted based on a split-window algorithm, which can be
expressed as Equation (1):

LST = a0 +

(
a1 + a2

1− ε

ε
+ a3

∆ε

ε2

)Ti + Tj

2
+

(
a4 + a5

1− ε

ε
+ a6

∆ε

ε2

)Ti + Tj

2
+ a7

(
Ti − Tj

)2 (1)
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where an(n = 0–7) is the algorithm coefficient; Ti and Tj are the brightness temperatures
from the top of the atmosphere in bands 10 and 11, respectively; and ε and ∆ε are the
emissivity mean and difference of the two channels, respectively.

The an coefficient in Equation (1) was calculated in different atmospheric column
water vapor (CWV) subranges [36]. The CWV was calculated with a modified split-window
covariance–variance ratio method [37]. The land surface emissivity (ε) was calculated based
on the normalized difference vegetation index (NDVI) as follows:

NDVI =
NIR− R
NIR + R

(2)

FVC =
NDVI − NDVIs

NDVIv − NDVIs
(3)

ε = εv·FVC + εs(1− FVC) + 4〈dε〉·FVC·(1− FVC) (4)

where NIR and R are the reflectance values of the near-infrared band and the red band,
respectively; FVC is the fraction of vegetation cover; 〈dε〉 is an effective value of the cavity
effect of emissivity; and εv and εs are the vegetation and soil emissivity, respectively.

2.2.2. Distinguishing the Cooling and Heating Effects of the LCZ

TDI was adopted to compare intercity and intracity SUHI intensity values in this
study [30]. The LST data were divided into four classes from low to high values with
the Jenks natural break method [31], and the proportion of high-LST pixels was used to
quantify the thermal contribution in Python 3.9. The TDI value of LCZi (LCZ1–LCZH) can
be estimated with Equation (5):

TDILCZi =
AHighLCZi

/ALCZi

AHigh/A
(5)

where AHigh/A is the proportion of the area with a high LST in the entire area, and
AHighLCZi

/ALCZi denotes the proportion of the area with a high LST in the area of LCZi.
The contribution of LCZi to the SUHI intensity was indicated by the TDILCZi value range.
A value of 1 indicates a moderate contribution. If the value is higher than 1, LCZi exhibits
a heating effect. Conversely, if the value is lower than 1, LCZi exhibits a cooling effect.

2.2.3. Quantifying the Spatial Distribution of the Heating/Cooling Effect

The gravity index (GI) referenced by Reilly’s law of retail gravitation was proposed
to quantify the cooling effect of urban green spaces and waterbodies [20]. It reflects the
distance and size effect of a certain land cover type on LST but ignores the influence of
surface properties and surrounding environments. For example, two forest patches with the
same size and distance from a specific place might have different cooling effect magnitudes
due to variations in vegetation type, patch shape, tree densities, and even surrounding LCZ
landscape patterns. For this reason, we used the TDI value to modify the GI. The TWGI of
cell i was calculated as Equation (6) by using Python 3.9:

TWGIi = ∑
j∈Bi

Ai
LCZ

dij
α
·TDIj (6)

where j is the surrounding cells with a buffer area of 1500 m radius, Ai
LCZ refers to the

area of cell i with a heating/cooling effect, dij is the distance between cell i and j, α is the
adjusted distance coefficient, and TDIj is the TDI value of cell j, which is calculated in
Formula (5) (Figure A2).
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2.2.4. Statistical Analysis

The LST value at one specific pixel is spatially correlated with the LST values at its
neighboring locations. It is necessary to verify whether the spatial regression models are
more suitable than OLS linear regression models for analyzing the relationship between
the TWGI and LST. Therefore, the OLS linear regression model and two types of spatial
regression models, the spatial lag model (SLM) and spatial error model (SEM), were
used to explain the spatial effects of heating/cooling LCZs by using GeoDa software
(https://spatial.uchicago.edu/software (accessed on 22 November 2021)). The Lagrange
multiple (LM) test was conducted to decide which model was appropriate [38]. Several
criteria were used to choose which model is most suitable. The LM and error lag λ in
Table A3 were significant, which indicated the spatial model was necessary. Moreover, the
SEM’s log-likelihood was higher and the Akaike information criterion (AIC) was lower
compared with the SLM (Table A4), which implied that the SEM was more suitable than
other models.

3. Results
3.1. LCZ Classification and LST Investigation

LCZ maps were generated with the modified method, as shown in Figure 3. LCZ
types with fewer than 10 training data items were excluded from the LCZ scheme, and a
new LCZ type featuring plastic foils on farmland (LCZH) was added to the scheme due
to the uncertainty in properties. The highest overall accuracies of the maps of Kunming,
Shangri-La, Yuanjiang, Jinghong, and Zhaotong, with kernel sizes of 7× 7, 7× 7, 5× 5,
5× 5, and 7× 7, respectively, reached 92.5%, 92.5%, 89.1%, 88.2%, and 85.1%, respectively
(Table A2).

The spatial patterns of the LCZs and LST values are shown in Figure 4. The analysis
of variance showed that different types of LCZs exhibited distinct LST characteristics
(Figure A3). The mean LST value of each LCZ was calculated for statistical analysis
(Figure A1 and Table 2). The results showed that the background climate played a key role
in LST variation in each LCZ. In summer, natural zones with less vegetation attained the
highest LST in Yuanjiang (LCZC and LCZF) and Zhaotong (LCZC–LCZF). In the other
cities, large low-rise (LCZ8) and heavy industry zones (LCZ10) obtained the highest LST,
followed by compact mid-rise (LCZ2), compact low-rise (LCZ3), and bare soil (LCZF) zones.
From summer to winter, built-up zones, especially open rises (LCZ4–LCZ6), tended to
obtain lower LST than natural zones with less vegetation (LCZC–LCZF) in Jinghong and
Kunming. However, the warmest zones were unchanged in Yuanjiang and Zhaotong. A
rather interesting outcome was observed in that waterbodies (LCZG) tended to obtain the
highest LST in Shangri-La in winter.

3.2. Thermal Contributions of the LCZs

The heating/cooling effect of the individual LCZs on the urban thermal environment
was quantified by the TDI value (Figures 5 and A2). In summer, the thermal contributions of
built-up zones imposed the greatest heating effects on the SUHI phenomenon in Shangri-La
and Jinghong. In contrast, most built-up zones exhibited cooling effects in Yuanjiang and
Zhaotong. In Kunming, both cooling effects (LCZ4 and LCZ5) and heating effects (LCZ1–
LCZ3 and LCZ6–LCZ10) were shown in built-up LCZs. For natural LCZs, waterbodies
(LCZG), dense trees (LCZA), and greenhouses (LCZH) yielded cooling contributions
to the SUHI phenomenon in all cities, but the opposite results occurred in LCZF. The
sparse trees (LCZB) had a cooling effect in most cities except Yuanjiang. LCZC presented
heating contributions in Kunming, Yuanjiang, and Zhaotong, and LCZD showed heating
contributions in Kunming, Shangri-La, and Zhaotong (Figure 5a).

https://spatial.uchicago.edu/software
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Figure 3. LCZ classification of the five cities in Yunnan Province (a) Jinghong, (b) Kunming, (c) Zhao-
tong, (d) Shangri-La, (e) Yuanjiang).

Figure 4. LST values in summer and winter in the cities with different background climates (units: ◦C).
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Table 2. Mean LST per LCZ in winter and summer (NA represents no-data value, unit: ◦C).

LCZ
Jinghong Kunming Zhaotong Shangri-La Yuanjiang

Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter

LCZ1 (compact high-rise) NA NA 40.2 5.7 NA NA NA NA NA NA
LCZ2 (compact mid-rise) 40.8 1 26.6 40.7 6.3 40.4 0.01 27.9 1 −1.4 1 44.5 27.1
LCZ3 (compact low-rise) 40.6 1 27.6 1 41.3 7.1 41.2 1.9 29.0 1 −1.8 43.7 27.4

LCZ4 (open high-rise) 37.3 24.9 38.9 4.9 38.2 −1.1 2 NA NA NA NA
LCZ5 (open mid-rise) 39.0 25.1 39.5 5.9 39.1 −0.7 NA NA 44.3 27.1
LCZ6 (open low-rise) 38.6 26.3 40.0 7.9 41.8 3.3 NA NA 44.1 27.0
LCZ8 (large low-rise) 41.0 1 28.0 1 42.6 1 8.9 1 41.3 2.3 NA NA 45.6 1 28.4 1

LCZ9 (sparsely built) NA NA NA NA NA NA 26.5 −3.7 NA NA
LCZ10 (heavy industry) NA NA 42.4 1 8.9 1 NA NA NA NA NA NA

LCZA (dense trees) 33.3 2 23.2 2 33.2 2 2.0 2 32.8 2 −5.0 2 21.2 2 −3.8 2 40.9 2 25.0 2

LCZB (scattered trees) 35.0 24.1 2 37.6 5.5 38.4 1.9 23.8 2 −2.6 43.9 26.8
LCZC (bush, scrub) 37.0 26.9 40.1 8.1 1 43.3 1 4.1 1 26.2 −1.4 1 45.2 1 29.2 1

LCZD (low plants) 36.8 25.8 40.0 8.1 1 42.0 1 4.2 1 26.5 −3.3 41.6 26.8 2

LCZF (Bare soil or sand) 39.0 27.4 1 41.7 1 8.1 1 42.5 1 3.4 1 27.0 1 −4.3 2 46.3 1 29.1 1

LCZG (water) 32.3 2 24.3 24.4 2 0.3 2 34.3 2 −0.3 23.8 2 1.8 1 41.6 26.8 2

LCZH (greenhouse) NA NA 36.5 7.2 NA NA NA NA 41.4 2 26.8 2

1 The warmest LCZs ranked as the top three. 2 The coldest LCZs ranked as the top two.

According to the difference in the TDI value between winter and summer (Figure 5c),
the thermal contributions of built-up zones decreased from summer to winter except in
large low-rise zones (LCZ8) and compact low-rise zones (LCZ3) in Jinghong and open
low-rise zones (LCZ6) in Kunming. In natural zones, the thermal contributions of dense
trees (LCZA) and waterbodies (LCZG) were unchanged in most cities except Shangri-La,
where the DTI value of waterbodies (LCZG) increased. In contrast, the TDI values of shrubs
(LCZC) increased in most cities except Zhaotong. Moreover, the thermal contributions of
other natural LCZs (LCZB, LCZD, and LCZF) represented different seasonal variations
among the five cities. Overall, more built-up LCZs imposed cooling effects, and the seasonal
variations in the thermal contribution pattern were more striking in Jinghong, Kunming,
and Shangri-La than in Zhaotong and Yuanjiang (Figure 5a,b).

In summary, built-up LCZs mainly exhibited heating effects in Jinghong and Shangri-
La but cooling effects in Yuanjiang and Zhaotong in summer. Built-up LCZs imposed both
heating and cooling effects in Kunming. From summer to winter, the thermal contributions
of built-up LCZs tended to decrease. Therefore, most built-up LCZs imposed cooling effects
in winter rather than in summer. For natural LCZs, LCZA, LCZB, and LCZG mainly yielded
cooling effects regardless of season. The thermal contributions of LCZC–LCZF represented
various patterns among the five cities, although they generally imposed heating effects.
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Figure 5. TDI values of each LCZ in summer (a) and winter (b) in the five cities with different
background climates (black indicates no-data value, red indicates heating contribution, blue indicates
cooling contribution, TDI values are shown in each box); (c) difference in the value of the thermal
distribution index (TDI) between winter and summer (black indicates no-data value, red and blue
indicate the increase and decrease of TDI values from summer to winter).

3.3. The Effect of Spatial Distribution

The spatial patterns of the TWGI values are shown in Figure 6. High TWGI values
indicated that specific pixels were surrounded by clustered and large heating/cooling LCZ
patches within 1500 m. The spatial patterns of the heating TWGI imposed more significant
seasonal variations in Jinghong, Shangri-La, and Yuanjiang than in Kunming and Zhaotong.
Moreover, the TWGI maps in blue showed that the seasonal variations in spatial patterns
were more significant in Kunming and Shangri-La than in the other cities in terms of the
cooling TWGI.
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Figure 6. The TWGI distributions in five cities (the red color represents the heating effect, and the
blue color represents the cooling effect).

An appropriate regression model was used to explore the relationship between the
spatial distribution of the LCZ and LST. The regression result of the SEM is shown in
Tables 3 and A4. R-square values were up to 0.99 due to the spatial autocorrelation of the
error term. The TWGIs of heating/cooling LCZs had significant positive/negative impacts
on the LSTs in each city (p < 0.001). The positive and negative values of the coefficient
represented positive and negative correlations between the TWGI and LST. The greater
the absolute values of the coefficient were, the higher the magnitude of the spatial effect
(Table 3). The results of the regression analysis showed that the magnitudes of effects
between heating LCZs and cooling LCZs had intercity differences and seasonal variations.
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Table 3. The results of the SEM in five cities.

City Thermal Contribution Coefficient (Summer) Coefficient (Winter) Seasonal Change Gradient

Jinghong Heating 13.27 9.12 −0.31
Cooling −1.81 −1.99 0.10

Yuanjiang Heating 1.51 0.52 −0.66
Cooling −12.73 −4.30 −0.66

Kunming Heating 7.89 5.46 −0.31
Cooling −12.73 −4.72 −0.63

Zhaotong Heating 0.28 0.38 0.36
Cooling −0.19 −0.42 1.21

Shangri-La Heating 8.58 2.39 −0.72
Cooling −0.92 −0.57 −0.38

The coefficient of TWGI and its seasonal change gradient among the five cities are
shown in Table 3. In summer, the spatial impacts of heating LCZs on LSTs were higher
than those of cooling LCZs in Jinghong and Shangri-La, but the opposite results were
observed in Yuanjiang and Kunming. In particular, the spatial effects of heating and cooling
LCZs were close and low in Zhaotong but close and high in Kunming. According to the
gradient of coefficient change from summer to winter, the spatial effects of heating/cooling
LCZs became weaker in Yuanjiang, Kunming, and Shangri-La but stronger in Zhaotong. In
Jinghong, the spatial effects of heating LCZs decreased slightly, but the opposite results
were shown in cooling LCZs.

4. Discussion
4.1. Thermal Environments of the LCZs

Many studies have shown that waterbodies and green spaces play a leading role in
mitigating urban heat islands by shading and evapotranspiration [8], and urban areas cap-
ture and store more heat due to the special physical properties of artificial surfaces [39,40].
However, the background climate has a large impact on the heating/cooling effects of
built/nonbuilt land cover types in urban areas. For natural land cover, the background
climate, such as temperature, precipitation and solar radiation, can influence photosyn-
thesis, soil moisture and water evapotranspiration [41]. Moreover, built-up areas with
different urban morphologies and surface materials have different responses to climate
conditions [42]. However, it is unclear what role a certain land cover plays under different
climate backgrounds, especially in urban areas with high heterogeneity. The LCZ classi-
fication scheme was used to differentiate heating/cooling effects for a certain land cover
in this study. There are two reasons: (1) previous studies have shown that it is suitable
for LST studies under different macroclimate regions [41], which was also improved by
the ANOVA test in this study (Figure A3), and (2) it consists of various types of urban
landscapes and urban forms for urban planning [21].

In summer, some studies have shown that most built-up LCZs exhibited heating effects,
but natural LCZs covered with trees and waterbodies imposed cooling effects [10,11,42,43].
The same results were shown in Jinghong, Kunming, and Shangri-La. This is because
built-up LCZs capture and store more solar energy, but natural LCZs increase latent heat
by evapotranspiration. However, natural LCZs covered with less vegetation (LCZC–LCZF)
mainly presented heating effects, and built-up LCZs imposed cooling effects in Yuanjiang
and Zhaotong. This is because dry soil has a low heat capacity and low vegetation activity
in arid cities [41]. Moreover, a previous study suggested that a rough built-up area could
enhance the convection efficiency and lower the aerodynamic resistance in dry climate
zones, resulting in a cooling effect on impervious surfaces [17]. In addition, urban green
space management could lead to higher evapotranspiration compared with natural LCZs in
Yuanjiang and Zhaotong. Furthermore, the heating effects of LCZC and LCZF were higher
in Yuanjiang than in Zhaotong because the higher temperature in Yuanjiang could enhance
the degree of dryness and lead to lower vegetation activity compared with Zhaotong.
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For this reason, even the scattered trees (LCZB) imposed heat effects regardless of season
in Yuanjiang.

From summer to winter, there was a trend of decreasing heating effects of built-up
LCZs in Jinghong, Kunming, and Shangri-La. This result was also suggested by a study
conducted in Nanjing [43]. One possible reason is that built-up LCZs capture and store less
solar radiation in winter than in summer. The thermal contributions of low plants (LCZD)
and bare soil (LCZF) decreased in Shangri-La, possibly due to snow. The surface albedo of
areas covered with snow was high. Moreover, waterbodies (LCZG) obtained the highest
LST in Shangri-La in winter. This is because vertical convection and mixing of the lake
water occur during the overturning period to ensure that the surface temperature of the
lake is not too low [44]. However, other LCZs covered with snow corresponded to lower
LSTs due to their high albedo.

Spatial distribution, background climate and human activities jointly impacted LST
variations. For example, low plants (LCZD) without interference showed a heating effect
in Yuanjiang, but LCZD with good irrigation (farmland) belonged to cooling LCZ. Notably,
there was a large area of farmland with less irrigation in Zhaotong, which caused higher
LSTs in the suburbs than in urban areas. Moreover, previous studies have demonstrated
that the mean LST decreases with increasing openness and height of built-up zones [42,43].
However, open low-rise zones (LCZ6) surrounded by low plants (LCZD) constituted the
warmest zone in Zhaotong. The climatic background resulted in a significant heating
effect of low plants (LCZD), and the landscape distribution increased the LST of open
low-rise plants (LCZ6). Moreover, compact low-rise zones (LCZ3) surrounded by low
plants (LCZD) with good irrigation obtained the lowest mean LST in Yuanjiang. Low
plants (LCZD) yielded a cooling effect due to agricultural activities, and the LST in compact
low-rise zones (LCZ3) decreased due to the spatial effects of LCZD. For this reason, it is
important to quantify the relationship between the spatial distribution of heating/cooling
LCZs and LSTs.

4.2. Spatial Effects of Heating/Cooling LCZs on LSTs

The spatial distribution of heating/cooling LCZs can change the aerodynamics in
urban areas, which further impacts LSTs [45]. However, their spatial effect is seldom
studied. Should urban planners pay more attention to the urban land arrangement and
should heating land or cooling land be focused under different background climates? To
answer this question, a more reliable index (TWGI) was proposed, and SEM was used to
analyze the relationship between TWGI and LST in this study.

The high TWGI value indicated that the specific pixel was surrounded by clustered
and large heating/cooling LCZ patches within 1500 m. Some studies have indicated
that clustered vegetation decreases the overall evapotranspiration rate and weakens the
cooling benefits from vegetation, but clustered built-up areas elevate LST in humid and
hot cities [46,47]. Therefore, the spatial heating effects of the built-up LCZs were higher
than the spatial cooling effects of the natural LCZs in Jinghong. Similar results were also
shown in Shangri-La, but these results could have been caused by the low vegetation
activities in alpine regions. Clustered impervious areas, vegetation and waterbodies cannot
effectively lower LST in arid cities of the USA [46]. For this reason, the spatial effects of
heating/cooling LCZs were low in Zhaotong. However, the spatial effects of cooling LCZs
were high in Yuanjiang. One possible reason is that a large area of farmland with good
irrigation may enhance evapotranspiration in Yuanjiang.

4.3. Contributions and Limitations

A standard framework for distinguishing between the cooling effect and heating effect
and spatial effect analysis based on the LCZ scheme was conducted in this study. The
results of the spatial effect and thermal contributions can better help make target mitigation
strategies for distinct macroclimate cities. In particular, an index (TWGI) was proposed to
quantify the spatial effects of heating/cooling LCZs. The higher value of log-likelihood and
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lower value of the Akaike information criterion indicated that TWGI could better explain
the spatial effect of heating/cooling LCZs than traditional GI (Table A4) [20,38]. The results
based on the GI value cannot reflect the exact heating/cooling effect owing to ignoring the
magnitude of thermal contributions.

Long time series of LST data are recommended for LCZ surface temperature studies
to reduce uncertainty [25]. In this study, multiyear Landsat8 images were searched for LST
retrievals from 2018 to 2020. Fewer images were available due to cloud cover, especially in
summer. For this reason, the LSTs were retrieved using single-time images, which might
cause uncertainties [41]. However, the uncertainty caused by Landsat 8 images with a
restricted temporal scale can be considered negligible in this study due to the following
reasons: (1) The results of the ANOVA test showed a typical LST regime for each LCZ in
all cities, which implied that the results of mean LST per LCZ were acceptable; and (2) the
dramatic land cover and land use changes might increase uncertainty over the results
of LCZ LSTs in developing cities [5]. Furthermore, climatic conditions are a dominant
factor causing different thermal contributions of the LCZs and spatial effects among the
five cities, but other factors, such as geographical locations and human activities, can also
influence the thermal environments of specific LCZs. However, the actual causes need to
be investigated.

5. Conclusions

First, the heating/cooling contributions of typical LCZs in five Chinese cities were dis-
tinguished. Second, a TWGI was proposed to quantify the spatial effects of heating/cooling
LCZs on LSTs. In summary, both the thermal contributions of LCZs and their spatial
heating/cooling effects were different in the five cities. The conclusions are as follows:

(1) In summer, built-up zones are characterized as heating LCZs in Jinghong and
Shangri-La, but opposite results were shown in Zhaotong and Yuanjiang. Moreover, most
of the built-up LCZs experienced heating effects in Kunming, except for open mid-rise
(LCZ4) and low-rise (LCZ5). For natural LCZs, areas covered with dense trees (LCZA),
scattered trees (LCZB), and waterbodies (LCZG) presented cooling effects. However,
the thermal contributions of shrubs (LCZC), low plants (LCZD), and bare soil (LCZF)
varied among the five cities because they are sensitive to background climate change and
human activities.

(2) The results of the SEMs showed that urban planners should pay more attention
to the spatial distribution of heating LCZs in Jinghong and Shangri-La, but the spatial
distribution of cooling LCZs was more important in Yuanjiang and Kunming. Moreover,
both cooling LCZs and heating LCZs had slight spatial impacts on LSTs in Zhaotong, which
implies that enhancing the evaporation capability could be a more efficient way to mitigate
SUHIs in Zhaotong.

(3) From summer to winter, built-up zones tended to have lower thermal contribu-
tions. However, the cooling effects of trees (LCZA, LCZB) and waterbodies (LCZG) were
almost unchanged. The LST differences between natural LCZs and built-up LCZs de-
creased to induce low aerodynamics. For this reason, the spatial effects of heating/cooling
LCZs weakened.
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Appendix A. LCZ and LST Mapping

Table A1. Information on Landsat images for LCZ mapping and LST retrieval.

City Scene ID Acquisition Data Scene Time (UTC) Images for LST
Retrieval

Jinghong LC81300452019358LGN00 2019-12-24 03:42 Winter
LC81300452020137LGN00 2020-05-16 03:41 Summer
LC81300452019038LGN00 2019-02-07 03:41

Kunming LC81290432019351LGN00 2019-12-17 03:35 Winter
LC81290432019127LGN00 2019-05-07 03:34 Summer
LC81290432019047LGN00 2019-02-16 03:34

Zhaotong LC81290412019079LGN00 2019-03-20 03:33
LC81290412020130LGN00 2020-05-09 03:33 Summer
LC81290412019223LGN00 2019-08-11 03:34
LC81290412019351LGN00 2019-12-17 03:34 Winter

Shangri-La LC81320412019228LGN00 2019-08-16 03:52 Summer
LC81320412020087LGN00 2020-03-27 03:52
LC81320412020007LGN00 2020-01-07 03:52 Winter

Yuanjiang LC81300442019358LGN00 2019-12-24 03:41 Winter
LC81300442020073LGN00 2020-03-13 03:41
LC81300442020137LGN00 2020-05-16 04:40 Summer

Table A2. The accuracy of LCZ classifications (NA represents no-data value).

LCZs
WUDAPT Modified Method

Jinghong Yuanjiang Kunming Zhaotong Shangri-
La Jinghong Yuanjiang Kunming Zhaotong Shangri-La

LCZ1 NA NA 40.48 NA NA NA NA 57.96 NA NA
LCZ2 73.96 62.69 57.28 60.98 75.54 82.98 91.07 61.02 74.63 90.00
LCZ3 73.53 69.84 64.60 64.00 73.02 79.07 73.21 74.04 83.04 74.59
LCZ4 73.75 NA 49.79 80.87 NA 78.67 NA 64.42 90.33 NA
LCZ5 71.34 82.89 45.13 89.34 NA 78.92 97.62 56.56 99.17 NA
LCZ6 71.48 66.90 65.15 64.89 NA 78.49 77.93 58.66 64.21 NA
LCZ8 89.00 59.68 79.07 92.04 NA 95.43 61.76 78.71 95.35 NA
LCZ9 NA NA NA NA 89.67 NA NA NA NA 98.71
LCZ10 NA NA 85.66 NA NA NA NA 89.1 NA NA
LCZA 97.61 92.46 98.68 98.42 99.42 95.86 93.33 98.38 99.08 100.00
LCZB 93.18 50.96 37.48 76.92 65.93 85.71 76.58 52.36 78.95 80.49
LCZC 72.73 98.60 73.01 58.93 91.45 91.30 96.32 70.81 53.47 94.62
LCZD 45.95 77.65 77.83 96.10 100 48.94 80.68 74.83 94.66 100.00
LCZF 97.27 90.00 59.01 64.38 89.13 98.28 89.58 62.45 73.61 97.56
LCZG 99.13 91.13 99.94 95.83 98.64 98.55 100.00 99.99 100.00 98.65
LCZH NA 78.13 98.49 NA NA NA 92.00 99.51 NA NA

Overall accuracy (%) 85.00 81.32 90.9 81.04 86.5 0.88 89.14 92.5 85.18 91.75
Kappa Coefficient 0.83 0.79 0.80 0.79 0.84 0.87 0.88 0.84 0.83 0.90
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Appendix B. Land Surface Temperature and Local Climate Zones

To study the thermal characteristics of all LCZs, the mean values of the LST for each
LCZ were calculated (Table 2), and the statistical significance of differences among them
was determined by an ANOVA test [43]. The Kolmogorov–Smirnov test was used as a
normality test, and Levene’s test was used to assess the homogeneity of the variance. The
Kolmogorov–Smirnow test was rejected in this study, but the data were considered to
approximately obey a normal distribution because the absolute values of skewness and
kurtosis were less than one. Welch ANOVA was then applied to determine whether there
was a significant difference among the mean LSTs, and Tamhane’s T2 test was used for
pairwise comparisons of mean LSTs due to the rejection of Levene’s test (Figure A3). The
results of the Welch ANOVA test showed a typical LST regime for each LCZ in all the cities.
The results of Tamhane’s T2 test showed that most LCZs were better distinguished in Pu’er
regardless of season, followed by Jinghong, Kunming, and Shangri-La. However, some
LCZs were not indistinguishable in Yuanjiang.

Figure A1. Boxplots of the LST values of the typical LCZs in the different seasons.

Figure A2. The TDI distributions in five cities (the red color represents LCZs with heating effects,
and the blue color represents LCZs with cooling effects).
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Figure A3. Multiple-comparison results of the differences in the mean LST among the various LCZ
types (white numbers and letters). The solid-colored circles represent no significant difference in mean
LST, and the hollow cells show that the mean LSTs of the given LCZ pairs were significantly different.

Appendix C. Spatial Regression Validation

Table A3. The results of SEM (*** p < 0.001, ** p < 0.01, R-squared values of OLS are presented
in parentheses).

Season City Thermal
Contribution Coefficient Constant λ LM R-Squared Log-

Likelihood AIC

Summer

JH Heating LCZs 13.27
33.16 *** 1.00 *** 375.64 ***

0.99
(0.50) 59,092.98 −118,178.00Cooling LCZs −1.81

YJ Heating LCZs 1.51
49.27 *** 1.00 *** 56.75 ***

0.99
(0.12) 7909.14 −15,812.30Cooling LCZs −12.73

KM
Heating LCZs 7.89

48.34 *** 1.00 *** 39,717.31 *** 0.99
(0.38) −159,410.66 318,827.00Cooling LCZs −12.73

ZT
Heating LCZs 0.28

40.63 *** 1.00 *** 6.31 **
0.99

(0.20) 5380.81 −10,755.60Cooling LCZs −0.19

SG
Heating LCZs 8.58

19.93 *** 1.00 *** 1240.17 ***
0.99

(0.58) 126,248.96 −252,492.00Cooling LCZs −0.92

Winter

JH Heating LCZs 9.12
33.16 *** 1.00 *** 482.91 ***

0.99
(0.42) 59,092.98 −118,178.00Cooling LCZs −1.99

YJ Heating LCZs 0.52
49.27 *** 1.00 *** 13.43 ***

0.99
(0.16) 7909.14 −15,812.30Cooling LCZs −4.30

KM
Heating LCZs 5.46

48.34 *** 1.00 *** 30,623.04 *** 0.99
(0.25) −159,410.66 318,827.00Cooling LCZs −4.72

ZT
Heating LCZs 0.38

40.63 *** 1.00 *** 6.31 **
0.99

(0.37) 5380.81 −10,755.60Cooling LCZs −0.42

SG
Heating LCZs 2.39

19.93 *** 1.00 *** 1240.17 ***
0.99

(0.33) 126,248.96 −252,492.00Cooling LCZs −0.57

Table A4. Comparison of the results of SEMs based on GI and TWGI in Jinghong (*** p < 0.001,
R-squared values of OLS are presented in parentheses).

Index Thermal
Contribution Coefficient Constant λ R-Squared Log-

Likelihood AIC

TWGI
Summer

Heating LCZs 13.27 ***
33.16 *** 1.00 ***

0.99
(0.50) 59,092.98 −118,178.00Cooling LCZs −1.81 ***

Winter
Heating LCZs 9.12 ***

24.51 *** 1.00 ***
0.99

(0.42) 63,098.09 −126,188.00Cooling LCZs −1.99 ***

GI
Summer

Heating LCZs 1.36 ***
33.87 *** 1.00 ***

0.99
(0.45) 58,009.12 −116,010.00Cooling LCZs −0.41 ***

Winter
Heating LCZs 0.89 ***

25.70 *** 1.00 ***
0.99

(0.41) 60,165.67 −120,325.00Cooling LCZs −0.48 ***
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