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Abstract: Upland cotton encounters biotic and abiotic stresses during the growing season, which
significantly affects the genetic potential of stress tolerance and productivity. The root-knot nematode
(RKN) (Meloidogyne incognita) is a soilborne roundworm affecting cotton production. The occurrence
of abiotic stress (drought stress, DS) can alter the plant–disease (RKN) interactions by enhancing
host plant sensitivity. Experiments were conducted for two years under greenhouse conditions to
investigate the effect of RKN and DS and their combination using nematode-resistant (Rk-Rn-1)
and nematode susceptible (M8) cotton genotypes. These genotypes were subjected to four treat-
ments: control (100% irrigation with no nematodes), RKN (100% irrigation with nematodes), DS
(50% irrigation with no nematodes), and DS + RKN (50% irrigation with nematodes). We measured
treatments-induced changes in cotton (i) leaf reflectance between 350 and 2500 nm; and (ii) physiology
and biomass-related traits for diagnosing plant health under combined biotic and abiotic stresses.
We used a maximum likelihood classification model of hyperspectral data with different dimen-
sionality reduction techniques to learn RKN and DS stressors on two cotton genotypes. The results
indicate (i) the RKN stress can be detected at an early stage of 10 days after infestation; (ii) RKN,
DS, and DS + RKN can be detected with an accuracy of over 98% using bands from 350–1000 nm
and 350–2500 nm. The genotypes ‘Rk-Rn-1’and ‘M8’ showed differential responses to DS, RKN, and
DS + RKN. With a few exceptions, all three stressors reduced the pigments, physiology, and biomass
traits and the magnitude of reduction was higher in ‘M8’ than ‘Rk-Rn-1’. Observed impact of stressors
on plant growth followed DS + RKN > DS > RKN. Similarly, leaf reflectance properties exhibited a
significant difference between individual stress treatments indicating that the hyperspectral sensor
data can be used to discriminate RKN-infected plants from drought-stressed plants. Thus, our study
reveals that hyperspectral and physiological changes in response to RKN and DS could help diagnose
plant health before visual symptoms.

Keywords: drought stress; hyperspectral reflectance; Meloidogyne incognita; southern root–knot nematode

1. Introduction

Meloidogyne incognita (southern root-knot nematode, RKN) is one of the most impor-
tant plant-parasitic nematodes affecting cotton production in the United States [1]. The
estimated cotton yield in the United States during 2015 was about 7.9 million bales, but
losses due to RKN were estimated at approximately 215,500 bales with an estimated value
of $73.94 million [2,3]. RKN has many hosts including weeds and field crops [4,5], where it
feeds on and lives in plant roots or inhabits the rhizosphere. RKN second-stage juveniles
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(J2) preferentially infect the root tips and migrate intercellularly through the root vascu-
lature. The J2 then becomes sedentary near the endodermis where it elicits the formation
of multiple ‘giant cells’ that provide the developing nematode with nutrients throughout
the life cycle. Vascular tissue surrounding the giant cells undergo extreme hypertrophy
and forms the characteristic ‘galls’ seen on RKN-infected roots [6]. Giant cell formation of
galls is solely to benefit the nematode, not the host, and provide the necessary nutrition for
the growth and subsequent production of large numbers of eggs. RKN-induced feeding
sites are nutritional sinks that impede the total supply of water and nutrients to the shoot,
reducing crop growth and yield in cotton [7,8], and other crops [9]. Various management
practices like nematicide application, fumigation and soil solarization are implemented to
control RKN infection [10]. However, considering the cost, soil health, and safety, these
management practices are not adapted to large-scale farming. Methods like crop rotation,
biological control, and resistant varieties are considered economical, sustainable, and eco-
friendly options to control the RKN effect on crops [10,11]. Though substantial progress has
been made in developing host–plant resistance, significant gaps exist due to the complexity
of plant–nematode interaction mechanisms [12,13].

Field-grown crops have the possibility of experiencing multiple stresses simultane-
ously, such as a combination of abiotic and biotic stresses [14]. This combination is common
to agricultural areas worldwide that impact crop productivity. More than 65% of cotton in
the United States was grown under rainfed conditions [15]. With the increasing threat of
climate change, access to irrigation is decreasing, further turning the irrigated cultivated
land into rainfed [16]. Many of the rainfed cotton-growing fields are abundant with the
increased RKN populations. Plants produce reactive oxygen species as signaling molecules
to control pathogen infection [17]; however, inadequate soil moisture weakens this defense
mechanism [18,19]. A stressor (like drought) enhances RKN spread, making the plant more
susceptible to pathogen infection leading to significant yield reduction. In particular, RKN
infection causes substantial damage to roots by disrupting xylem, phloem, epidermis, and
cortical tissues [20,21]. RKN infection symptoms are similar to those often attributed to
drought stress, where plants exhibit premature wilting, nutrient deficiency, and stunted
growth [10,22]. These abnormalities appear in the infected plants due to reduced water
uptake and poor water supply to the shoots. This event results in decreased stomatal
conductance and net photosynthesis, thereby increasing canopy temperature, which is
comparable to plants’ experiencing drought stress [23–25]. Exposure of plants to RKN can
alter plant metabolism and contribute to premature leaf abscission, which is presumed
to affect chlorophyll content and photosynthesis in soybean [26]. Growth is substantially
reduced by infection with RKN [23], similar to drought in cotton [24,27].

Early diagnosis of stressors is required to reduce disease spread and facilitate real-time
management practice. Recent studies demonstrated that crops share common physiological
changes in response to RKN and drought stress [10,22]. However, changes in leaf spectral
properties specific to RKN or drought stress are not yet investigated in many crops, includ-
ing cotton. Recent advancements in remote sensing (multispectral and hyperspectral) can
help early diagnosis of stressors before the plant’s visual symptoms appear. Hyperspec-
tral data contain reflectance as hundreds of narrow spectral bands in visible and infrared
regions. Hyperspectral sensors have proven to help distinguish subtly different levels of
plant stress. In the literature, the hyperspectral data are shown to have the ability to rapidly
and early detect various biotic- and abiotic-stress symptoms [28,29]. Stressors alter the
optical properties of leaves by changing the leaf pigments, cell structure, water content,
leaf physiology, and chemical composition. In response to stressors, plants adjust their
leaf optical properties to balance light reflectance, absorption, and transmittance [30,31].
Ground-based sensing of leaf reflectance data measured using spectroradiometers and
hyperspectral sensors have a higher potential of discriminating even small differences
between the stressed and non-stressed plants due to its richness in a larger number of dis-
crete wavelengths [32,33]. However, hyperspectral data contain highly correlated narrow
spectral bands that demand a larger number of training samples to accurately determine
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class conditional probabilities that are required in statistical machine learning (ML) mod-
eling. The application of dimensionality reduction algorithms can alleviate the small
training size issues. ML-based techniques in agriculture have shown the potential to dis-
criminate healthy plants from the stressed ones caused by either RKN [32] or drought
stress [34] using the hyperspectral signatures. Several studies have shown that changes in
physiology and biochemical processes in response to a broad range of stressors, such as
drought, temperature, salinity, nutrient and diseases, can be identified using leaf reflectance
properties [35–39]. However, identifying unique and shared spectral profile changes for a
broad range of stressors require multidisciplinary approaches.

Hyperspectral imagery records reflectance values over a wide range of continuous
narrow spectral bands in the visible and infrared regions. This results in high-dimensional
data providing helpful information for land-cover classification, target recognition, and
mapping [40,41]. This high dimensionality in hyperspectral imagery often suffers from
a Hughes phenomenon [42] that results in poor performances in statistical pattern clas-
sification tasks with small sample size. A suitable dimensionality reduction procedure
regulates these problems of high dimensionality in hyperspectral image analysis. This
method of dimensionality reduction deals with data compression and feature extraction for
classification [43]. This reduction process is based on projections and decision rules opti-
mizing a global criterion such as the overall accuracy (OA) or Fisher’s ratio [44]. Principal
component analysis (PCA) and Fisher’s linear discriminant analysis (FLDA) are popular
methods for such dimensionality reduction and have been widely applied in hyperspectral
imagery analysis [40,41,43,45]. In general, FLDA has greater efficiency in feature reduction
and classification than PCA and is preferred in hyperspectral data analysis [46]. Stepwise
linear discriminant analysis (SLDA) mitigates the effects of a small sample size on its trans-
formations, where forward selection and backward rejection determine the best feature
subset. In this study, we are not only interested in identifying the changes in leaf spectral
properties in response to individual and combined drought and RKN stresses. We also
sought to determine the suitability of a spectral signatures-based screening approach to
distinguish stressed plants from healthy ones and to forecast the type of stress the plants
undergo (drought or RKN) before the visual symptoms appear.

Therefore, the present study aims to (i) assess the individual and interactive effects
of RKN and drought on the physiology and growth of two cotton genotypes; (ii) compare
the ability of statistical ML methods in discriminating or classification of healthy plants
from stresses under individual and interactive RKN and drought stress treatments; and
(iii) determine the best ML classifier and dimensionality reduction approach for early
diagnosis of stressors in cotton grown in a greenhouse controlled experiment.

2. Materials and Methods
2.1. Crop Husbandry

Two cotton genotypes, ‘Rk-Rn-1’ (nematode resistant; [47]) and ‘M8’ (nematode sus-
ceptible), were used in this study. The experiments were carried out during the years
2020 (year 1) and 2021 (year 2) in a controlled environment greenhouse facility at the
USDA—ARS, Mississippi State, MS, USA. Two seeds were sown at a depth of about 2–3 cm
in a pot containing a mixture of field soil and sand (1:1 ratio). The seedling was thinned to
one per pot at the two-leaf stage. Five replications were maintained for each genotype per
treatment (5 × 2 × 2 = 20 pots) in year 1, and ten replications were maintained for each
genotype per treatment (10 × 2 × 4 = 80 pots) in year 2. The temperature in the glasshouse
was maintained at 30/20 ◦C (day/night) and 60–70% relative humidity with a photoperiod
of 11/13 h (day/night) during the experiment. The soil moisture was monitored using a
handheld moisture meter (Theta Probe ML2x, Delta-T Devices, Cambridge, UK).

2.2. Treatment

A M. incognita race 3 population was cultivated on susceptible cotton plants. RKN
eggs used for inoculum were collected from infected cotton roots [48]. In year 1, the experi-
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ment contains two treatments (control and nematode stress). (1) control—100% irrigation
[0.15 m3 m−3 volumetric water content (VMC)] and no nematode inoculation; (2) nematode
stress—100% irrigation. Pots receiving RKN inoculum were inoculated with 50,000 RKN
eggs ten days after planting. RKN eggs were applied as 10 × 1 mL aliquots into 10 holes
surrounding the plant.

In year 2, the experiment contained four treatments: (1) control—100% irrigation,
no nematode inoculation; (2) drought stress (DS)—40% irrigation (0.060 m3 m−3 VWC),
no nematode inoculation; (3) root-knot nematode stress (RKN)—100% irrigation and ne-
matode inoculation (100,000 RKN eggs); (4) drought and nematode stress (DS + RKN)—
40% irrigation and nematode inoculation. As with the year 1 experiment, pots receiving
RKN inoculum were inoculated ten days after planting. Approximately 100,000 RKN eggs
were applied as 10 × 1 mL aliquots into 10 holes surrounding the plant. The approximate
number of RKN eggs per cm3 of soil was equivalent between years 1 and 2. Successful
RKN infection of the susceptible control plants was confirmed at the end of the experiments
by the appearance of extensive RKN-induced root galling.

2.3. Data Collection
2.3.1. Physiological and Shoot Biomass Traits

Chlorophyll content and nitrogen balance index were measured on a fully opened
mainstem leaf, third leaf from the terminal, across all treatments using a handheld Dualex®

scientific instrument (Force A DX16641, Paris, France) at 80 days after planting (DAP)
or 60 days after stress in year 1 and multiple times (16, 24, 32, 39, 46, 53, and 72 days
after stress) in year 2. A portable handheld LI-600 porometer system integrated with
a fluorometer (LI-COR Biosciences, Lincoln, NE, USA) was used to measure stomatal
conductance and transpiration across all treatments between 10:00 a.m. and 12:00 p.m.
in year 1 (60 days after stress) and year 2 (16, 24, 32, 39, 46, 53, and 72 days after stress).
Plants were harvested at 60 days after stress in year 1 and 72 days after stress in year 2.
Plants were kept in a forced-air oven at 75 ◦C for three days to determine root and shoot
dry weights.

2.3.2. Leaf Hyperspectral Reflectance

Leaf hyperspectral reflectance (350 and 2500 nm) data were collected between 10:00 a.m.
and 12:00 p.m. in year 1 (10, 30 and 60 days after stress) and year 2 (32, 39, 46, 53, and
72 days after stress), using a PSR + 3500 spectroradiometer (Spectral Evolution, Haverhill,
MA, USA). The spectroradiometer is attached to a leaf clip probe with an internal calibrated
light source. The instrument’s spectral range is 350–2500 nm (2150 bands) with a spectral
resolution of 2.8 nm at 700 nm, 8 nm at 1500 nm, and 6 nm at 2100 full width at half
maximum resampled to produce data at 1 nm. Five instantaneous spectral reflectance
measurements were recorded from the adaxial surface in each treatment for each genotype
and treatment by keeping the leaf vertical to the optical probe. Each measurement is an
average of 10 readings in years 1 and 2. At the beginning of each treatment, a white reference
measurement was taken, and each measurement was then radiometrically calibrated based
on the white reference.

2.4. Statistical Machine Learning

A maximum likelihood (ML) classifier with a dimensionality reducer approach was
used to classify leaf hyperspectral signatures. This setup has shown to effectively classify
subtly different classes in hyperspectral data in reduced dimensions without suffering from
the Hughes phenomenon. The maximum likelihood classifier assumes that the statistics for
each class in each hyperspectral band usually are distributed and computes the probability
that a given pixel belongs to a particular class [45]. The different dimensionality reduction
algorithms used in this study to differentiate RKN stressed cotton leaf reflectance from
drought and control treatments were PCA, FLDA, and SLDA [32]. FLDA and PCA are
closely related because they are both linear; however, the method of learning in PCA is
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unsupervised, while it is supervised in FLDA. The PCA finds the direction of the largest
variations without paying attention to the class structure. PCA minimizes the mean square
error between observed and predicted vectors. On the other hand, FLDA maximizes the
ratio between or within classes and discriminates against the class structure by maximizing
the distance and minimizing the variation between classes. PCA and FLDA are intuitive
to understand and have shown to be effective in preserving discrimination features in
subtly different classes. The samples within each class have the smallest possible scatter at
maximum ratio and the most distance between the classes.

The classification analysis was done for the entire set of bands (350–2150 nm) and a
range of bands (350–1000 nm) to understand the utilities of the small number of bands
to classify RKN and drought stressors. The choice of 350–1000 nm stemmed from the
fact that cost-effective, commercially available drone mountable hyperspectral sensors
cover this region. Temporal misalignment experiments were conducted to determine if
the information contained in hyperspectral data is sufficient to train a ML model with
one date and test it later. This analysis will be helpful in deciding on the changes in leaf
spectrum between days after stresses and reduce the efforts of ground truth acquisition.
Classification accuracy for every four traits was derived, and the OA was compared with
the Kappa statistics [49].

3. Results and Discussion
3.1. Physiological Traits

Reduced water transportation from the root to the shoot may cause DS in plants and
limit nutrient flow [50]. Unlike DS, there is little information on the effects of nematode
parasitism on cotton physiology [7]. The cultivar and treatment were significantly varied
(p < 0.05) for both pigment and physiological traits except for chlorophyll and NBI in
year 2. The chlorophyll content is a valuable screening proxy to detect stress effects and
plant health [51]. In this study, the magnitude of reduction for chlorophyll and NBI were
higher in ‘M8’ compared to ‘Rk-Rn-1’ in year 1 (Figure 1A,C). RKN stresses ‘M8’ plants
showed significant (p < 0.05) reduction in chlorophyll and NBI compared to control in
year 1. Nematodes that live in RKN-infected plant roots consume a portion of the nutrients
that are supplied to the plants. As reported in other studies, this could cause nutrient stress
in plants, ultimately results in low leaf nitrogen [25,52]. The nematode entry into ‘Rk-Rn-1’
roots had minimal effect on transpiration and stomatal conductance compared to the DS, as
the reduction in transpiration and stomatal conductance due to DS and DS + RKN stresses
were statistically significant (p < 0.05). A similar observation was also observed in the
previous research [7]. Maintaining optimum transpiration under stress is a good indication
of normal stem water flux. The reduced transpiration on nematode-infected plants during
high evaporative demand suggests a higher hydraulic resistance than the control plants [23].
In this study, the genotype ‘Rk-Rn-1’ maintained relatively high transpiration and stomatal
conductance compared to genotype ‘M8’, indicating that the RKN-resistant genotype has
less hydraulic resistance than the RKN-susceptible genotype.

The DS had a substantial negative effect on leaf functional parameters in both geno-
types; however, the stressors had a higher impact on the ‘M8’ genotypes than the ‘Rk-Rn-1’.
Regardless of DS or RKN, traits closely related to plant–water transport (transpiration
and stomatal conductance), rather than other traits (pigments), are clearly depicting the
negative influence on plant health. These findings demonstrated that DS induced changes
in water loss could further amplify [53] the impact of RKN infection regardless of the plant’s
sensitivity to nematode stress. Several studies reported that DS decreases leaf chlorophyll
content in various crops [54,55]. We found a similar reduction in ‘Rk-Rn-1’ chlorophyll
content in response to DS; however, no such decremental pattern was observed when the
drought coincided with RKN stress. Based on this observation, we anticipate that RKN
stress-induced galls act as a nutrient sink that redirects some nutrients in the RKN-resistant
cotton cultivar [22], concealing the detrimental effect caused by DS on chlorophyll content.
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Figure 1. Drought and nematode effects on chlorophyll content (A,B) and nitrogen balance index
(C,D) of cotton genotypes (Rk-Rn-1 and M8) measured under control (CNT), drought stress (DS),
nematode stress (RKN), and DS + RKN combination in 2020 (A,C) and 2021 (B,D). Vertical bars
denote mean ± SE. Means followed by a common letter are not significantly different by Duncan’s
multiple range test at the 5% level of significance.

Both genotypes and treatments showed markable variation for the chlorophyll content,
NBI, transpiration and stomatal conductance measured at various growth stages (16, 24, 32,
46, 53, and 72 days after inoculation) in year 2 (Figures S1 and 2). Despite differences in
pigments and physiology between genotypes and treatments, we can see a clear decreasing
pattern in chlorophyll and NBI from 16 to 72 days after stress (Figure S1A,B). The reduction
in chlorophyll content was about 45% in 72 days after stress compared to 16 days after stress
treatment, when averaged across genotypes and treatments (Figure S2A,B). Our results
imply that physiology parameters, rather than pigments, have the ability to distinguish DS
and DS + RKN stressed plants from control plants. There was precise separation observed
under RKN stress since the reduction depends on the cultivars’ sensitivity. Overall, the
genotype ‘Rk-Rn-1’ maintained a better physiological status compared to ‘M8’.
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Figure 2. Drought and nematode treatments effects on (A) transpiration (mmol m−2 s−1); (B) stomatal
conductance (mmol m−2 s−1) of cotton genotypes (Rk-Rn-1 and M8) measured under control (CNT),
drought stress (DS), nematode stress (RKN), and DS + RKN combination in 2021. Vertical bars denote
mean ± SE. Means followed by a common letter are not significantly different by Duncan’s multiple
range test at the 5% level of significance.
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3.2. Biomass

Both physiological and biochemical parameters influence leaf photosynthesis, which
ultimately determines the biomass accumulation in plants [56,57]. Any disruption in these
parameters by single or multiple stresses can cause a significant reduction in biomass
production [14,58]. Under control condition, the genetic potential of both genotypes was
similar for shoot dry weight (Figure 3). The shoot dry weight was significantly reduced
in response to both individual and combined stresses (p < 0.05) compared to their control
counterparts (Figure 3) except under RKN stress in year 2 (Figure 3B).
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Figure 3. Drought and nematode effects on shoot dry weight (A,B) of cotton genotypes (Rk-Rn-1 and
M8) measured under control (CNT), drought stress (DS), nematode stress (RKN), and DS + RKN
combination in 2020 (A) and 2021 (B). Vertical bars denote mean ± SE. Means followed by a common
letter are not significantly different by Duncan’s multiple range test at the 5% level of significance.

The genetic potential of ‘M8’ for root growth was about one-fold greater than that
of the genotype ‘Rk-Rn-1’ under control (Figure S3), but when ‘M8’ was exposed to RKN
stress, its total root length was significantly reduced (p < 0.05). For example, the nematode
stressed genotype ‘Rk-Rn-1’ increased its total root length by 4% and 20% of its root dry
weight compared to the control. RKN-infected plants seem to be momentarily investing
more in their root growth in response to RKN treatment [59]. It is conceivable that the
increased root length and root dry weight in ‘Rk-Rn-1’ is a form of insurance, compensating
for a temporary loss of functionality in infected roots [60]. In response to RKN, the genotype
‘M8’ decreased its total root length (50%) and root dry weight (36%). Unlike root length,
root dry weight did not differ between genotypes under RKN stress. This could be due to
higher sensitivity of ‘M8’ to RKN stress that possibly increased the number of galls formed,
thereby increasing its root dry weight [61] as equal to that of ‘Rk-Rn-1’.

Though both genotypes produced less shoot dry weight in response to RKN stress,
the magnitude of reduction in shoot dry weight was three-fold higher in ‘M8’ (70%) than
‘Rk-Rn-1’ (24%) in year 1, whereas the reduction in response to RKN in year 2 was mini-mal
for ‘Rk-Rn-1’ (4%) and ‘M8’ (11%). DS and DS + RKN had a substantial negative effect
on shoot biomass in both ‘Rk-Rn-1’ (31% and 29%) and ‘M8’ (36% and 50%) (Figure 3B).
Studies suggested that RKN stress in cotton reduces water flow in the plant, causing
temporary wilting similar to DS [10,22]. The current study results generally suggest
that the quantitative differences in the variables affected (shoot and root traits) and the
magnitude of effects caused by the stressors are not identical.

3.3. Variation in Spectral Reflectance in Response to Stressors

Overall accuracy in the 0–100% range is often used to assess classifier performance,
class accuracies, and Kappa statistics. A Kappa value ≤ 0 indicates no agreement, 0.01–0.20 as
none to slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00
as almost perfect agreement [62].

The leaf reflectance signatures measured at 10, 30, and 60 days after stress in
year 1 were classified using ML with two classes (RKN stress and control) with PCA,
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FLDA, and SLDA, which had a best overall OA of 95% (Kappa = 0.89) (Table 1). Similarly,
the leaf reflectance signatures measured at 16, 24, 32, 46, 53, and 72 days after stress in
year 2 were classified using ML with four and eight classes with the three-dimensionality
reducers, with the best OA of 99% (Kappa = 0.96) and 98% (Kappa = 0.97), respectively
(Tables 2 and 3). The Kappa values ranged from 0.84 to 0.96 in year 1 and from 0.91 to 0.98
in year 2, indicating the robustness and reliability of treatment classification.

Table 1. Classification accuracies for a two-class problem (M8 vs. Rk-Rn-1) using leaf spectral
reflectance information between 350–1000 nm and 350–2500 nm measured at 10, 30, and 60 days after
stress treatment in 2020.

Days
after
Stress

Class
Accuracy

M8 Rk-Rn-1

PCA SLDA FLDA PCA SLDA FLDA

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

10

Control 96 96 100 92 80 68 100 100 100 88 72 52

RKN 96 92 96 100 68 32 96 100 96 92 52 68

OA 96 94 98 96 74 50 98 100 98 90 62 60

Kappa 0.92 0.88 0.96 0.92 0.48 0.0 0.96 1.0 0.96 0.80 0.24 0.20

30

Control 95 100 95 95 95 57 96 100 98 92 72 4

RKN 96 96 100 100 64 72 100 96 100 88 80 76

OA 96 98 98 94 78 65 98 98 98 90 76 40

Kappa 0.91 0.96 0.96 0.87 0.57 0.29 0.96 0.96 0.96 0.92 0.52 −0.20

60

Control 87 87 93 93 53 40 100 96 96 100 84 80

RKN 100 100 100 100 84 84 96 96 96 96 88 80

OA 95 95 98 98 73 68 98 96 96 98 86 80

Kappa 0.89 0.89 0.89 0.95 0.39 0.26 0.96 0.92 0.92 0.96 0.72 0.80

PCA = Principal component analysis; SLDA = Stepwise linear discriminant analysis; FLDA = Fisher’s linear
discriminant analysis; OA = Overall accuracy.

Table 2. Classification accuracies for a four-class problem (control, drought stress (DS), root–knot
nematode (RKN) stress, and DS + RKN stress combination) using leaf spectral reflectance information
between 350–1000 nm and 350–2500 nm measured of two cotton genotypes (M8 and Rk-Rn-1) at 32,
39, 46, 53, and 72 days after stress treatment in 2021.

Days
after
Stress

Class
Accuracy

M8 Rk-Rn-1

PCA SLDA FLDA PCA SLDA FLDA

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

32

Control 96 96 96 98 96 98 96 98 94 100 100 100

RKN 100 100 95 98 100 91 100 100 98 96 89 98

DS 100 94 83 85 100 96 94 98 92 96 98 94

DS +
RKN 98 100 98 100 98 93 98 100 98 100 85 89

OA 99 96 93 90 99 97 96 98 95 95 92 92

Kappa 1.0 0.97 0.90 0.93 1.0 0.92 0.98 0.99 0.94 0.97 0.90 0.93

Control 98 98 100 96 100 100 98 94 100 96 100 100

39

RKN 98 98 100 100 94 94 100 100 100 100 91 92

DS 100 100 94 89 98 98 98 98 94 96 96 92

DS +
RKN 98 98 98 98 94 93 98 98 100 100 98 98

OA 99 98 98 95 97 95 99 97 98 97 96 94

Kappa 1.0 0.98 0.97 0.94 1.00 0.97 0.98 0.97 0.98 0.97 0.95 0.94
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Table 2. Cont.

Days
after
Stress

Class
Accuracy

M8 Rk-Rn-1

PCA SLDA FLDA PCA SLDA FLDA

Control 98 98 96 100 100 100 98 98 96 98 100 100

46

RKN 100 98 80 83 94 96 98 98 100 100 88 94

DS 99 100 100 100 94 95 98 98 91 86 98 98

DS +
RKN 99 99 98 96 98 99 100 100 98 100 94 94

OA 99 98 94 96 96 93 99 98 96 94 95 95

Kappa 1.0 0.98 0.92 0.93 0.90 0.96 0.98 0.98 0.95 0.94 0.93 0.95

Control 98 96 96 94 100 100 98 98 98 94 100 100

53

RKN 98 98 100 100 92 89 100 98 100 100 89 89

DS 98 98 82 94 98 96 98 97 94 94 96 94

DS +
RKN 100 100 98 100 96 98 100 98 98 98 94 96

OA 99 97 93 97 97 93 99 98 98 95 95 94

Kappa 1.0 0.97 0.91 0.96 1.0 0.94 0.99 0.97 0.97 0.95 0.93 0.93

Control 98 98 94 94 93 96 98 98 96 98 98 100

72

RKN 100 98 97 88 91 94 100 98 97 100 93 94

DS 88 98 80 94 93 96 88 98 78 86 89 96

DS +
RKN 100 100 100 98 92 96 100 100 97 100 93 100

OA 96 97 92 93 92 88 96 99 91 96 93 98

Kappa 0.95 0.98 0.89 0.91 0.90 0.94 0.95 0.98 0.87 0.94 0.91 0.97

PCA = Principal component analysis; SLDA = Stepwise linear discriminant analysis; FLDA = Fisher’s linear
discriminant analysis; OA = Overall accuracy.

Table 3. Classification accuracies on an eight-class problem (control vs. drought stress vs. RKN stress
vs. genotypes) using leaf spectral reflectance information between 350–1000 nm and 350–2500 nm of
two cotton genotypes (M8 and Rk-Rn-1) measured at 32, 39, 46, 53, and 72 days after stress treatment
in 2021.

Days after Stress/
Class Accuracy

PCA SLDA FLDA

32 39 46 53 72 32 39 46 53 72 32 39 46 53 72

W
av

el
en

gt
hs

(3
50

–1
00

0
nm

) M8–DS + RKN 92.6 98.0 98.0 95.2 97.8 94.3 100 96.2 96.2 97.8 100 100 100 100 100
M8–RKN 97.9 98.0 98.0 98.0 100 100 98.0 100 100 100 87.7 92.5 92.5 92.5 88.0

Rk-Rn-1–DS + RKN 98.0 100 98.0 100 90.0 92.5 96.1 98.0 94.3 79.0 100 98.0 98.0 98.0 100
Rk-Rn-1–RKN 98.0 98.0 100 98.0 100 98.0 96.1 96.0 98.0 97.4 100 100 100 98.0 97.8

M8–DS 100 96.0 98.0 100 95.7 98.0 96.1 95.7 96.0 99.8 94.2 94.3 90.9 94.3 95.7
M8–control 97.8 98.0 100.0 94.2 95.7 100 100 94.1 96.0 97.8 95.4 97.9 100.0 97.9 89.8
Rk-Rn-1–DS 98.0 98.0 98.0 98.0 97.7 98.0 100 96.1 98.0 97.7 98.0 98.0 98.0 98.0 95.5

Rk-Rn-1–control 98.0 98.0 98.0 98.0 97.8 98.0 100 98.0 100 97.8 96.2 98.0 98.0 98.0 100

OA 98.0 98.0 98.5 97.8 96.7 97.2 98.3 96.8 97.3 95.0 96.2 97.3 97.0 97.0 95.6
Kappa 0.97 0.98 0.98 0.97 0.96 0.97 0.98 0.96 0.97 0.94 0.96 0.97 0.97 0.97 0.95

W
av

el
en

gt
hs

(3
50

–2
50

0
nm

) M8–DS + RKN 92.6 100 96.2 96.2 97.8 95.2 100 96.2 96.2 97.8 100 100 100 100 100
M8–RKN 97.8 100 97.9 98.0 100 100 98.0 100 100 100 87.7 94.2 92.5 92.5 88.2

Rk-Rn-1–DS + RKN 98.0 100 96.1 100 88.2 89.3 96.0 98.0 94.3 83.3 100 98.0 98.0 98.0 100
Rk-Rn-1–RKN 96.2 98.0 98.0 96.2 97.7 98.0 96.0 96.0 98.0 97.5 100 100 100 98.0 97.8

M8–DS 100 94.3 100 100 100 98.0 96.0 95.7 100 97.8 94.2 94.3 90.9 94.3 97.8
M8–control 93.8 100 100 98.0 95.7 97.7 100 94.1 100 100 95.4 97.9 100 95.9 93.6
Rk-Rn-1–DS 100 98.0 96.1 98.0 97.8 98.0 98.0 96.1 98.0 97.8 98.0 98.0 98.0 98.0 93.3

Rk-Rn-1–control 98.0 98.0 98.0 98.0 100 98.0 100 98.0 100 97.8 96.2 100 98.0 98.0 100

OA 97.0 98.0 97.8 98.0 96.9 96.7 98.0 96.8 98.3 96.1 96.2 97.8 97.0 96.8 96.1
Kappa 0.97 0.98 0.97 0.98 0.97 0.96 0.98 0.96 0.98 0.96 0.96 0.97 0.97 0.96 0.96

RKN = Root–knot nematode; PCA = Principal component analysis; SLDA = Stepwise linear discriminant analysis;
FLDA = Fisher’s linear discriminant analysis; OA = Overall accuracy.

The above-mentioned experiments were conducted with two sets of hyperspectral
bands, (1) 350–1000 nm; (2) 350–2500 nm; the OA and Kappa in both sets of experiments
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(Table 4) were found to be excellent. The differences between classification accuracies
are more minor compared to complementary treatments with all the spectral bands in
year 1. The ability of ML to classify bands in 350–1000 nm demonstrates that RKN infection
and DS symptoms may be mapped at the field level with a commercially available drone
mountable hyperspectral sensor.

Table 4. Temporal misalignments in a two-class problem (M8 vs. Rk-Rn-1) using leaf spectral
reflectance information between 350–1000 nm and 350–2500 nm of cotton genotypes measured at 10,
30, and 60 days after stress treatment in 2020.

Days
after
Stress

Class
Accuracy

M8 Rk-Rn-1

PCA SLDA FLDA PCA SLDA FLDA

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

350–
1000 nm

350–
2500 nm

10
vs.
30

Control 39 52 70 78 65 35 56 40 96 36 32 48

RKN 100 100 100 100 100 80 100 100 100 100 100 100

OA 70 77 85 90 83 58 78 70 98 68 66 74

Kappa 0.44 0.53 0.70 0.90 0.66 0.15 0.56 0.40 0.96 0.36 0.32 0.48

10
vs.
60

Control 44 55 60 30 25 30 48 36 88 80 24 40

RKN 100 100 100 100 100 100 100 100 100 100 100 80

OA 76 80 82 69 67 69 74 68 94 90 62 60

Kappa 0.48 0.58 0.63 0.32 0.27 0.32 0.48 0.36 0.88 0.8 0.24 0.20

PCA = Principal component analysis; SLDA = Stepwise linear discriminant analysis; FLDA = Fisher’s linear
discriminant analysis; OA = Overall accuracy.

The performance of the ML classifier with three-dimensionality reduction approaches
were tested under two degrees of temporal misalignment between training and testing
condition. This helps in understanding the effectiveness of ML classifiers when trained and
tested with data collected at various plant growth stages during the cropping season [32].
All spectral signatures measured at 10 days after stress were used to train the ML classifier,
which is tested on all spectral signatures obtained at 30 and 60 days after stress in year 1.
In year 2, the spectral signatures recorded on 16 days after stress served as training data,
which was then tested on the remaining spectral signatures collected on various days after
stress. When all the bands were used for training, SLDA showed the best classification
accuracies for both ‘Rk-Rn-1’ and ‘M8’. With SLDA, an OA of more than 82% was recorded,
with Kappa ranging from 0.63–0.96. With PCA and FLDA, the accuracies were very low.
When only a part of the spectral bands (350–1000 nm) was employed to learn ML, overall
accuracies and Kappa statistics were decreased. Among the dimensionality reducers, SLDA
produced the best accuracies for 350–2500 nm spectral bands and inconclusive results
when bands in the 350–1000 nm range were used. A significant confusion between RKN
and DS was observed with year 2 data resulting in smaller OA and Kappa with other
dimensionality reducers.

Based on the experiments, we observed that RKN stress can be detected at an early
stage (10 days after inoculation) from spectral bands in 350–1000 nm and 350–2500 nm by
using a basic statistical classifier like ML with a dimensionality reducer. Further experi-
ments need to be conducted to evaluate the ability to detect RKN stress earlier than 10 days
after stress. Among the dimensionality reducers, PCA and SLDA work better. Experimental
analysis showed that spectral bands in the visual near infrared (VNIR) region (350–1000 nm)
are good enough to achieve excellent (>93% OA and Kappa > 0.95) classification accuracy.
Temporal alignment experiments showed that RKN stress alone could be detected from
ML classifier trained using the data collected at an earlier date. However, when trained
with RKN and DS, results are subpar (OA = 60% or less). Based on year 2 results, we
observe that both RKN and DS may be successfully differentiated from the control group
with excellent OA with VNIR and 350–2500 nm bands. Additional studies are necessary
to evaluate the classification accuracy in a larger number of the crop species and to test
their robustness under different environmental conditions. In a future study, we intend to
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repeat these experiments again in a field using a drone-mounted hyperspectral sensor to
determine the specific region of the spectral profile that is most informative for predicting
various biotic and abiotic stresses.

4. Conclusions

In this study, the genotypes ‘Rk-Rn-1’and ‘M8’ showed differential responses to DS,
RKN, and DS + RKN. The magnitude of reduction in response to all three stressors was
relatively higher in ‘M8’ than ‘Rk-Rn-1’. The impact of stressors on plant growth followed
DS + RKN > DS > RKN. Based on the results, stomatal conductance can be used to dis-
tinguish DS and combined DS + RKN stressed plants from non-stressed plants. Though
‘Rk-Rn-1’ performed better than ‘M8’ under RKN stress, its genetic potential under drought
could be improved to perform better under DS + RKN stress. Leaf reflectance properties
exhibited a significant difference between individual stress treatments, indicating that the
hyperspectral sensor data can be used to discriminate the nematode infected plants from
the drought-stressed plants. The hyperspectral reflectance properties could be used for
phenotyping cotton genotypes for RKN, DS or combined stress tolerance after validating
under field conditions. Our study reveals that hyperspectral and physiological changes
in response to RKN and DS could help diagnose plant health before the plant’s visual
symptoms appears. In addition, developing cotton varieties with improved tolerance
to combined biotic and abiotic stresses is essential to sustain production under varied
nematode-infected fields coupled with low rainfall. Furthermore, the methodology used
in this study could be adapted to explore different biotic and abiotic stress interactions in
cotton and other crops.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14164021/s1, Figure S1: Drought and nematode infection effect
on chlorophyll content (A) and nitrogen balance index (B) of cotton genotypes (Rk-Rn-1 and M8)
measured at 16, 24, 32, 46, 53 and 72 days after stress treatment under control, drought stress (DS),
nematode stress (RKN), and DS + RKN combination in 2021; Figure S2: Drought and nematode
infection effect on transpiration (A) and stomatal conductance (B) of cotton genotypes (Rk-Rn-1 and
M8) measured at 16, 24, 32, 46, 53, and 72 days after stress treatment under control, drought stress
(DS), nematode stress (RKN), and DS + RKN combination in 2021; Figure S3: Drought and nematode
infection effect on total root length (A) and root dry weight (B) of cotton genotypes (Rk-Rn-1 and M8)
measured under control (CNT) and nematode stress (RKN) in 2020. Means followed by a common
letter are not significantly different by Duncan’s multiple range test at the 5% level of significance.
Vertical bars denote mean ± SE.
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