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Abstract: Based on the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol
scheme of the Weather Research and Forecasting model coupled with online Chemistry (WRF-Chem)
and the three-dimensional variational (3DVAR) assimilation method, a 3DVAR data assimilation
(DA) system for aerosol optical depth (AOD) and aerosol concentration observations was developed.
A case study on assimilating the Himawari-8 satellite AOD and/or fine particulate matter (PM2.5)
was conducted to investigate the improvement of DA on the analysis accuracy and forecast skills of
the spatial distribution characteristics of aerosols, especially in the vertical dimension. The aerosol
extinction coefficient (AEC) profile data from The Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO), surface PM2.5 and Himawari-8 AOD measurements were used
for verification. One control experiment (without DA) and two DA experiments including a PM2.5

DA experiment denoted by Da_PM and a combined PM2.5 and AOD DA experiment denoted by
Da_AOD_PM were conducted. Both DA experiments had positive effects on the surface PM2.5 mass
concentration forecast skills for more than 60 h. However, the Da_PM showed a slight improvement
in the analysis accuracy of the AOD distribution compared with the control experiment, while the
Da_AOD_PM showed a considerable improvement. The Da_AOD_PM had the best positive effect on
the AOD forecast skills. The correlation coefficient (CORR), root mean square error (RMSE), and mean
fraction error (MFE) of the 24 h AOD forecasts for the Da_AOD_PM were 0.73, 0.38, and 0.54, which
are 0.09 (14.06%), 0.08 (17.39%), and 0.22 (28.95%) better than that of the control experiment, and
0.05 (7.35%), 0.06 (13.64%), and 0.19 (26.03%) better than that of the Da_PM, respectively. Moreover,
improved performance for the Da_AOD_PM occurred when the AEC profile was used for verification,
as when the AOD was used for verification. The Da_AOD_PM successfully simulated the first
increasing and then decreasing trend of the aerosol extinction coefficients below 1 km, while neither
the control nor the Da_PM did. This indicates that assimilating AOD can effectively improve the
analyses and forecast accuracy of the aerosol structure in both the horizontal and vertical dimensions,
thereby compensating for the limitations associated with assimilating traditional surface aerosol
observations alone.

Keywords: 3DVAR; data assimilation; aerosol; AOD; WRF-Chem

1. Introduction

Aerosol pollution has a wide range of effects on regional air quality, weather, climate,
and human health [1–7]. To achieve precise air pollution prevention and control and to carry
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out research on the impact of aerosols on weather, climate, and human health, it is of great
scientific importance to use air quality models to predict and analyze the spatiotemporal
evolution of aerosols, as these have a high application value [2,8–16]. However, the forecast
skill of the air quality model still needs to be improved owing to uncertainties in aerosol
source emissions, imperfections in its physical and chemical parameterization process,
and uncertainties in the initial conditions (ICs) for its chemistry and meteorology. Aerosol
data assimilation (DA) technology can effectively reduce the uncertainties of the chemistry
ICs for the model and then has been generally utilized to improve aerosol pollution
forecasting [17–28].

Early aerosol DA studies are mostly performed with offline chemical transport models
and the mass concentrations of gaseous pollutants (such as O3) and particulate matter
(such as PM2.5) [29–32]. With the continuous development of atmospheric chemistry model
technology and the improvement in computation power, the air quality model has devel-
oped from an offline model to a meteorological–chemical coupled model [9]. The DA for
an online coupled model, such as WRF-Chem model, has also gradually developed. Mean-
while, the assimilated state variables are no longer limited to a single state variable, but can
reflect comprehensive analyses of species and size distributions in an aerosol scheme. Li
et al. [18] developed a three-dimensional variational DA system for the MOSAIC aerosol
scheme in WRF-Chem. Then, the surface PM2.5 and speciated concentration observations
were assimilated and evaluated based on this DA system. The results showed that DA
has a positive effect on both ICs and PM2.5 forecasts for up to 24 h. With the increasing
abundance of aerosol observational data, remote sensing data as well as conventional mass
concentration measurements are assimilated based on different assimilation schemes and
have significantly improved the forecast skills for aerosols [19–25]. Liang et al. [26] assimi-
lated AEC profiles from five lidars in China and found that the root mean square error of
surface PM2.5 in the initial field for the model was reduced by 10.5 µg m−3 (17.6%). They
also found that a larger reduction occurred when the AEC and PM2.5 data were assimilated
simultaneously. Ye et al. [33] assimilated the AEC from the CALIPSO during two pollu-
tion processes in North China and showed that DA can effectively reduce the simulation
error of the three-dimensional structure of aerosols and improve the forecasting skills for
pollutants. Although lidars on ground or onboard satellites can provide high-quality AEC
vertical distribution, the horizontal spatial distribution of lidar data is very confined and
the device maintenance is at high cost; therefore, there are many limitations to improving
operational air quality forecasting by assimilating AEC data. Satellite derived AOD is the
integral of the AEC of the entire atmosphere in the vertical direction. Compared with AEC
data, AOD products derived from satellites, especially geostationary satellites, have high
temporal and spatial resolutions and coverage; hence, they can compensate for the lack
of resolution and coverage of lidar data. Therefore, research on satellite AOD assimila-
tion has received considerable attention. Liu et al. [17] developed an AOD assimilation
algorithm within the National Centers for Environmental Prediction (NCEP) Gridpoint
Statistical Interpolation (GSI) 3DVAR DA system extended with the Community Radiative
Transfer Model (CRTM) to compute the AOD. By implementing the GSI-3DVAR DA sys-
tem, assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) AOD
substantially improved aerosol analyses and subsequent forecasts. Similar improvements
were found in studies using the GSI-3DVAR DA algorithm [19,23,34–37]. However, the
GSI-3DVAR method is based on the Goddard Chemistry Aerosol Radiation and Transport
(GOCART) aerosol scheme, which finely describes dust and sea salt components but lacks
nitrate and ammonium salt components and the corresponding secondary reaction process.
In contrast, the MOSAIC scheme treats aerosol as eight individual species, these species
include black carbon, organic carbon, nitrate, sulfate, chloride, ammonium, sodium, and
other unspecified inorganic species, such as silica, other inert minerals, and trace metals. A
sectional approach is employed to represent size distributions of each species, and thus
such a comprehensive description of aerosol species and size distributions is more accu-
rate. Additionally, the MOSAIC scheme contains more processes such as heterogeneous
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reactions of gaseous precursors taking place under high humidity. Thus, MOSAIC is more
suitable for expressing complex aerosol components in heavily polluted areas in China [38].
A 3DVAR DA algorithm based on the MOSAIC that could assimilate surface PM2.5 and
speciated concentration observations was developed by Li et al. [18] and has been extended
to assimilate aerosol optical properties such as AEC and AOD [20,25–27]. Sun et al. [39]
established an interface for MOSAIC and conducted experiments to assimilate ground PM2.5,
PM10, SO2, NO2, O3, and CO. However, research on the assimilation of multi-source aerosol
observations, especially for aerosol optical data for the MOSAIC scheme is still underway.

This paper presents a case study of Himawari-8 (H-8) satellite AOD assimilation
using the 3DVAR DA system developed by Wang et al. [27]. The AOD and PM2.5 were
assimilated alone or simultaneously during the pollution process in Northern China in
January 2019. Moreover, CALIPSO AEC profiles, as well as AOD and PM2.5, were used to
verify the improvement effect of DA on the accuracy of the aerosol vertical structure and
PM2.5 forecasting skills.

The remainder of this paper is arranged as follows. Section 2 gives a brief description
of the data, WRF-Chem configurations, 3DVAR DA system, and experimental design. In
Section 3, the improvement effect of DA on the accuracy of the aerosol vertical structure and
PM2.5 forecast skills is verified by PM2.5, AOD, and CALIPSO AEC profiles. The discussion
and conclusions are presented in Section 4.

2. Materials and Methods
2.1. WRF-Chem Model and Data

WRF-Chem Version 4.1 was employed to simulate aerosol pollution. The experimental
domain was double-nested, the first domain (d01) has 164 × 155 grid points with a hori-
zontal resolution of 27 km, and the second domain (d02) has 175 × 166 grid points with a
horizontal resolution of 9 km covering the central and eastern regions of China (Figure 1a).
There were 40 vertical layers and the resolution gradually decreased from bottom to up. The
model configuration was as follows: a WRF single-moment 5-class microphysical scheme,
rapid radiative transfer model for general circulation models (RRTMG) shortwave radiation
scheme, RRTMG longwave radiation scheme, Noah land surface model, Yonsei University
(YSU) boundary layer scheme, Grell-3D cumulus parameterization, revised MM5 Monin-
Obukhov near-surface layer scheme, carbon-bond mechanism version Z (CBMZ) chemi-
cal reaction mechanism, fast-J photolysis calculation scheme, and MOSAIC_4bin aerosol
scheme. There are four particle-size bins (4bin), namely, 0.0390625–0.15625, 0.15625–0.625,
0.625–2.5, and 2.5–10 µm, for each of the eight aerosol types in MOSAIC_4bin.
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Three types of aerosol observational data, including PM2.5 mass concentration, H-8
AOD, and CALIPSO AEC, were used for assimilation and evaluation, and their spatial
distributions are shown in Figure 1b. PM2.5 and AOD data were used for assimilation and
all PM2.5, AOD, and AEC data were used for evaluation.

Hourly PM data released from the China National Environmental Monitoring Center
(CNEMC) (http://www.cnemc.cn, last access: 5 May 2022) were used for assimilation and
evaluation. To date, more than 2000 measurement sites were established in China. There
are a total of 683 air quality monitoring sites in our studied region (d02). The quality control
and preprocessing treatments for PM were similar to those described by Wang et al. [25].
As part of the main processes, PM2.5 mass concentration exceeding 600 µg m−3 and less
than 0 µg m−3 were removed, and the original measurements falling into the same model
grid were averaged.

AEC profile data were obtained from Level 2 (version 4-2.0) AEC retrievals from
CALIOP at 532 nm (https://www-calipso.larc.nasa.gov, last accessed: 5 May 2022). The
horizontal resolution of the data was 5 km. Each profile had 399 layers, with a vertical
resolution of 60 m at an altitude of−0.5~20.2 km and of 180 m at an altitude of 20.2~30.1 km.
For the preprocessing and quality control of the CALIPSO data, please refer to Ye et al. [33].

AOD data were obtained from Level 2 AOD retrievals from Himawari-8 at 500 nm
(http://www.jma.go.jp/jma/jma-eng/satellite/index.html, last accessed: 5 May 2022). The
data has a horizontal resolution of 0.05 × 0.05. Limited by sunlight availability, AOD can
only be obtained when the detection region is clear sky conditions. For the preprocessing
and quality control of the CALIPSO data, please refer to Ye et al. [33].

2.2. 3DVAR DA System

The 3DVAR DA method minimizes the cost function J(x), which measures the distance
of the state vector from the model background and the observations. By calculating the
minimal value of the function appealing to the variational method, an “optimal” analysis
field in terms of the minimum analysis error variance was obtained. From the theory of
optimal estimation, 3DVAR transforms the problem of constructing the analysis field with
minimum error into the problem of solving the minimum of the cost function J(x). The
basic formula of 3DVAR is as follows:

J(x) =
1
2
(x− xb)

T B−1(x− xb) +
1
2
(Hx− y)T R−1(Hx− y) (1)

Incremental approach was adopted to minimize the cost function J. The incremental
cost function for the 3DVAR was calculated as follows:

J(δx) =
1
2

δxT B−1δx +
1
2
(Hδx− d)T R−1(Hδx− d) (2)

Here, δx is the incremental state variable defined as δx = x − xb, where x is the
state vector and xb is the background vector. B is the background error covariance matrix
associated with xb and R is the observation error covariance matrix, which determine
the errors of observation and model information, respectively. B is related to the state
variables that are from the model variables, while R is related to the observed variables.
The d = y− Hxb is the observation innovation vector, where y is an observation vector and
H is the observation operator that computes the modeled observation estimates from the
state variables. The satellite derived AOD and PM2.5 observation errors are determined by
measurement and representation errors [34,40]. In this study, building on the earlier work
of Yumimoto et al. [21], the observation error of Himawari-8 AOD is set to 0.06. According
to Wang et al. [25], Conventional observational errors were set to half the background error
standard deviations (SDs) of each control variable.

H is the observation operator, which maps the model state variables at each grid cell
to the observation space. In this study, the operator for PM2.5 mass concentrations is easily
performed only using a simple linear operator (combining the first three particle-size bins

http://www.cnemc.cn
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http://www.jma.go.jp/jma/jma-eng/satellite/index.html
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of each aerosol species within MOSAIC_4bin). In order to improve computing efficiency,
the Mie scattering theory was utilized as the observation operator of AOD. It should be
noted that the meter scattering theory is based on the assumption of spherical particles,
and the AOD calculated for non-spherical or non-compact particles may be inaccurate.
Appealing to the Mie scattering calculation, optical efficiencies such as extinction efficiency
can be obtained after determining particle size parameter and averaged refractive index
that are computed from the state variables. Then, the extinction coefficient is the summation
of extinction efficiencies over four size bins. Finally, AOD is the column summation of
extinction coefficient over the vertical layers, and so this is the forward AOD operator.
Note that it is very inefficient to compute aerosol optical efficiencies using the complex Mie
scattering calculation; nevertheless, the optical properties module in WRF-Chem employs
a polynomial expansion approximation to compute them, which is more efficient. Thus,
the study also utilizes this approach. The tangent linear (TL) and adjoint operators are
necessary for developing the DA system, which are described in detail in our previous
study [27].

B is important for determining the performance of the DA process, which transfers
observation information to the model grid cells. For high-resolution numerical models,
the B matrix is huge and difficult to store and find an inverse. Therefore, a simplification
of the B-matrix is necessary for numerical calculations. We followed the method used by
Kalnay [41] and Li et al. [18]. Specifically, the B matrix is decomposed into B = DCDT,
where D is the background error standard deviation matrix, which determines the analysis
increment magnitude, a larger background error standard deviation will generate a larger
increment. C is the background error correlation coefficient matrix, which consists of a
positive definite symmetric matrix of the horizontal and vertical error correlations and
determines the analysis increment scope. For the detailed calculation of B matrix, please
refer to Wang et al. [27].

2.3. Experimental Design and Evaluation Method

A control experiment (control) and two sets of DA experiments were performed to
evaluate the effects of the DA. The control experiment did not assimilate observation data
and 60 h forecasts were produced starting at 0500 UTC on 12 January 2019. One DA
experiment (Da_PM) assimilated PM2.5 data at 0500 UTC on 12 January 2019, and used the
DA analysis field as the initial chemical field. The other DA experiment (Da_AOD_PM)
simultaneously assimilated PM2.5 and AOD data. In addition to the chemical ICs, all exper-
iments had the same configuration. The National Centers for Environmental Prediction
(NCEP) reanalysis data over a 6 h interval and 0.25-degree by 0.25-degree resolution is
used to generate the initial and boundary conditions of meteorological fields.

The correlation coefficient (CORR), mean fraction error (MFE), and root mean square
error (RMSE) were used to evaluate the analyses and forecast accuracy of the aerosols in
the experiments. A larger CORR and smaller MFE or RMSE indicate better performance.

CORR =
∑N

i=1
(

Mi −M
)
·
(
Oi −O

)√
∑N

i=1
(

Mi −M)2
)
·
√

∑N
i=1 (Oi −O)

2
(3)

MFE =
1
N ∑N

i=1
|Mi −Oi|

(Mi + Oi)/2
(4)

RMSE =

√
1
N ∑N

i=1 (Mi −Oi)
2 (5)

M =
1
N ∑N

i=1 Mi (6)

O =
1
N ∑N

i=1 Oi (7)
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where Mi and Oi represent the simulated and measured sample values, respectively. N is
the number of valid samples. Correspondingly, M and O are their averages.

3. Results
3.1. Consistency of PM2.5, H-8 AOD, and CALIPSO AEC

Figure 2 shows the PM2.5 mass concentration, H-8 AOD, and CALIPSO AEC in the
d02 region at 0500 UTC on 12 January 2019. As the distribution of PM2.5 shows (Figure 2a),
most of the northeastern, central, and southwestern regions of the d02 region had severe
aerosol pollution, with the PM2.5 exceeding 200 µg m–3 at many sites in Tianjin, Hebei,
Shandong, Shanxi, northern Henan, and central Liaoning. However, the northwestern
and southeastern regions of the d02, such as Inner Mongolia and southern Jiangsu, had
relatively cleaner air. Compared to PM2.5, there was a strong correlation between the
distribution of the AOD (Figure 2b) and PM2.5. High AOD values (maximum of 1.8 in
Hebei, Shandong, and central Liaoning) corresponded to the high PM2.5, and small AOD
values in Inner Mongolia were consistent with relatively light pollution. This consistency
may be because pollution in the atmosphere was mainly concentrated in the boundary
layer, such that aerosols near the surface contributed the most to the AOD. Although most
of the available AOD was consistent with PM2.5, there were many regions in d02 where
there is no AOD measurements, primarily due to the influence of clouds and partly because
some AOD data were excluded during the quality control process. The CALIPSO AEC
profiles were detected along the line shown in Figure 1b. As shown in Figure 2c, the AEC
was relatively large with a maximum value of more than 2 km–1 between 36◦N and 39◦N
at heights less than 1 km, corresponding to the high PM2.5 and AOD, while the AEC is
relatively small, with most values being less than 0.4 km–1 between 31◦N and 35◦N as well
as 41◦N and 44◦N, corresponding to the low AOD and PM2.5. Overall, there were strong
correlations among the three observational datasets of PM2.5, H-8AOD, and CALIPSO AEC.
Therefore, it is reasonable and effective to use these observational data for assimilation and
evaluation purposes.
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Figure 2. PM2.5 (a), H−8 AOD (b), and CALIPSO AEC (c) in d02 region at 0500 UTC on 12 January 2019.

3.2. Comparison to PM2.5

The scatter plots in Figure 3 show a comparison between the PM2.5 measurements and
the PM2.5 in the control IC (and DA analysis). The PM2.5 in the IC of the control experiment
(blue points) had a large dispersion relative to the central axis, indicating that it deviated
greatly from the observation. In contrast, the distance of PM2.5 in DA analysis (red points)
from the central axis was lower, indicating that DA could considerably correct the deviation
of the control IC. In addition, the difference between the distribution characteristics of the
scatter points for experiments Da_AOD_PM and Da_PM were relatively small, indicating
that the two DA experiments had similar improvement effects on PM2.5. The CORR,
MFE, and RMSE of the control IC were 0.20, 0.62, and 107.71 µg m–3, while that of the
Da_PM were 0.97, 0.16, and 24.94 µg m–3, and that of the Da_AOD_PM were 0.96, 0.18
and 27.95 µg m–3, respectively. Both DA groups had a significant improvement effects on
PM2.5, and the Da_PM experiment achieved a slightly better performance than did the
Da_AOD_PM experiment.
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3.3. Comparison to AOD

The AOD, being the integral of the AEC of the entire atmospheric layer in the vertical
direction, can reflect the aerosol extinction characteristics of the entire atmosphere. Figure 4
shows the distribution of AOD in the control IC and DA analysis, as well as the biases
of the control IC and DA increments. The AOD was relatively large in the southeastern
part of the control IC (Figure 4a), with a maximum value of 2.0, and was relatively small
in the northwestern part. This spatial characteristic was consistent with that of the entire
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measurement (Figure 2b), but the control IC underestimated the AOD in the Liaoning–
Tianjin–Hebei region (Figure 4d). In addition, the performance of the control IC could not
be directly evaluated for the southeastern part of the d02 region because there were no
AOD measurements taken there. The DA_PM substantially corrected the low bias of the
control IC in the Liaoning–Tianjin–Hebei region (Figure 4c,f), indicating that the PM2.5 DA
can improve the accuracy of the AOD analyses of the IC. However, most of the AOD in the
Da_PM analysis were still smaller than those observed, especially in Hebei, indicating that
the improvement effect of PM2.5 DA on AOD still had room for improvement. Compared
with the Da_PM, the AOD in the Da_AOD_PM analysis (Figure 4b,e) was larger in regions
such as Liaoning–Tianjin–Hebei and northern Henan, with a maximum value as large as
2.0 km−1, which is more consistent with the measurements. The results show that, after
the adoption of the AOD observations, DA analysis can better simulate the distribution
characteristics of the AOD. In summary, the assimilation of PM2.5 observations can improve
the distribution of ground pollutants and, hence, has a positive effect on the accuracy of
AOD analyses. However, it is difficult to significantly improve AOD analyses only by
assimilating PM2.5 data, while the introduction of AOD assimilation can perform better,
thereby improving the description of air pollution in the entire atmospheric layer.
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The scatter plots in Figure 5 show a comparison between the Himawari-8-derived
AOD measurements and the simulated AOD for the control IC (and DA analysis). The
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IC for the control experiment (blue points) caused a significant negative bias against
AOD observations, especially for AODs larger than 1.0. The Da_AOD_PM (red points in
Figure 5a) considerably corrected the negative bias of the control, such that the distance
of the AOD in the Da_AOD_PM analysis from the central axis was the smallest among
the three experiments. In contrast, the Da_PM (red points in Figure 5b) corrected the
negative bias of the control, but the improvement effect, especially for AODs larger than
1.0, was not significant. The distribution characteristic of the scatter points for the Da_PM
was similar to that of the control, indicating that the DA_PM had a limited improvement
effect on the AOD analyses. The CORR, RMSE, and MFE of the control IC were 0.83, 0.38,
and 0.69, respectively, while those of the Da_PM were 0.83, 0.37, and 0.59, and those of
the Da_AOD_PM were 0.95, 0.16, and 0.19, respectively. The Da_AOD_PM had the best
performance for the improvement of the AOD analyses, especially for the AODs larger
than 1.0.
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3.4. Comparison to CALIPSO AEC

The AEC profile contains information on the distribution of atmospheric aerosols in the
vertical dimension. Figure 6 shows the average AEC profile of the CALIPSO measurements,
control IC, and DA analysis along the line shown in Figure 1b. Only the grid cells containing
all the CALIPSO, PM2.5, and AOD measurements were selected for analyses. As a result,
69 CALIPSO profiles were included in the analyses. The CALIPSO AEC profile (black line)
showed an overall trend of first increasing from the ground to a height of about 200 m and
then decreasing, and there were unsmooth changes below 1 km, reflecting the complexity
of the aerosol vertical distribution in the boundary layer. In contrast, the profile of the
control IC (blue line) decreased smoothly from the ground to a height of 1 km, which
cannot reflect the fine vertical scale details, as measured. This may be because the model
mainly describes the overall condition of the atmosphere; therefore, point and sub-grid
information in the boundary layer cannot be characterized successfully. There were small
differences between the profile of the Da_PM analysis and the control IC below 500 m, but
there was no significant difference above 500 m. This is mainly because the assimilation
of PM2.5 introduces observation information near the surface, which can help to improve
aerosol analyses near the ground, but the improvement decreased dramatically as the
height increased. The Da_AOD_PM (red line) significantly corrected the bias of the control
IC and successfully simulated the first increasing and then decreasing trend of the AEC
below 1 km. The AEC profile of the Da_AOD_PM was closest to the CALIPSO profile,
indicating that assimilating AOD data can substantially improve aerosol analyses in the
vertical dimension. However, it should be noted that there is still a large gap between
the DA_AOD_PM result and the measurement for an AEC greater than 1 km−1 near the
ground, and that the fine vertical scale details in the CALIPSO profiles have not been
described. This may be because the adjustment of the vertical structure of aerosols by AOD
assimilation is affected by the background field profile as well as the vertical distribution
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characteristics of the background error covariance. This indicates that AOD assimilation
without additional constraints may not perform as well as AEC profile assimilation at
improving the vertical structure of aerosols.
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3.5. Effects of DA on the Forecast Performance for PM2.5 and AOD

Figure 7 shows the time series of CORR, MFE, and RMSE for the PM2.5 model forecasts
with and without DA. Owing to the improvement in the accuracy of chemical IC, both the
DA_PM (green line) and DA_AOD_PM (red line) experiments had better forecast skills
than the control experiment (blue line) during the 60 h forecast period, with a larger CORR,
smaller MFE, and smaller RMSE, indicating that the positive effect of DA can persist for
more than 60 h. The difference between the results of the DA and the control was the
largest at the initial time and decreased in a fluctuating manner with the forecast time,
indicating that the positive effect of DA gradually decayed as the integration time increased.
The difference between the results for the Da_AOD_PM and Da_PM experiments is small,
indicating that assimilating PM2.5 data alone and simultaneously assimilating PM2.5 and
satellite AOD data have equivalent improvement performances for PM2.5 forecasting.
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The scatter plots in Figure 8 show a comparison between the AOD measurements and
the 24 h AOD forecasts (at 0500 UTC on 13 January 2019) of the control and DA experiments.
Similar to the performance of the ICs (Figure 5), the 24 h forecasts for the control experiment
(blue points) also had a negative bias against the AOD observation; the CORR, RMSE, and
MFE for the control forecasts were 0.64, 0.46, and 0.76, respectively. The Da_AOD_PM
results (red points in Figure 8a) were more consistent with the AOD observations than they
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were with the Da_PM and control. In contrast, the Da_PM (red points in Figure 8b) had
better forecasting skills, but the improvement was limited. The CORR, RMSE, and MFE of
the Da_PM forecasts were 0.68, 0.44, and 0.73, which were 0.04 (6.25%), 0.02 (4.35%), and
0.03 (3.95%) better than those of the control, respectively. The CORR, RMSE, and MFE for
the Da_AOD_PM were 0.73, 0.38, and 0.54, which were 0.09 (14.06%), 0.08 (17.39%), and
0.22 (28.95%) better than those of the control, respectively. The Da_AOD_PM had the best
performance for improving 24 h AOD forecasts.
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4. Discussion

Early studies on AOD assimilation have mostly focused on the improvement effect on
ground particulate matter or AOD and seldom studied the improvement in the vertical
structure of aerosols. In this study, by comparing the results with and without DA using
PM2.5, AOD, and CALIPSO AEC profile measurements, we found that, compared with
PM2.5 assimilation, AOD assimilation had limited improvement on ground PM2.5 forecast-
ing, but the improvement effect on aerosol vertical structure was significant. However, it
should be noted that, when the background field deviated greatly from the actual profile,
especially when there were considerable unsmooth changes in the real profile, there was
still a large gap between the DA analysis profile and the real profile (Figure 6). This may
be because the adjustment of the vertical structure of the aerosol by AOD assimilation
was influenced by the background field profile as well as the background error covariance.
In most applied 3DVAR systems, the background error covariance is usually not flow-
dependent; therefore, the consistency between the vertical structure of the background
error covariance and the real background bias may vary in different meteorological situa-
tions, and, hence, the effect of AOD assimilation may be unstable. The introduction of a
flow dependent background error covariance or vertical aerosol information that constrains
the assimilation increment in the vertical direction is a potentially effective solution to the
problem and requires further study.

5. Conclusions

In this study, we evaluated the impact of assimilating Himawari-8 AOD measurements
on surface and vertical aerosol analyses over northern China using the MOSAIC aerosol
scheme of WRF-Chem and the 3DVAR method. One control experiment and two DA
experiments were conducted. Both DA groups showed improvements in the analysis accu-
racy and forecasting skills of the spatial distribution characteristics of aerosols, although
the effects of the two experiments differed from each other. When PM2.5 was used for
verification, the improvements of the two DA groups were similar to each other. The PM2.5
DA experiment improved the CORR of PM2.5 in the analysis field by 0.77, and reduced
the RMSE and the MFE by 82.77 µg m–3 and 0.46, while the results of the Da_AOD_PM
were 0.76, 79.76 µg m–3 and 0.44, respectively. When AOD was used for verification, the
PM2.5 DA experiment showed little improvement in the analysis accuracy of AOD dis-
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tribution compared with the control experiment, while Da_AOD_PM showed significant
improvement. The Da_AOD_PM improved the CORR of the AOD in the analysis field
by 0.12 and reduced the RMSE and the MFE by 0.22 and 0.50, respectively. Improved
performance of the Da_AOD_PM occurred when the AEC profile was used for verification,
as when the AOD was used for verification. Da_AOD_PM successfully simulated the first
increasing and then decreasing trend of the aerosol extinction coefficients below 1 km,
while neither the control experiment nor the PM2.5 DA experiment did. Both DA groups
had positive effects on the PM2.5 mass concentration forecasting skills for more than 60 h,
and the Da_AOD_PM had the best positive effect on the AOD forecasting skills. The CORR,
RMSE, and MFE of the 24 h AOD forecasts for the Da_AOD_PM were 0.73, 0.38 and 0.54,
which were 0.09 (14.06%), 0.08 (17.39%) and 0.22 (28.95%) better than that of the control, and
0.05 (7.35%), 0.06 (13.64%) and 0.19 (26.03%) better than that of the PM2.5 DA experiment,
respectively. This indicates that assimilating AOD can effectively improve the analyses and
forecasting accuracy of the aerosol structure in both horizontal and vertical dimensions and
compensate for the limitations associated with assimilating traditional aerosol data alone.
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