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Abstract: Hyperspectral images often have hundreds of spectral bands of different wavelengths
captured by aircraft or satellites that record land coverage. Identifying detailed classes of pixels
becomes feasible due to the enhancement in spectral and spatial resolution of hyperspectral images.
In this work, we propose a novel framework that utilizes both spatial and spectral information for
classifying pixels in hyperspectral images. The method consists of three stages. In the first stage, the
pre-processing stage, the Nested Sliding Window algorithm is used to reconstruct the original data
by enhancing the consistency of neighboring pixels and then Principal Component Analysis is used
to reduce the dimension of data. In the second stage, Support Vector Machines are trained to estimate
the pixel-wise probability map of each class using the spectral information from the images. Finally,
a smoothed total variation model is applied to ensure spatial connectivity in the classification map
by smoothing the class probability tensor. We demonstrate the superiority of our method against
three state-of-the-art algorithms on six benchmark hyperspectral datasets with 10 to 50 training labels
for each class. The results show that our method gives the overall best performance in accuracy
even with a very small set of labeled pixels. Especially, the gain in accuracy with respect to other
state-of-the-art algorithms increases when the number of labeled pixels decreases, and, therefore, our
method is more advantageous to be applied to problems with a small training set. Hence, it is of
great practical significance since expert annotations are often expensive and difficult to collect.

Keywords: hyperspectral image classification; semi-supervised learning; nested sliding window;
support vector machines; smoothed total variation; image reconstruction.

1. Introduction

Hyperspectral images (HSIs) often have hundreds of electromagnetic bands of re-
flectance collected by aircraft or satellites that contain rich spectral and spatial information.
HSIs can be represented by a tensor X ∈ RM×N×B, where M, N are the numbers of rows
and columns in each spectral band and B is the number of bands of the HSI [1]. In gen-
eral, each distinct material has its own spectral signature owing to its unique chemical
composition. The enhancement in spectral resolution makes it more feasible to explore the
HSIs using machine learning approaches in various applications, such as land coverage
mapping, change recognition, water quality monitoring, and mineral identification [2–8].
The rich information in HSIs enables the algorithms to distinguish more detailed categories
for land cover clustering and classification, and thus HSIs play a vital role in detecting
different natural resources and monitoring vegetation health [9–16]. These applications
typically require the results to be as accurate as possible for subsequent analysis, assess-
ments and actions. Therefore, HSI classification methods are always measured based on
accuracies [17].

A variety of algorithms with and without manual annotations have been developed for
pixel-wise classification of HSIs. Compared with unsupervised methods, semi-supervised
methods require a few labeled data for training and produce considerable improvement
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in performance. The classical pixel-wise semi-supervised algorithms, such as support
vector machines (SVMs) [18], k-nearest-neighbor (kNN) classifier [19], multinomial logistic
regression [20], and random forest [21,22] were extensively studied in the past.

However, these classifiers only explore and analyze the spectral information of HSIs,
whereas the spatial information is ignored, which leads to a poor classification result. For
instance, for regions that are spatially homogeneous but with a variety in the spectra,
these methods may produce a noisy classification map (see e.g., Figure 3d). A common
theoretical assumption in HSI classification is local spatial connectivity in certain regions,
which means spatially nearby pixels have a higher probability of belonging to the same
class [23,24]. Thus, pixel-wise classification methods can be enhanced by incorporating the
spatial dependency of the pixels. In recent years, the spatial features of HSI have been
explored in the pre-processing and post-processing steps to provide more information for
various classification or recognition tasks.

In the extreme sparse multinomial logistic regression framework, the extended multi-
attribute profile is adopted for spatial feature extraction [25]. Gao et al. [26] propose a
new approach that extracts spatial features by applying linear prediction error and the
local binary pattern. It then combines the spatial and spectral information by using a
vector stacking method before feeding into the Random Multi-Graphs model, which is
proposed in [27]. The K-means algorithm and principal component analysis (PCA) are
adopted in [28] to extract spatial features, and then an SVM is trained to produce the
classification results. The authors in [29] redefine a pixel in both spectral domain and
spatial domain by extracting features in its neighboring region. Then Mercer’s kernels are
adopted in SVM to combine spectral and spatial information. Structural filtering methods,
for instance, the Gabor filter, can extract spatial texture features of adjacent pixels in
different scales and directions [30,31]. Mathematical morphology can be used to obtain the
morphological profile, such as the orientation or size of the spatial structures of images [32].
Fang et al. [33] propose an adaptive sparse representation (MFASR) method based on
four spatial and spectral features where spatial information is extracted by the Gabor
filter, extended morphological profiles, and differential morphological profiles, resulting
in an improved accuracy compared with several excellent classifiers in the field of both
qualitative and quantitative results. Gan et al. [34] propose a multiple feature kernel sparse
representation-based classifier, which transforms each feature into a low-dimensional space
with a nonlinear kernel.

Chan et al. [35] incorporate segmentation techniques in their 2-stage method to
incorporate spatial information in the post-processing step. After acquiring the class
probability vector for each pixel by SVM, a convex variant of the Mumford-Shah method
(equivalent to a smoothed total-variational method) is used to denoise the probability
vectors. Their 2-stage method achieves good results, with better accuracy and relatively
shorter time compared with five well-known methods. Experiments show that this method
improves the accuracy significantly, see Figure 3f. Ren et al. [36] propose the Nested
Sliding Window (NSW) pre-processing method to extract spatial information from original
HSI data. The NSW algorithm determines the optimal sub-window position based on
the largest average Pearson correlation coefficient of the target pixel and its neighboring
pixels, and then the pixels are reconstructed depending on the pixels in the sub-window
and their correlation coefficients. PCA is used to further process the reconstructed data for
dimensionality reduction and denoising. Finally, the reconstructed data are fed into SVM
for classification. In their experiments, the addition of NSW and PCA led to better accuracy
in comparison with several SVM-based algorithms.

The convolutional neural network (CNN) is becoming popular these years which can
extract spatial information internally by convolutional kernels. The original CNNs [37]
learn spatial features naturally from the original images by applying convolutional layers.
Gao et al. [38] employ a new CNN architecture that also takes the spatial features extracted
from the original image as input and achieves a significant improvement of accuracy com-
pared with the original CNN framework. Zhang et al. [39] created a diverse region-based
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CNN which learns spatial features based on inputs from different regions. The recurrent
2-D CNN and recurrent 3-D CNN achieve higher accuracies and faster convergence rates
with its convolutional operators and the recurrent network structure [40]. Nonetheless,
these CNNs have millions of parameters that need to be tuned. Thus they require powerful
machines to train the model and a large number of expert labels that are expensive to get.

All the methods mentioned above explore both spatial and spectral information and
have achieved quite good results with a certain number of labeled pixels. However, in
practical classification tasks, the most difficult part is collecting the labeled points, which
requires a lot of time and resources. The insufficient number of samples is an inherent
challenge. Therefore, it is more feasible and preferable to only incorporate a few labeled
pixels for training in the semi-supervised learning methods [36]. In this work, we propose a
3-stage method for HSI classification, which fully explores spatial and spectral information
of HSI so that we only need a very small number of labeled pixels to obtain higher accuracy
than other methods. The first stage is a pre-processing step where we first apply the NSW
algorithm [36] to find the most correlated nested window and then reconstruct the data
based on the Pearson correlation for each pixel. Then we use PCA to reduce the dimension
of the reconstructed data. In the second stage, we train an SVM-type method νSVC
(ν-support vector classifier) [41] for semi-supervised classification and produce an estimated
probability tensor consisting of the probability maps for all classes. In the last stage, to
incorporate the spatial information, a smoothed total variation model [35] is applied to
post-process the probability maps to remove isolated misclassified pixels.

To demonstrate the efficacy of our method, we test it against the classical SVM method
and three state-of-the-art methods on six widely used benchmark hyperspectral datasets
with 10 to 50 training labels for each class. The results show that our method gives the best
overall accuracy on all six datasets with a very small number of labeled pixels. Besides, we
emphasize that the gain in accuracy compared with the four algorithms is higher when the
number of labeled pixels is smaller. Our method is therefore of great practical significance
since expert annotations are often expensive and difficult to collect.

The superiority of our method stems from the fact that the spatial information of
the image is extensively explored. The pre-processing step enhances the consistency of
spectral signatures of adjacent pixels, especially for those pixels which are located in a
large homogeneous area and have varying inner-class spectra. Through the reconstruction,
the similarity of spectral information of the pixels in the same category can be utilized so
that we only need a smaller set of training pixels for each class to achieve a pleasant result.
This step is useful for datasets that do not have sufficiently good spectral information. The
post-processing step further improves the classification result by ensuring connectivity
across spatial homogeneous regions using the spatial positions of the pixels. The smoothed
total variation model used here can simultaneously enhance the spatial homogeneity by
denoising while segmenting the image into different classes.

This paper is organized as follows. Section 2 introduces the three stages of our
method. Sections 3 and 4 give the numerical results and discussions on six benchmark HSI
datasets. Section 5 concludes the experiments and discusses the limitation and the planned
future work.

2. The Proposed Method

The method proposed in this work comprises the following three stages: (i) pre-
processing stage: the HSI dataset is reconstructed by NSW and then projected linearly
to a lower-dimensional space by PCA. The step effectively uses spatial information and
reduce the Gaussian white noise in HSIs [36,42]; (ii) pixel-wise classification stage: the
νSVC, which uses mainly the spectral information in the dataset, is applied to get the
probability maps where each map gives the probability of the pixels belonging to a certain
class [35,41,43–45]; (iii) smoothing stage: a smoothed total variation (STV) model is used
to ensure local spatial connectivity in the probability maps to increase the classification
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accuracy [35,46]. In the following subsections, we introduce the three stages in detail. The
outline of the whole method is illustrated in Figure 1.

Figure 1. The outline of the proposed method, where d is the reduced dimension and c is the number
of classes. Each color represents a class in the output classification map.

2.1. The Pre-Processing Stage

The pre-processing step of the HSI datasets can effectively improve the quality of the
data, leading to a better performance in the classification with less number of training
pixels [36]. In pre-processing, spatial features are usually extracted by analyzing the simi-
larity between the spectral signatures of the pixels in local regions. Wu et al. [47] construct
a shape-adaptive region for each target pixel by applying the LPA-ICI method [48,49], and
then put them together into the joint sparse representation classifier, which effectively
explores the spatial information. On this basis, in [50], a shape-adaptive reconstruction
method is proposed to pre-process the data based on the shape-adaptive region. Bazine
et al. [51] propose a CDCT-WF-SVM model where the original data is pre-processed by
applying spectral Discrete Cosine Transform and spatial filtering adaptive Wiener filter to
extract the most significant information before using SVM. The NSW method in [36] is to
find the best nested sliding window for each pixel with the largest mean Pearson correlation
coefficient and then reconstruct the given pixel’s spectral signature by weighting spectral
information of pixels using normalized correlation coefficients in the best window. Then
PCA is used to reduce the dimension of the reconstructed data. We adopt this approach in
our pre-processing stage and explain it briefly in the following two subsections, see details
in [36].

2.1.1. The Nested Sliding Window (NSW) Method

For two pixels x, y ∈ RB in an HSI tensor X ∈ RM×N×B, where M, N represents the
spatial size of HSI and B is the number of bands, the Pearson correlation coefficient is
defined as:

corr(x, y) =
Cov(x, y)√

Var(x) ·Var(y)
, (1)

where Cov(x, y) represents the covariance between x and y, and Var(·) is the variance. We
define the neighboring pixels of a target pixel xij with a window size ω as

N (xij) = {xmn | m ∈ [i− a, i + a], n ∈ [j− a, j + a]},

where a + 1 ≤ i ≤ M− a, a + 1 ≤ j ≤ N − a, and a = (ω − 1)/2 represents the distance
between the target pixel xij and the window boundary. For target pixels on or near the
boundary of the image, we use zero-padding to extend the image outside the boundary to
obtain a window of the same size ω for these pixels.

Then we create a series of sliding windows inside N to search for some neighboring
pixels which are most similar to the target pixel xij. To calculate the correlation coefficients
between the target pixel and its neighboring pixels, each sliding window should contain
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the target pixel; that is, the size of the sliding window should be ((a + 1),(a + 1)). Then the
neighboring pixels with a sliding window can be expressed as the 3-D tensor:

Spq(xij) = {xmn | m ∈ [i− a + p, i + p], n ∈ [j− a + q, j + q]}∈ R(a+1)×(a+1)×B,

where a + 1 ≤ i ≤ M + a and a + 1 ≤ j ≤ N + a. Here 0 ≤ p, q ≤ a determine the position
of the sliding window; see the green window (tensor) in Figure 2.

Thus, the Pearson correlation coefficient between the target pixel and each neighboring
pixel in the sliding window can be computed by (1). Together, the correlation coefficients
in each sliding window form a matrix, denote as Cpq(xij):

Cpq(xij) = {cmn|m ∈ [i− a + p, i + p], n ∈ [j− a + q, j + q]}.

It is reshaped as a vector cpq(xij) with size ((a + 1)× (a + 1), 1). After going through
all the sliding windows, we set Sum(ckl) ≡ max(Sum(cpq)) where Sum(cpq) is the sum of
the elements of the vector cpq(xij). The maximal correlation coefficient vector ckl(xij) is
then normalized by

c̃kl(xij) = ckl(xij)/Sum(ckl(xij)). (2)

Then the corresponding 3D tensor Skl(xij) is re-shaped to a 2D matrix Skl(xij) with
size ((a + 1)× (a + 1), B). The reconstruction of the pixel xij at the (i, j) location is given
by the B-vector:

rij = Skl(xij)
> c̃kl(xij). (3)

We can view rij as a weighted spectrum of the target pixel xij from its nearby pix-
els’ spectra, with weights determined by the importance of the corresponding Pearson’s
coefficients. After the reconstruction for all pixels in the HSI, we obtain a new tensor
R ∈ RM×N×B with vectors along the third axis being rij, representing the spectra of
reconstructed pixels. In the following, we re-shape the tensorR into a matrix R ∈ RB×MN .

Figure 2 illustrates the NSW method, where we assume the target pixel is x33 with
ω = 5, a = 2, and the largest sum of Pearson’s coefficients is obtained at c02 [36].

2.1.2. Principal Component Analysis (PCA)

PCA [52] is one of the most commonly used dimensionality reduction algorithms.
Assume that we need to reduce the re-shaped data R ∈ RB×MN obtained by NSW al-
gorithm from B dimensional to d dimensional, then the purpose of PCA is to find a 2D
transformation matrix W ∈ RB×d in arg maxW tr(W>RR>W) where tr(·) represents the
trace of the matrix and W>W = I. The maximization of W can be solved by using the
Lagrangian multiplier method. Finally, we get the dimension-reduced data

D = W>R ∈ Rd×(MN). (4)

2.2. The Pixel-Wise Classification Stage

Support vector machines (SVMs) have been used successfully in pattern recognition [53],
object detection [54,55], and financial time series forecasting, [56,57] etc., to separate two
classes of objects. SVM and νSVC are two types of SVM classifiers. The main difference
between the two classifiers is that SVM contains a parameter C, which determines the
margin between two classes of training samples and C can take any positive value; while
the parameter ν in νSVC controls the number of support vectors, usually between 0 and
1. Here we adopt νSVC for classification since the parameter C in SVM is difficult to
choose optimally.



Remote Sens. 2022, 14, 3998 6 of 22

Figure 2. The illustration diagram of the NSW method [36]. The yellow square x33 represents the
target pixel and the yellow square c33 represents the correlation coefficient of x33 with itself. The green
squares represent the neighboring pixels in the sliding windows and their corresponding correlation
coefficients. The blue squares represent the optimal sliding window and the corresponding correlation
coefficients.

Suppose we have t labeled pixels, then the formulation of νSVC is given as follows:

min
w,b,ξ,ρ

1
2‖w‖2

2 − νρ + 1
t

t
∑

i=1
ξi

s.t.
yi(w>φ(di) + b) ≥ ρ− ξi, i = 1, 2, ..., t,
ξi ≥ 0, i = 1, 2, ..., t,
ρ ≥ 0,

(5)

where di ∈ Rd is the column in the matrix D in (4), i represents the i-th labeled pixel,
yi ∈ {−1, 1} represents corresponding binary label. The function φ is a feature map that
maps the data to a higher dimensional space to improve the separability between the two
classes; w and b are the normal vector and the bias of the hyperplane, respectively, ν is the
upper bound for the error rate of training pixels and the lower bound of the fraction of
support vectors, ξi is the slack variable, which allows training errors, and ρ/‖w‖2 is the
distance between the hyperplane and the support vector.

Model (5) can be solved by its Lagrangian dual. Finally we obtain the hyperplane
function w>φ(d) + b which is then used to classify each test pixel d ∈ Rd (which are
columns of D in (4)), see [58]. In the experiments, we follow [58] and use radial basis
functions for φ(·) where its parameter is determined by a 5-fold validation. Under the
one-against-one strategy, there are [c(c− 1)]/2 such pairwise hyperplane functions where
c is the number of classes. We use them to estimate the probability pk that a non-labeled
pixel d is in class k, see [44,45]. Finally, we obtain a 3D tensor V ∈ RM×N×c where Vi,j,k
denotes the probability that the pixel d at the (i, j) location is in class k, and V:,:,k denotes
the probability map for class k. In particular, if a pixel (i, j) is a training pixel belonging to
the l-th class, then Vi,j,l = 1 while Vi,j,k = 0 for all other k’s.
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2.3. The Smoothing Stage

Post-processing the probability maps can further improve the performance. The
Markov Random Field regularization is applied to post-process the classification results by
considering spatial and edge information in [59]. In [60], the Fuzzy-Markov Random Field
is adopted to smooth the classification result predicted by SVM. In our previous work [50],
a smoothed total variation (STV) model is proposed to denoise the probability maps V:,:,k
that νSVC produces by ensuring local spatial connectivity in the maps. We adopt the same
model here in our method.

Let Vk = V:,:,k, k = 1, ..., c. In this stage, we enforce the local connectivity by minimizing:{
min

Uk

1
2‖Uk −Vk‖2

2 + β1‖∇Uk‖1 +
β2
2 ‖∇Uk‖2

2

s.t. Uk|Ω = Vk|Ω
(6)

where β1 and β2 are the regularization parameters and Ω denotes the training set so that
the constraint can keep the classifications of the training pixels unchanged. The operator ∇
means the discrete gradient of the matrix Uk when considering it as a 2-D image.

This is an `1-`2 problem and can be solved by the alternating direction method of
multipliers (ADMM) [61]. The minimizer Uk is the enhanced probability map for class
k. When the probability map for each class is obtained, we get a 3D tensor U where each
layer of the tensor is the corresponding 2D enhanced probability map, i.e., Ui,j,k is the
value of Uk at the (i, j)th location. The final classification for the pixel (i, j) is then given by
arg max
k∈{1,...,c}

Ui,j,k.

3. Experimental Results

In this section, we quantitatively compare our method with the classical νSVC and
three other state-of-the-art methods on six widely used datasets using three metrics. Besides,
we also present heatmaps for different datasets under different methods to visually compare
the classification results of classes with various shapes and sizes.

3.1. DataSets

To test the superiority of our method, six widely used publicly available hyperspectral
datasets are chosen for testing. They are the Indian Pines, Salinas, Pavia Center, Kennedy
Space Center (KSC), Botswana, and University of Pavia (PaviaU) datasets. They have
different sizes and different numbers of spectral bands of different wavelengths, and they
are commonly used these years in the study of hyperspectral images. In the following, we
introduce them one by one.

The Indian Pines dataset was collected in the test site located in Northwest India
by the AVIRIS sensor. It consists of 145 × 145 pixels and each pixel has 220 spectral
reflectance bands with a wavelength from 0.4 to 2.5 µm. After eliminating the effect of
water absorption, the number of bands is finally 200. Its ground truth consists of 16 classes.

The Salinas dataset was collected over Salinas Valley in California by the AVIRIS
sensor with a high spatial resolution of 3.7 m per pixel. The size is 512 × 217 pixels
with 224 spectral reflectance bands. Same as the Indian Pines dataset, due to the water
absorption, the number of band decreases to 204 after discarding the 108th–112th, 154th–
167th, and 224th bands. There are 16 classes in the Salinas dataset.

The Pavia Center dataset and PaviaU dataset were acquired by the ROSIS sensor over
Pavia in Italy with a spatial resolution of 1.3 m. The dataset sizes are 1096 × 715 × 102 and
610 × 340 × 103, respectively, where 102 and 103 represent the numbers of the spectral
bands, respectively. Both datasets have 9 classes.

The KSC dataset was acquired over the Kennedy Space Center in Florida by the NASA
AVIRIS sensor. It has 224 bands with wavelengths from 0.4 to 2.5 µm, but after removing
water absorption and low SNR bands, it has 176 bands totally. The size is 512 × 614 pixels
and there are 13 classes. The sensor has a spatial resolution of 18 m.
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The Botswana dataset was collected by the Hyperion sensor on NASA EO-1 satellite
over Botswana with 30 m resolution. It has 145 bands after removing 97 bands because
of water absorption and covers the wavelength from 0.4 to 2.5 µm. The area is of size
1476 × 256, and there are 14 classes in the ground truth.

3.2. Comparison Methods and Evaluation Metrics

We compare our new method with several currently used methods: ν-support vector
classifier (νSVC) [41], multiple-feature-based adaptive sparse representation (MFASR) [33],
the 2-stage method [35], and NSW-PCA-SVM [36]. We remark that, in [35,36], there are
comprehensive comparisons of the last two methods with many other methods, which
show the superiority of these two methods over others.

In this paper, we use Overall Accuracy (OA), Average Accuracy (AA), and kappa
coefficient (kappa) [62] to evaluate the performance of these five methods quantitatively.
These three metrics are all based on the confusion matrix G [63], where the element gij ∈ G
means the number of pixels that truly belong to class i are classified in class j. Thus OA
represents the percentage of correctly classified pixels:

OA =
tr(G)

∑c
i=1 ∑c

j=1 gij
,

AA represents the average percentage of correctly classified pixels in each class:

AA =
1
c

c

∑
i=1

gii

∑c
j=1 gij

,

and kappa represents the integrative reflections of OA and AA:

kappa =
∑c

i=1 ∑c
j=1 gij ×∑c

i=1 gii −∑c
k=1(∑

c
i=1 gik ×∑c

j=1 gkj)

(∑c
i=1 ∑c

j=1 gij)2 −∑c
k=1(∑

c
i=1 gik ×∑c

j=1 gkj)

For each method, ten runs were conducted. To ensure the reliability of the experiments,
the training set was randomly selected for each run and finally, the average of the results
obtained from the ten runs was taken for comparison. In each figure, there is an error bar
(the color bar) which represents the number of misclassification for each pixel in the image
over the ten runs. As in [33,36], we assume the background pixels are given and we do not
classify them. We only compare the accuracies on the non-background pixels.

All the tests were run on a computer with an Intel Core i7-9700 CPU, 32 GB RAM, and
the software is MATLAB R2021b.

3.3. Classification Results

Table 1 shows the average classification results of each method for the Indian Pines
dataset, which has large homogeneous regions with more regular shapes. In each experi-
ment, 10 training pixels for each class were randomly selected and the remaining pixels
were used for testing. The table shows the average accuracy over 10 runs, and we use
boldface font to denote the best results among the methods. We see that our method
generates the best results for all three metrics (OA, AA, and kappa) and is at least 2.65%
higher than the results of all other methods. For some classes with a small number of pixels,
like Alfalfa, Grass/pasture-mowed, and Oats, the results of our method achieve the highest
accuracy, reaching 100%. For classes like Corn-no till and Soybeans-mill till with a higher
misclassification rate under the 2-stage method, the rates are enhanced a lot in our method.
This illustrates the power of the pre-processing stage in our method.

Figure 3 shows the ground-truth and error maps of misclassifications for the Indian
Pines dataset. Among them, νSVC, which uses only spectral information, produces the
largest portion of misclassification and almost all classes have serious misclassification. The
2-stage method has poor classification results in the upper-left, upper-right, and bottom
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regions, and the corresponding materials of these regions are Corn-mill till, Corn-no till,
Soybeans-mill till and Soybeans-no till, respectively. These classes have similar spectra,
and the 2-stage method cannot distinguish them very well. MFASR method has a similar
degree of misclassification as the 2-stage method. We see from Figure 3h that our method,
with the pre-processing stage, produces the best result because it enhances the consistency
of adjacent pixels, especially those pixels located in a large homogeneous area with various
inner-class spectra. Finally, when compared with the NSW-PCA-SVM method, our method
improves the result in most areas, especially for the Soybeans-mill till class. This shows
that the smoothing TV step is very effective in enforcing spatial connectivity to increase the
accuracy of the classification.

Table 1. Average classification accuracies over 10 trials for the Indian Pines dataset with 10 random
training pixels for each class. The boldface font represents the highest accuracy among the methods.

Class νSVC MFASR 2-Stage Method NSW-PCA-SVM Our Method

Alfalfa 82.22% 97.50% 98.89% 97.50% 100%
Corn-no till 39.32% 70.87% 75.05% 77.35% 82.53%

Corn-mill till 49.05% 79.38% 91.26% 89.68% 92.06%
Corn 63.83% 87.49% 100% 89.74% 98.19%

Grass/pasture 77.61% 84.84% 88.37% 86.17% 90.87%
Grass/trees 80.97% 92.35% 99.04% 97.44% 99.51%

Grass/pasture-mowed 93.33% 100% 100% 100% 100%
Hay-windrowed 72.12% 99.38% 100% 99.83% 100%

Oats 96.00% 100% 100% 100% 100%
Soybeans-no till 52.92% 81.70% 85.21% 87.43% 90.88%

Soybeans-mill till 42.76% 69.79% 66.72% 78.00% 91.04%
Soybeans-clean 36.59% 83.05% 90.81% 80.57% 91.75%

Wheat 92.36% 99.49% 99.59% 98.67% 100%
Woods 67.55% 92.77% 94.96% 95.24% 95.88%

Bridg-Grass-Tree-Drives 41.81% 95.35% 97.23% 96.54% 96.73%
Stone-steel lowers 93.61% 99.16% 99.88% 97.23% 100%

OA 54.31% 81.54% 84.42% 86.48% 92.24%
AA 67.63% 89.60% 92.94% 91.96% 95.59%

kappa 49.00% 79.15% 82.54% 84.68% 91.16%

Table 2 shows the average classification results over 10 trials on the Salinas dataset
using 10 random pixels per class for training in each trial. Our method also achieves the
best performance in OA, AA, and kappa when compared with the other four methods
with a gain of at least 0.7% in the accuracies. For the Grapes-untrained class and Vinyard-
untrained class, νSVC yields less than 60% accuracy, indicating that the spectra of these
two classes cannot provide enough information for discrimination. In comparison, the
accuracies of our method for these two classes are enhanced a lot, nearly 40%.

Figure 4 shows the ground-truth and error maps of misclassifications for the Salinas
dataset. In Figure 4d–f, we see that the νSVC, MFSAR, and the 2-stage method all have large
areas of misclassification in the Salinas dataset. NSW-PCA-SVM method (Figure 4g) has a
great improvement over the first three methods due to the pre-processing step, but there is
still a serious misclassification in the Grapes-untrained class and Vinyard untrained class.
Our method solves most of the problems by adding the denoising step to enhance local
spatial homogeneity, see Figure 4h. As a whole, the results show that the pre-processing
and post-processing stages have a great effect on those classes with large homogeneous
regions and insufficient spectral information.

Table 3 shows the average classification results of the Pavia Center dataset over 10 trials
with 10 random labeled pixels per class in each trial. It consists of more small regions and
slender categories, see Figure 5b. Our method is also the best one in all OA, AA, and kappa
coefficient. For those classes which do not have greatly ample spectral information, like the
Bricks and Soil classes, our method earns the highest accuracies among these methods.
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Figure 3. Results for the Indian Pines dataset. (a) The false color image. (b,c) The ground truth
and the corresponding label colors. (d–h) The misclassification counts of different methods. (i) The
colorbar represents the misclassification counts.

Table 2. Average classification accuracies over 10 trials for the Salinas dataset with 10 random training
pixels for each class. The boldface font represents the highest accuracy among the methods.

Class νSVC MFASR 2-Stage Method NSW-PCA-SVM Our Method

Broccoli-green-weeds-1 98.02% 99.14% 99.84% 99.86% 100%
Broccoli-green-weeds-2 97.70% 97.75% 99.78% 99.82% 100%

Fallow 92.84% 99.06% 99.35% 99.92% 99.99%
Fallow-rough-plow 98.64% 99.65% 98.17% 99.92% 97.83%

Fallow-smooth 95.57% 98.89% 99.00% 98.80% 99.64%
Stubble 97.90% 99.70% 99.32% 96.89% 99.94%
Celery 98.74% 97.02% 99.12% 99.71% 99.96%

Grapes-untrained 55.77% 70.16% 70.26% 88.95% 96.12%
Soil-vineyard-develop 97.35% 99.47% 99.78% 98.80% 99.21%

Corn-senesced-green-weeds 79.17% 89.54% 98.54% 95.77% 98.44%
Lettuce-romaine-4wk 92.02% 97.58% 99.36% 99.40% 94.24%
Lettuce-romaine-5wk 97.52% 99.54% 99.73% 99.79% 92.61%
Lettuce-romaine-6wk 98.18% 97.74% 99.64% 97.70% 99.01%
Lettuce-romaine-7wk 89.58% 92.87% 97.78% 92.59% 96.06%

Vinyard-untrained 57.49% 82.98% 64.19% 89.79% 94.42%
Vinyard-vertical-trellis 93.71% 92.06% 97.79% 98.12% 99.54%

OA 81.82% 89.78% 88.47% 95.33% 97.69%
AA 90.01% 94.57% 95.10% 97.24% 97.94%

kappa 79.85% 88.66% 87.18% 94.81% 97.43%
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In Figure 5, which shows the misclassification map of the Pavia Center dataset, we
see that νSVC has distinct misclassification in the middle of the water class. Obviously, the
MFASR method has a worse result in Trees class where νSVC has great classification results
only using spectral information. The 2-stage method and NSW-PCA-SVM method both
have a higher degree of misclassification in the Bitumen class, mainly in the middle part of
the image. Our method smooths the result, particularly for the water class and Bitumen
class in the middle of the image, which again shows the strength of the pre-processing step
and post-processing step.

Figure 4. Results for the Salinas dataset. (a) The false color image. (b,c) The ground truth and
corresponding label colors. (d–h) The misclassification counts of different methods. (i) The colorbar
represents the misclassification counts.

Figure 6 show the overall accuracy (OAs) of different methods on the six datasets with
different numbers of training pixels. Our method achieves the best performance for all
cases except for one situation, i.e., 20 pixels per class for the PaviaU dataset. Pavia Center,
KSC, and Botswana datasets have more effective spectral information since νSVC already
reaches more than 80% accuracy. Our method is still enhanced a lot after adding steps
for spatial information extraction, reaching more than 99% accuracy with the increment
of the training pixels. One can see that the gain of the accuracy of our method over the
other methods increases when the number of labeled pixels decreases. This shows the
advantage of our method as getting labeled data is always the most difficult part of any
HSI classification problem.
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Table 3. Average classification accuracies over 10 trials for the Pavia Center dataset with 10 random
training pixels for each class. The boldface font represents the highest accuracy among the methods.

Class νSVC MFASR 2-Stage
Method

NSW-PCA-
SVM Our Method

Water 99.02% 99.78% 99.56% 100% 99.48%
Trees 81.58% 75.56% 76.29% 85.99% 91.15%

Meadows 80.78% 78.63% 88.21% 89.64% 90.41%
Bricks 75.65% 92.40% 92.70% 81.42% 96.03%

Soil 78.80% 88.57% 84.58% 89.90% 91.97%
Asphalt 89.26% 85.62% 97.70% 93.40% 97.96%
Bitumen 80.64% 89.92% 87.64% 88.30% 94.08%

Tiles 95.33% 94.01% 99.18% 99.15% 98.26%
Shadows 99.74% 97.13% 99.30% 99.27% 96.62%

OA 93.86% 94.38% 96.53% 97.04% 97.70%
AA 86.76% 89.07% 91.68% 91.90% 95.11%

kappa 91.37% 92.09% 95.09% 95.80% 96.75%

Figure 5. Results for the Pavia Center dataset. (a) The false color image. (b,c) The ground truth and
corresponding label colors. (d–h) The misclassification counts of different methods. (i) The colorbar
represents the misclassification counts.
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Figure 7 shows the average accuracy (AAs) of different methods on the six datasets
with different numbers of training pixels. Our method performs the best on the first five
datasets, no matter how many labeled pixels are used. For the Salinas, KSC, and Botswana
datasets, the AAs are around 98% even in the case that 10 labeled pixels are available and
attain more than 99% once there are more labeled pixels available for training. Only for
the last dataset, the PaviaU dataset, see Figure 7f, our method attains the second highest
accuracy, where the MFASR is the best. However, we note that MFASR generally fares only
better than νSVC in the other five datasets.

(a) (b) (c)

(d) (e) (f)

Figure 6. OAs (y-axis) for different datasets with a different number of training pixels (x-axis). (a) OA
on the Indian Pines dataset; (b) OA on the Salinas dataset; (c) OA on the Pavia Center dataset; (d) OA
on the KSC dataset; (e) OA on the Botswana dataset; (f) OA on the PaviaU dataset.

Figure 8 shows the kappas of different methods on the six datasets when different
numbers of labeled pixels are used for training. Similar to the results of OAs, our method
achieves the best performance for all cases except for one situation, i.e., 20 labeled pixels
per class for the PaviaU dataset.

To sum up, these figures clearly show the advantages of our method over the other
four methods on six datasets in three different error metrics (OA, AA, and kappa), especially
for a smaller training set (10 pixels per class). Comparing the results of all the experiments,
we are only second to MFASR in the PaviaU dataset. However, MFASR fares the worst
for all the other five datasets except when compared to νSVC. The figures also show that
the gain of our method over the other methods increases as the number of training pixels
decrease, which attest to the importance of our method.
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(a) (b) (c)

(d) (e) (f)

Figure 7. AAs (y-axis) for different datasets with a different number of training pixels (x-axis).
(a) AA on the Indian Pines dataset; (b) AA on the Salinas dataset; (c) AA on the Pavia Center dataset;
(d) AA on the KSC dataset; (e) AA on the Botswana dataset; (f) AA on the PaviaU dataset.

(a) (b) (c)

(d) (e) (f)

Figure 8. Kappas (y-axis) for different datasets with a different number of training pixels (x-axis).
(a) kappa on the Indian Pines dataset; (b) kappa on the Salinas dataset; (c) kappa on the Pavia Center
dataset; (d) kappa on the KSC dataset; (e) kappa on the Botswana dataset; (f) kappa on the PaviaU
dataset.
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One may wonder what is so special about the PaviaU dataset. According to Figure 9b,
in the PaviaU dataset, the distribution of the pixels in the same category is relatively
scattered, especially for the classes of Asphalt, Meadows, Gravel, Bricks, and Shadows. In
addition, the shapes of many regions are slender and long where MFASR performs better,
see Figure 9d. Our method has a poor classification result in Gravel class and Bricks class
while MFASR performs better, which leads to a lower AA.

From Figure 9, we notice that no method has a good classification result for the
Meadows class in the middle part of the image. Based on the ground truth in Figure 9b,
Meadows are in three different locations in the image: upper, middle, and lower parts as
marked by the pink boxes in the figure. Their corresponding spectra are shown in Figure 10
which shows that the spectra of the Meadow pixels in the middle part of the image vary
greatly from the Meadow pixels in the other parts of the image, and this results in difficulty
in correctly classifying them.

Figure 9. Results for the PaviaU dataset. (a) The false color image. (b,c) The ground truth and the
corresponding label colors. (d,e) The misclassification counts of MFASR and our method. (f) The
colorbar represents the misclassification counts.

Figure 10. The spectra of the Meadows class in the PaviaU dataset: (a) In the upper part of the image.
(b) In the middle part of the image. (c) In the bottom part of the image. They show that the spectra of
the Meadows class in the middle part of the image vary significantly from the spectra of the Meadows
class in other parts of the image.
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4. Discussion

In this section, we present a further explanation of our method and results, including
the effect of the parameters on our results, the importance of the smoothing stage, and the
execution time for all methods. Finally, we conclude the advantages and limitations of each
method.

4.1. Parameters for Each Method

Table 4 shows the number of parameters for all methods mentioned in this paper. In
the experiments, the parameters are chosen as follows. For νSVC method and the first stage
of the 2-stage method (which is also a νSVC method), there are two parameters and they
are obtained by a 5-fold cross validation [64]. For the 2-stage method, the remaining three
parameters in the second stage are chosen by trial-and-error such that it gives the highest
classification result. For the MFASR method, the ten optimal parameters are chosen by
trial-and-error as mentioned in [33]. For the NSW-PCA-SVM method, the optimal window
size and the optimal number of principal components are chosen by trial-and-error, while
the parameters of SVM are chosen by a 5-fold cross-validation.

For our method, there are 7 parameters in total. The window size ω and the number of
principal components d in the pre-processing stage are chosen by trial-and-error. The two
parameters ν and σ in νSVC (classification stage) are obtained automatically by a 5-fold
validation. In the post-processing stage (see (6)), the regularization parameters β1 and
β2 are fixed as 0.2 and 4, respectively, as the solution is robust against these parameters.
When (6) is solved by ADMM, there is a parameter µ governing the convergence rate and
we set it always to 5. Thus, in essence, there are only two parameters (ω and d) in the
pre-processing stage to be tuned by hand. Table 5 shows the values of two parameters for
the different datasets with 10 training pixels per class.

Table 4. The number of parameters in different methods.

νSVC MFASR 2-Stage
Method

NSW-PCA-
SVM Our Method

Number of
parameters 2 10 5 4 7

Table 5. The values of the parameters in our method for different datasets with 10 training pixels.

Size of Window (ω) Principal Component
Number (d)

Indian Pines 19 52
Salinas 39 24

Pavia Center 9 25
KSC 9 45

Botswana 15 11
PaviaU 5 39

4.2. The Influence of the Two Parameters in the Pre-Processing Stage

For our method, there are two parameters ω and d in the pre-processing stage, which
can influence the classification result and the subsequent post-processing stage. The
parameters introduced in Section 2.1, represent the size of the window and the number
of principal components, respectively. In this section, we discuss how to choose them
in practice.

Figure 11a shows the OAs of our method against different ω on the six datasets. Except
for the PaviaU dataset, the curves in the figure are very flat, implying the accuracy is robust
against ω. One can generally choose ω > 15 to get a good OA. According to Figure 9b, in
the PaviaU dataset, the distribution of the pixels in the same category is relatively scattered,
especially for the classes of Asphalt, Meadows, Gravel, Bricks, and Shadows. In addition,
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the shapes of many regions are slender and long, so a smaller window size fits the data
better.

To test the effect of d on the classification results, we fix ω for each dataset as the
optimal value shown in Table 5. Figure 11b gives the OAs of our method versus d on the
six datasets. It shows that OA increases sharply at first and then more or less flattens out
after d > 40. Therefore, the accuracy is robust for large d, and in practice, one can choose d
around 50 to ensure that the OA will be reasonably good.

(a) (b)

Figure 11. Influence of parameters in the pre-processing stage on six datasets. (a) OA versus window
size ω; (b) OA versus number of principal components d.

4.3. The Quality of Post-Processing Step

The post-processing smoothed-TV stage is to smooth and denoise the probability
tensor obtained by νSVC. Thus we can use the peak signal-to-noise ratio (PSNR) to measure
the quality of this stage:

PSNR(Pk, P̃k) = −10 log(MSE(Pk, P̃k)),

where Pk and P̃k are the k-th spectral bands of the true probability tensorP and the predicted
probability tensor P̃ , and MSE denotes the mean squares error. In Table 6, PSNRV and
PSNRU represent the average PSNR value over c bands of V and U in 10 trials. A higher
PSNR value means the probability tensor is closer to the true probability tensor. The
gain is the difference between PSNRU and PSNRV . The gains clearly indicate the superb
performance of the post-processing stage.

Table 6. Quantitative comparisons of the probability tensors before and after the denoising stage in
terms of the PSNR (in dB) value on the six datasets in ten trials.

PSNRV PSNRU Gain

Indian Pines 22.68 33.37 12.32
Salinas 21.05 27.16 6.11

Pavia Center 24.78 28.90 4.12
KSC 35.10 47.38 12.28

Botswana 38.21 54.65 16.44
PaviaU 23.12 28.35 5.23

4.4. Computation Times for Each Method

We test the computation times for all datasets with different methods, which only
represent the running time of different algorithms and do not include the time needed
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to find the optimal parameters. All these tests were run on a computer with an Intel Core
i7-9700 CPU, 32 GB RAM and the software is MATLAB R2021b, without applying parallelism.

Table 7 shows the computation time of six datasets in the case of 10 training pixels for
each class. νSVC requires the least amount of time when compared with the other four
methods since it does not need to pre-process or post-process the data. The 2-stage method
needs a little more extra time compared with νSVC because of the denoising step. However,
it has much higher accuracy than that of νSVC, see Figure 6. MFASR needs a longer time,
which is because of the inner product between feature dictionaries and feature matrices.

Relatively speaking, the most time-consuming part of the NSW-PCA-SVM method and
our method is the pre-processing (NSW) step, where we need to calculate the correlation
coefficients of pixels. Therefore, for the same window size ω, our method needs just a
little more time than NSW-PCA-SVM because of the additional denoising stage. In general,
the larger the window size selected, the more variance to be kept and the more pixels
need to be reconstructed, and therefore the more time these two methods will take. For
example, in the Salinas dataset, there are more large homogeneous areas, see Figure 4b;
thus, a large window size ω is needed to achieve higher accuracy, which results in a much
longer time for calculating the correlation coefficients in both methods. In Table 7, for those
cases where our method requires less running time compared with NSW-PCA-SVM, it is
because our method requires a smaller window to achieve the best accuracy. Regardless of
time, the accuracy of our method is enhanced a lot once we add the pre-processing and
post-processing stages, see Figures 6–8.

We emphasize that although our method is not the fastest (the fastest is νSVC), the
accuracy of our method, especially for very small training datasets, can more than offset
this drawback as the most time-consuming task in HSI classification is usually the labeling
of the training pixels.

Table 7. Comparison of computation times (in seconds) for 10 training pixels.

νSVC MFASR 2-Stage
Method

NSW-PCA-
SVM Our Method

Indian Pines 4.330 279.069 9.220 2767.587 1943.242
Salinas 16.595 1477.910 95.119 49,277.255 153,536.181

Pavia Center 36.954 3183.543 255.212 4081.842 4168.063
KSC 2.152 69.498 57.687 640.146 157.427

Botswana 1.708 81.848 65.990 583.016 329.433
PaviaU 5.045 893.491 58.547 271.707 350.894

Further, it is worth mentioning that the reconstruction and classification stages in our
method can be done in parallel to greatly reduce the running time. The NSW algorithm is
to reconstruct pixels in their square neighborhoods; thus the reconstruction process of each
target pixel is independent and can be done in parallel. In addition, in νSVC, since we use
the one-against-one strategy, the c(c− 1)/2 binary classifiers can be done in parallel too.

4.5. Summary of Each Method

In this subsection, we summarize the advantages and limitations of all five methods
that were compared in this paper, see Table 8. In summary, the νSVC method only considers
the spectral information in HSI and thus produces the lowest accuracy. After adding the
denoising second stage, the 2-stage method improves the result quite a lot and only a
short time is required for the additional denoising stage. However, as the denoising
process completely depends on the probability tensor, it can be greatly influenced by the
misclassifications caused by the classification stage. MFASR needs more time to run and
performs only better than νSVC in most cases though it has relatively better results for
PaviaU dataset. NSW-PCA-SVM and our method needs more time to obtain the results
but generate better results compared with other methods. What’s more, the result of our
method is the best and it is robust against the parameters in the method.
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Table 8. The advantages and limitations of five methods with a small set of training pixels available.

Methods Features Advantages Limitations

νSVC spectral shortest running time lowest accuracy

MFASR spectral, spatial better performance for PaviaU dataset
lower accuracy,

longer running time

2-stage spectral, spatial shorter running time
misclassification of classes

with similar spectra

NSW-PCA-SVM spectral, spatial higher accuracy with limited labeled pixels longer running time

Our method spectral, spatial
highest accuracy with limited labeled pixels,

robust to parameters longer running time

5. Conclusions

In this paper, we propose a new method that fully uses spatial and spectral information.
Before classification, NSW and PCA are used to extract spatial information from the HSI
and reconstruct the data. They enhance the consistency of the neighboring pixels so that
we only need a smaller training set. After that, νSVC is used to estimate the pixel-wise
probability map of each class. Finally, a smoothed total variation model, which enhances
spatial homogeneity in the probability tensor, is applied to classify the HSI into different
classes. Compared with the other methods, our new method achieves the best overall
accuracy, average accuracy, and kappa on six datasets except only for the PaviaU dataset,
where we achieve the second best in some cases. The gain in accuracy of our method over
the other methods increases when the number of training pixels available decreases. For
many applications that need to use the classification results for research, analysis, and
assessment, our method has obvious advantages and achieves better results with very
limited labeled pixels. Our method is therefore of great practical significance since expert
annotations are often expensive and difficult to collect.

The limitation of our method is that the pre-processing step extracts spatial information
using square windows, which is not suitable for small-size datasets with long and thin
regions, like the PaviaU dataset. In the future, we will try to improve and develop new
methods for adaptively selecting neighborhood pixels, which will be more useful for those
datasets that contain more irregular regions like the PaviaU dataset. In addition, different
spatial filters will also be considered to extract spatial information and combine them with
our method here.
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