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Abstract: Population migration, accompanied by urbanization, has led to an increase in the urban-
settled population. However, quantitative studies on the distribution of urban-settled population,
especially at fine scale, are limited. This study explored the relationship between characteristics of
human perceived environment and the distribution of settled population, and proposed a quantitative
method to predict the distribution trend of settled population. Through the semantic segmentation of
street view images and accessibility calculation based on traffic isochrone and points-of-interest, we
determined human perception factors. The influence of human perception factors was quantified
using the geographic detector method, and the settlement intention index (SII) was constructed
combining the analytic hierarchy process to predict the distribution trend of settled population. The
results indicated the following. (1) Human perception was one of the important factors influencing
the distribution of urban-settled population, and the cycling accessibility to traffic facilities was
closely related to the distribution of settled population. (2) The accessibility and visibility of green
space with low independent influence portrayed a strong enhancement on the interactive effect
of other perception factors. (3) The SII mapping of Beijing showed that the SII was reliable. This
study analyzes the role of human perception in shaping the environment, and provides reference for
population-related urban planning problems.

Keywords: urban-settled population distribution; street-view images; points of interest; geographic
detector; quantitative prediction index; block scale

1. Introduction

Since 2008, more than half of the world’s population has been living in cities [1].
Notably, large-scale population migration, accompanied by urbanization, has resulted in
tremendous pressure on the limited urban resources and environmental capacity. Com-
pared to developed countries, generally, the developing countries have a higher urban
population growth rate, as well as a higher rate of internal migration from rural to urban
settlements [2]. Cities in China and other developing countries are facing serious problems
related to urban planning, resource allocation, and disaster emergency management [3–5].
To prevent and solve the above-mentioned problems, previous studies combined geogra-
phy, economics, sociology, and other disciplines to predict urban population distribution [6].
At present, in multi-dimensional interdisciplinary studies, there is still a lack of quantitative
research on the distribution of urban-settled population.

The SDG11 (Sustainable Development Goal 11) proposed in the international sus-
tainable development policy of the 2030 Agenda is to make cities and human settlements
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inclusive, safe, resilient, and sustainable [7]. The settled population refers to the population
with local registered residence and long-term residence. Settled population distribution
data is necessary for the evaluation of indicators such as SDG11.3 (inclusive and sustain-
able urbanization and human settlement planning), SDG11.5 (reduce deaths and economic
losses from disasters) and SDG11.7 (universal access to safe and inclusive green spaces).
With the participation of satellite image products such as night light and land cover, the
population grid data produced by machine learning methods such as random forest has
been widely adopted [8]. Well-known population datasets such as LandScan have become
the main population data sources for indicators evaluation of SDG11 due to their wide
coverage and convenient acquisition [9]. However, the focus of current spatial popula-
tion distribution studies has mainly been the total population, without considering the
distinction between settled and floating populations. Moreover, most population maps
use grid cells, thereby not accounting for irregularly shaped block cells, which are also
inhabited [10–12].

Data on settled populations are mostly acquired through manual surveys, and such
data cannot support spatial continuity and are difficult to obtain in a short time. Addition-
ally, most existing studies on settled population distribution related to urban environment
are based on census data. Due to privacy protection or unclear boundaries of geograph-
ical units, census data tend to summarize the population data only in a large area [13].
With the improvement in the accuracy of studies on the urban environment, a block is
used as a representative of fine research unit in urban landscape and planning [14–16]. As
a land unit having relatively homogeneous social and economic functions divided by road
network, an urban block can aptly be considered the basic constituent unit of an urban
structure and an important division unit that represents human activities in an area [17].
However, studies on the spatial distribution of settled population at block scale are limited.

The characteristics of urban environment have a profound influence on the priority
of settlement choices and the stability of settlement [6]. Peoples’ perceptions of urban
environment, such as aesthetics, accessibility, and convenience, are closely related to their
behavior [18,19]. Most existing studies on population settlement conducted to analyze
peoples’ preference to settle in an urban environment are based on questionnaire survey
data [20–23]. The increase in the types of geospatial data and the development of processing
technology have greatly enriched the methods that enable us to describe the characteristics
of urban environment from a human perspective. At present, the urban environmen-
tal characteristics determined by population settlement studies can be summarized into
two categories: the visual perception of public space and the spatial perception of urban
facilities [21], which are detailed below:

(1) Urban public spaces include streets, squares, and other open spaces. Streets are the
main places for urban peoples’ daily activities and its landscape characteristics determine
peoples’ visual perceptions of the urban environment [6]. Meyer et al. (1994) [24] analyzed
100 cities around the world and indicated that the proper management of streets plays a key
role in urban prosperity, in terms of the infrastructure, quality of life, equity, and inclusion.
Due to limited data acquisition in the past, the existing studies on street visual perception
are mainly based on field investigations [25]. As major mapping companies, such as Google,
Baidu, and Tencent, collect street-view data using their mobile vehicles and make the data
public, a large range of street landscape information can be obtained in batches through
computer-vision algorithms. Some scholars conclude that the visual quality of streets is
closely related to peoples’ behavior and willingness to settle down [26,27]. However, there
is no consensus on the methods to objectively and accurately measure peoples’ visual
perceptions of urban environments.

(2) Accessibility is the ability of people to overcome spatial barriers to access facili-
ties [28] and has been regarded as an important factor that affects peoples’ willingness to
settle down [29–31]. Studies on the settlement areas of different populations indicate that
almost all people prefer to live in places that offer better accessibility to education, health
care, office, and transportation facilities [32], with the influence of office facilities being
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the most obvious factor [33]. Due to the limitation of traditional data sources, accessibility
measures are generally based on static plane spaces [34–36]. To reflect peoples’ spatial
perceptions of urban facilities accurately, it is important to consider the efficiency of road
traffic, different transportation modes, and to have comprehensive information on road
conditions [37]. The online location data platform provides a simple and feasible solution
to the above problems. However, the most optimal method to reasonably combine network
services with accessibility measurement methods remains an unresolved problem.

To solve the problem of insufficient quantitative research on the distribution of urban-
settled population, in this study, we provided a novel view of study from the human
perception of the urban environment. Based on the characteristic of human perceived
urban environment, we analyzed the contributing factors of the distribution of settled
population and constructed a quantitative distribution trend index. To the best of our
knowledge, our work may be one of the first studies to use human-perceived characteristics
of the urban environment to explore its influence on the distribution of settled populations
and to establish a quantitative index. In addition, we used the online location data platform
to improve the calculation method of accessibility.

This paper is organized as follows. Section 2 introduces the study area and data sources.
Section 3 introduces the methods of establishing perception factors and the methods used
for influence analysis and prediction index construction. Sections 4–6 present the results,
discussion, and conclusions of the study. The flowchart of this study is shown in Figure 1.

Figure 1. Flowchart of this study.

The objectives of this study were to: (1) comprehensively describe the characteristics
of human perceptions of the urban environment, especially spatial and visual perceptions,
and improve the computing power and accuracy of human perception factors through
semantic segmentation and online location data platform; (2) analyze the independent and
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interactive influence of the characteristic of the human perception of urban environment
on the distribution of settled population by using the geographic detector method; and
(3) establish the settlement intention index (SII), using the analytic hierarchy process (AHP),
based on the influence of human perception factors, and complete index mapping at
block scale.

2. Materials
2.1. Study Area

Beijing is the capital of the People’s Republic of China and the political, economic and
cultural center of China; notably, it is also one of the most popular cities to settle down. [38].
We selected the fifth ring road in Beijing (which is the urban area of Beijing) as our study
area (Figure 2). The study area occupied less than 5% of the total area of Beijing; however,
49% of the resident population of Beijing was distributed in this area (in 2015).

Figure 2. Map of the study area (fifth ring road) in Beijing, which covers the urban area of the city.

2.2. Data Description and Preprocessing

The land units used in this study included the street and block units. According to the
data from the administrative division, there were 118 street units distributed in the study
area. To ensure the accuracy of the statistical data, we considered only 114 street units,
because four were mainly distributed outside the fifth ring road. Based on the urban plot
data by Gong et al. [39], we selected 4280 plots over 300 m2 distributed in the study area as
the block units for this study. Notably, we used the following six data sets.

2.2.1. Street-View Images (SVI)

Panoramic SVIs are 360-degree pictures generated from eight original pictures cap-
tured by cameras on moving vehicles. Our collection of panoramic SVI was based on Baidu
Map (https://map.baidu.com/, accessed on 23 January 2022). We used Baidu Map to
obtain road network data in the study area, set sampling points (The endpoints at both
ends of each road and 200-m interval points along road), and obtain images from these
points (Figure 3a). A total of 120,953 images were collected from September to November,
2021. However, the process of merging planar images captured by horizontal cameras to
form panoramic images can cause serious distortion at the top and bottom parts of the
panorama images, along with slight distortion at the central part of the pitch angle (vertical
angle) of ±30◦ [40]. The bottom parts of the Baidu SVI (panorama) included the body of
moving vehicles; therefore, we cut and retained one third of the vertical center part of the
image for subsequent study (Figure 3b). To measure the visual closure of the street, Yin and

https://map.baidu.com/
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Wang also cropped the central part of the panoramic image in their study and indicated
that the cropped image was more in line with the real field of view of pedestrians [41].

Figure 3. (a) Original street view images (SVIs) (panorama), (b) cropped SVIs.

2.2.2. Points of Interest (POI)

POI data can provide accurate geographic locations and detailed attribute informa-
tion for urban facilities. In this study, we obtained the POI data of 666,144 facilities of
different types distributed in the urban center of Beijing and its adjacent 12 administrative
districts from AMAP (https://www.amap.com, accessed on 27 January 2022). The POI
data included schools, restaurants, shopping malls, parking lots, parks, companies, and
almost all physical facilities that people used on a daily basis. After deleting the incomplete
and repeated records, we sorted the data into six categories, according to peoples’ travel
purposes: office, traffic, commerce, residence, scientific education and health, and green
space and square.

2.2.3. Night-Time Light (NTL) Satellite Images

In this study, we used the monthly National Polar-Orbiting Partnership- Visible and
Infrared Imager/Radiometer Suite (NPP-VIIRS) NTL data acquired from the National
Aeronautics and Space Administration (NASA) in 2020, with a spatial resolution of 500 m.
Notably, we used the data to perform annual image synthesis, re-projection, resampling,
and clipping. In addition, we performed denoising to remove auroras, fires, and other
transient light sources, as well as the background noise.

2.2.4. Density of the Settled Population (DSP)

The data of settled population used in this study were acquired from the sixth Beijing
population census undertaken by the National Bureau of Statistics, which was the updated
population data available at street scale. Notably, the census, designed and conducted by
the state, is the most reliable population data in China. In this study, the census result
type of “living locally, registered locally” were used to represent the spatial distribution of
settled population. We calculated the ratio of this data for the corresponding street area to
obtain the density of the settled population (DSP) at the street scale.

3. Methods

The methodology applied in this study can be roughly divided into four parts:
(1) Perceptual information extraction: this step included the extraction of peoples’ vi-
sual perceptual information of public spaces through the semantic segmentation of SVIs,
and the extraction of peoples’ spatial perceptual information of urban facilities by the
cumulative opportunity method based on the isochrone application programming interface

https://www.amap.com
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(API). (2) Establishment of perception factors: this step was based on the types of extracted
information and the characteristics of the urban environment; we sorted out and integrated
the perceptual information to determine the human perception factors. (3) Contributing
factor analysis: this step included the use of the geographic detector method to analyze the
independent and interactive influences of each perception factor on the DSP. (4) Construc-
tion of distribution trend prediction index: this step was based on the influence of different
perception factors on the DSP; we selected the index and used the AHP to build the index
calculation model.

3.1. Perceptual Information Extraction
3.1.1. Semantic Segmentation

The SVIs reflect peoples’ real visual perception of urban public spaces. To quantify
this perception, we used the semantic segmentation to extract various elements in the
SVIs. Semantic segmentation is a typical computer vision problem, which involves taking
some original data (such as planar images) as input and converting them into masks
with highlighted regions of interest. Compared with traditional segmentation algorithms,
semantic segmentation automatically learns features from a large number of training data,
which improved the segmentation accuracy and efficiency greatly. It enabled us to locate
specific objects in an image and classify the image pixels into a specific category (from
a series of discrete categories that describe the image). Semantic segmentation models
commonly used in street view images include RefineNet, PSPNet, ResNet-38, DeepLab-
v3, etc., of which DeepLab-v3 shows excellent performance on the cityscape test set [42].
DeepLab-v3 model has obvious improvement over the previous version of DeepLab, and
has achieved performance equivalent to other advanced models. Therefore, we used
DeepLab-v3 model for semantic segmentation of street view images. The model proposes
the Atrous Spatial Pyramid Pooling (ASPP) module to mine the convolutional features of
different scales, as well as the image layer features that encode global content information
to improve the segmentation performance.

We used the Cityscape dataset to train the DeepLab-v3 model. The Cityscape dataset
is a large dataset that can enhance the visual understanding of complex urban street
scenes [43], including 19 types of urban street scenes, namely, road, side-walk, building,
wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person, rider, car, truck,
bus, train, motorcycle, and bicycle. The labeled data set is shown in Figure 4. To ensure the
validity of the results, we removed the segmentation results that had unlabeled regions
≥30%. Finally, the scene element information of 116,865 street images were obtained.

Figure 4. Test sample of Cityscape dataset (left: original image, right: labeled image).

3.1.2. Cumulative Opportunity Method Based on Traffic Isochrone

The isochrone API provided by Mapbox (http://mapbox.com, accessed on 27 January 2022)
can calculate the reachable area from a certain location in the mode of walking, cycling, and
driving within a specified time as the contour line of a surface or a line in vector format
(Figure 5). The data obtained are known as the traffic isochrone. In general, isochrone
API designs different travel paths for different modes of travel: walkways and trails are
preferred for walking; streets with bike lanes are preferred for cycling; and highways are
preferred for driving. Notably, traffic conditions use the real-time traffic speeds directly

http://mapbox.com
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observed 15 min before generation. Some countries and regions, such as China, cannot
provide real-time traffic conditions and use typical traffic speeds that reflect the normal
traffic conditions in a historical week.

Figure 5. Example of isochrone data obtained using the isochrone API.

Based on different objectives, scholars have proposed different methods to measure
accessibility [36]. The cumulative opportunity method considers the number of access
opportunities within the range of a certain transportation cost (distance, time, and cost) as
an index of accessibility. The higher the number of opportunities, the higher the level of
accessibility. Moreover, in this method, isochrone API can simplify the calculation process
of transportation cost. The vector range of traffic isochrone, combined with the spatial
position information of POI, can be used to calculate accessibility more comprehensively,
while considering the spatiotemporal distance.

The concept of “15-min community living circle” was proposed in Shanghai’s 2040 Master
Plan [44]. In this study, we adopted this concept. Notably, we considered 15 min as the
time limit of the traffic isochrone circle, to determine the reachable area by walking, cy-
cling, and driving, individually. Based on the classified POI data, the number of various
facilities within the travel range was calculated to represent the accessibility of various
facilities for different travel modes. To avoid the interference of road distribution within
the study unit in the calculation of accessibility, we extracted the centroid of each block as
the starting point.

3.2. Establishment of Perception Factors

In this study, we determined 25 perception factors from two aspects: peoples’ spatial
and visual perception of the urban environment (Table 1).

3.2.1. Visual Perception Factors of Public Space

Human visual perception of the scene includes a variety of information, such as
the element types, texture features, and color saturation. Considering the operability of
automatic calculation and measurement, we established the visual perception factors for
the direct features of the scene, namely the proportion and diversity of elements. Example
of segmentation and visual perception factor values of public space are shown in Figure 6.
The original image (SVI) is shown at the top, and the segmented image is shown below it.
In the segmented image, we used different colors to represent different visual elements in
the public space. At the bottom, we listed the values of various visual perception factors
calculated based on the SVI. The description of each factor is shown in Table 1. Taking the
SVG value of 15.02 as an example, it represents the visibility of greening observed from the
SVI sampling point is 15.02. The higher the calculated values of the visual perception factors,
the stronger the human perception of the relevant landscape elements in public space.
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Table 1. Basic information of human perception factors analyzed in this study.

Type Metrics Acronym Description
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Type Metrics Acronym Description 

Visual perception 
factors of  

public spaces 

 
Street visual greening 

 
SVG 

 SVG = 𝑃  
Street visual sky openness SVS SVS = 𝑃  
Street visual enclosure SVE SVE = 𝑃 + 𝑃 + 𝑃  + 𝑃  

Street visual motorization SVM 
𝑀𝑜𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑃 + 𝑃  + 𝑃  + 𝑃 + 𝑃+ 𝑃 + 𝑃 + 𝑃  

Street visual humanization SVH 
𝐻𝑢𝑚𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑃 + 𝑃 + 𝑃+ 𝑃  

Shannon’s diversity index SHDI SHDI = − 𝑃 ∗ ln 𝑃  

Simpson’s Diversity Index 
 

SIDI 
 

SIDI = 1 − 𝑃  

 

Spatial perception 
factors of urban fa-

cilities 

Walking accessibility to office facilities W-O Number of office facilities within a 15-min 
walk 

Walking accessibility to traffic facili-
ties 

W-T Number of traffic facilities within a 15-min 
walk 

Walking accessibility to commercial 
facilities W-C 

Number of commercial facilities within a 15-
min walk 

Walking accessibility to residential fa-
cilities 

W-R Number of residential facilities within a 15-
min walk 

Walking accessibility to science educa-
tion and health facilities W-SH 

Number of science education and health facil-
ities within a 15-min walk 

Walking accessibility to green space 
and square facilities W-G Number of green space and square facilities 

within a 15-min walk 

Cycling accessibility to office facilities C-O Number of office facilities within a 15-min cy-
cle 

Cycling accessibility to traffic facilities C-T 
Number of traffic facilities within a 15-min 
cycle 

Cycling accessibility to commercial fa-
cilities 

C-C Number of commercial facilities within a 15-
min cycle 

Cycling accessibility to residential fa-
cilities 

C-R Number of residential facilities within a 15-
min cycle 

Cycling accessibility to science educa-
tion and health facilities C-SH 

Number of science education and health facil-
ities within a 15-min cycle 

Cycling accessibility to green space 
and square facilities 

C-G Number of green space and square facilities 
within a 15-min cycle 

Driving accessibility to office facilities D-O 
Number of office facilities within a 15-min 
drive 

Driving accessibility to traffic facilities D-T Number of traffic facilities within a 15-min 
drive 

Driving accessibility to commercial fa-
cilities 

D-C Number of commercial facilities within a 15-
min drive 

Driving accessibility to residential fa-
cilities D-R 

Number of residential facilities within a 15-
min drive 

Spatial perception
factors of

urban facilities

Walking accessibility to
office facilities W-O Number of office facilities within

a 15-min walk
Walking accessibility to
traffic facilities W-T Number of traffic facilities within

a 15-min walk
Walking accessibility to
commercial facilities W-C Number of commercial facilities within

a 15-min walk
Walking accessibility to
residential facilities W-R Number of residential facilities within

a 15-min walk
Walking accessibility to science
education and health facilities W-SH Number of science education and health

facilities within a 15-min walk
Walking accessibility to green space
and square facilities W-G Number of green space and square facilities

within a 15-min walk
Cycling accessibility to
office facilities C-O Number of office facilities within

a 15-min cycle
Cycling accessibility to
traffic facilities C-T Number of traffic facilities within

a 15-min cycle
Cycling accessibility to
commercial facilities C-C Number of commercial facilities within

a 15-min cycle
Cycling accessibility to
residential facilities C-R Number of residential facilities within

a 15-min cycle
Cycling accessibility to science
education and health facilities C-SH Number of science education and health

facilities within a 15-min cycle
Cycling accessibility to green space
and square facilities C-G Number of green space and square facilities

within a 15-min cycle
Driving accessibility to
office facilities D-O Number of office facilities within

a 15-min drive
Driving accessibility to
traffic facilities D-T Number of traffic facilities within

a 15-min drive
Driving accessibility to
commercial facilities D-C Number of commercial facilities within

a 15-min drive
Driving accessibility to
residential facilities D-R Number of residential facilities within

a 15-min drive
Driving accessibility to science
education and health facilities D-SH Number of science education and health

facilities within a 15-min drive
Driving accessibility to green space
and square facilities D-G Number of green space and square facilities

within a 15-min drive
Pi stands for the proportion of the landscape occupied by element type (class) I; m stands for the total number.
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Figure 6. Example of SVI semantic segmentation results and the values of public space visual
perception factors calculated based on the SVI. Abbreviations: street visual greening (SVG), street
visual sky openness (SVS), street visual enclosure (SVE), street visual motorization (SVM), street
visual humanization (SVH), Shannon’s diversity index (SHDI), Simpson’s diversity index (SIDI).

1. Proportion of elements:

Similar to the top-down land cover information obtained from remote sensing images,
the proportions of elements in SVIs provide more detailed land cover information from the
human perspective. Based on the definition of greening, openness, and closeness in SVIs
proposed by Tang and Long [45], we designed five visual perception factors, namely street
visual greening (SVG), street visual sky openness (SVS), street visual enclosure (SVE), street
visual motorization (SVM), and street visual humanization (SVH), which are explained in
detail below.

• Street visual greening (SVG): The greening elements include visible information about
various types of vegetation. Greening at the urban street level makes a significant
contribution to the attractiveness and walkability of residential streets [46]. Green
streets are often the main places for people to take a walk, jog, and partake in sports
activities [47]. Therefore, greening is one of the important factors of urban ecological
environment construction.

• Street visual sky openness (SVS) and street visual enclosure (SVE): The visual per-
ception of the degree of sky openness and closure of urban public spaces reflects the
spaciousness of urban roads and the height, density, and continuity of buildings. These
are all important factors that affect the comfort and livability of the residents [48,49].
Notably, these two factors describe the characteristics of the elements associated with
the building environment.

• Street visual motorization (SVM) and street visual humanization (SVH): SVM represent
the suitability of the street scene for automobile traffic and reflects the density of motor
vehicle traffic at that time. SVH reflects the element information related to walking
and cycling, that is, the humanization degree of the street environment for peoples’
activities. Therefore, these two factors describe the characteristics of elements related
to peoples’ traveling activities.

2. Diversity of elements:

Landscape diversity, as described in landscape ecology, refers to the variations in and
complexity of landscape elements in a given study area. In this study, we used Shannon’s



Remote Sens. 2022, 14, 3965 10 of 26

diversity index (SHDI) and Simpson’s diversity index (SIDI) in landscape ecology to
quantitatively describe the element diversity across the street scenes [50]. Notably, SHDI
is sensitive to rare elements, and the larger the value of the index, the more complex the
landscape structure is and the more information it contains. Compared to SHDI, SIDI is
less sensitive to rare element types, and its interpretation is more intuitive.

3.2.2. Spatial Perception Factors of Urban Facilities

Accessibility is the result of facility distribution and the traffic state. Based on the
abovementioned accessibility calculation method, we calculated the accessibility for the
three different travel modes for six types of POIs; the results were used to represent peoples’
spatial perceptions of urban facilities.

The accessibility of different types of facilities affects peoples’ behavior and lifestyle in
different aspects. Notably, the spatial distribution of commercial facilities has an effective
and lasting effect on the distribution of urban population on rest days [51]. Generally, the
populations in areas having a dense distribution of parks and leisure attractions portray
a higher frequency of daily leisure activities [52]. Additionally, the accessibility of work
facilities reflects, to some extent, the distribution of social classes and ethnic groups living
in the area [33,53].

Several previous studies analyzed the accessibility of a single mode of transporta-
tion, but only few studies considered the accessibility of multiple modes of transporta-
tion comprehensively and conducted a comparative analysis. Yan indicated that the
accessibility of walking, public transport, and driving had different influence on peoples’
settlement choices [54]. Notably, to consider different transportation modes in the estab-
lishment of spatial perception factors, it is important for the comprehensiveness of spatial
perception factors.

3.3. Geographic Detector Method

The geographic detector method is used to statistically detect and utilize spatial
heterogeneity in geographical phenomena; this information can be used to reveal the
explanatory factors of the phenomena and analyze the interactions between different
variables [55]. Geographical detectors have been widely used in environmental studies and
perform efficiently [26,56,57].

3.3.1. Factor Detection

In factor detection, we use q values to measure the interpretation degree of percep-
tion factors with respect to the spatial heterogeneity of the DSP, which can be expressed
as follows:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
, (1)

SSW =
L

∑
h=1

Nhσ2
h , (2)

SST = Nσ2, (3)

where dependent variable (Y) and independent variable (X) constitute the strata having
a total number L; Nh and σ2

h represent the number of units in h layer and the variance of Y
value in h layer, respectively. Moreover, N and σ2 represent the number of units and the
variance of Y value, respectively, for the entire region. Strata are generally generated by the
discretization of X. Notably, SSW represents the sum of the variances in the layer, and SST
represents the sum of the variances for the entire region. The smaller the ratio, the more
obvious the spatial heterogeneity of Y. The q values range from 0 to 1. The explanatory
strength can be quantified as 100× q%.
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3.3.2. Interaction Detection

Interaction detection is used to identify the interaction between different perception
factors. It can evaluate whether the joint action of factors will increase or decrease the
explanatory power of Y and also, determine if the effects of these two factors on Y are
independent of each other.

The evaluation method for interaction detection is explained below. First, the q values
of X1 and X2 for Y are calculated, respectively. Thereafter, the stratum of X1 is intersected
with the stratum of X2 to form a new stratum, and the q value of X1 ∩ X2 to Y is calculated;
qX1, q(X2) and q(X1 ∩ X2) were compared and classified according to Table 2.

Table 2. Interaction classification criteria.

Criterion Interaction

q(X1 ∩ X2) < Min(q(X1), q(X2)) Weaken (nonlinear)
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X1)) Uni-weaken(nonlinear)

q(X1 ∩ X2) > Max(q(X1), q(X1)) Bi-enhance
q(X1 ∩ X2) = qX1 + q(X2) Independent
q(X1 ∩ X2) > qX1 + q(X2) Enhance (nonlinear)

3.4. Analytic Hierarchy Process (AHP)

The analytic hierarchy process (AHP) decomposes the problem into different compo-
nent factors according to the nature of the problem and the overall goal to be achieved,
and aggregates and combines the factors at different levels according to the interrelated
influence and membership relationship between the factors to form a multi-level analysis
structure model. Thus, the problem is finally attributed to the determination of the rela-
tively important weight of the lowest level (schemes and measures for decision-making)
relative to the highest level (overall goal) or the arrangement of the relative advantages and
disadvantages. The AHP is a multidimensional criterion decision-making method for the
quantitative analysis of fuzzy and complex problems [56,57]. Notably, the AHP structures
the problems and forms a hierarchical system of goals, criteria, and indicators [58]. At
present, the AHP has been widely used in the construction of quantitative models in various
fields [59–63]. The main steps of determining the indicators’ weight using the AHP are
explained below:

1. Establishing discriminant matrix

Generally, the judgment matrix is established according to the contribution of each
factor to the upper level and the corresponding significance of the scale of the judgment
matrix. The discriminant matrix is shown in Equation (4) below.

X =


x11 x12 · · · x1j
x21 x22 · · · x2j

...
...

xi1 xi2 · · · xij

, (4)

where Xi, Xj (i, j = 1, 2, 3, . . . . . . n) represents the factor of item i or item j, and n rep-
resents the total number of indicators. Xij indicates the importance of Xi, compared to
Xj. Moreover, we used the “nine scale” method proposed by Saaty (1980), to quantify the
relative importance of each indicator (Table 3).
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Table 3. Scale meaning of “nine scale” method.

Scale Meaning

1 Compared with j, i and j have the same influence
3 Compared with j, i has a slightly stronger influence
5 Compared with j, i has a obviously stronger influence
7 Compared with j, i has an especially stronger influence
9 Compared with j, i has a extremely stronger influence

2, 4, 6, 8 The intermediate situation of the above two adjacent judgment results
1, 1/2, . . . . . . , 1/9 The influence ratio of i and j is contrary to the above description

2. Measuring the consistency of the matrix

In this process, the relevant indicators include the consistency index (CI), random
consistency index (RI), and consistency ratio (CR). Generally, when CR < 0.1, the weight
distribution of the discrimination matrix was reasonable and passed the consistency test.

CI =
λmax − n

n− 1
, (5)

CR =
CI
RI

, (6)

where λ is the eigenvector, which is calculated by the square root method. Notably, RI
increased with increase in the order of judgment matrix.

3. Calculation of indicator’ weight

When the consistency of the indicators met the requirements, the eigenvectors corre-
sponding to each indicator were calculated according to the maximum eigenvalues of the
matrix. These values were then, standardized and transformed into weight vectors (the
sum of each component of the feature vector was 1), to calculate the weight corresponding
to the indicators.

4. Results
4.1. Analysis of Contributing Factors, Based on the Geographic Detector Method

Our results were based on the factor values at street scale. Due to the limitation of
the accuracy of the settled population data, we use the average of the perception factors of
each block unit in the street unit to represent the average level of people’s perception of the
urban environment in the street unit. Factor calculation was carried out at block scale, and
the street scale factor the average value of its internal block factors. Generally, the NTL data
has been proved to be an important parameter that reflect urban construction, economic
activities, and population distribution [64]. When using the factor detection of geographical
detector, the relative importance of different factors is judged by comparing the q value.
Notably, the single q value obtained by factor detection cannot directly represent the
influence degree of this factor. To objectively prove the importance of each perception
factor on the spatial distribution of the settled population in Beijing, we added the mean
value of the NTL data of each street unit as the reference factor. The following results were
obtained using geographic detectors.

4.1.1. Relative Importance of Perception Factors

The results of factor detection are shown in Figure 7a. In addition to SIDI, SVM, and
SVG, the q values of other 22 factors, whose q values were higher than the NTL data, were
significant at 0.001; this proved that these 22 perception factors had important influence on
the DSP.
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Figure 7. (a) Influence of human perception factors on the density of the settled population (DSP),
sorted from high to low and (b) interactions between human perception factors and DSP.

Figure 8 portrays the top five perception factors of q value and the spatial distribution
of the DSP, including three spatial perception factors and two visual perception factors.
Notably, the difference in the q values of the factors was very small, which indicated that
both types of perception factors had a significant influence on the DSP.
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Figure 8. The spatial distribution of the top five perception factors of q value and DSP. (a) C-T (b) C-R
(c) W-R (d) -SVE (e) SVS (f) DSP.

The order of relative importance of the visual perception factors in public spaces to
the DSP was SVE > SVS > SVH > SHDI > SIDI > SVM > SVG. Notably, the SVE and SVS
affected the DSP at a relatively high level, indicating that the visual perception factors
related to the building environment had a great influence on the DSP. The q value of SVH
was much higher than that of SVM, indicating that more people preferred to settle down
in areas that were suitable for walking and cycling activities than those suitable for motor
vehicles. Moreover, the influence of SHDI was low, but had a greater effect that the NTL
data; notably, the value of SHDI was higher than that of SIDI, indicating that the emergence
of rare elements in visual perception was more important than intuitive diversity. Gong
et al. portrayed that the richness of element types often implied more complete local
urban functions [65]. To our surprise, the greening construction of public spaces did not
have a significant influence on the DSP. In addition, we used factor detection to obtain the
interpretation rate of DSP for the spatial heterogeneity of visual perception factors in public
space (Table 4). The influence of DSP on the environmental characteristics of public space
influenced the relative importance of visual perception factors to a certain extent. However,
it can be seen from Table 4 that street landscape plays a more obvious role in promoting
DSP. Therefore, the relative importance of visual perception factors still follows Figure 7a.

Table 4. The factor detector results of DSP on visual perception factors in public space.

SVG SVS SVM SVE SVH SHDI SIDI

/ 0.38 *** / 0.42 *** 0.29 *** / /
*** denotes p < 0.001 in the significance test.

In this study, the relative importance of spatial perception factors of urban facilities
to the DSP was compared from the perspective of travel mode and facility type: (1) For
different travel modes, the accessibility to residential, traffic, and office facilities in the
three travel modes had the highest effects on the DSP. The cycling and driving accessibility
to green space and square facilities had the least influence on the DSP. Compared with
the other two travel modes, the driving accessibility of commercial facilities had a greater
influence on the DSP. (2) For different types of facilities, among the three travel modes, the
cycling accessibility to various facilities had the greatest influence. The driving accessibility
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to traffic, residential, office, and education and health facilities had the least influence on
the DSP. The cycling accessibility to commercial facilities, green spaces, and square facilities
had the least influence on the DSP. Notably, the spatial perception factors related to green
spaces and squares had minimal influence on the DSP, which was similar to the influence
of the SVG.

4.1.2. Joint Influence of Perception Factors

Further, we divided the 25 perception factors into four groups, according to their types,
and conducted an interaction detection analysis of the geographic detectors to determine
the joint influence between the two factors, when the four groups of factors influenced
the DSP (Figure 7b). We observed that, when the four groups of factors influenced the
DSP, any two factors portrayed two types of mutual enhancement, namely, double factor
enhancement and nonlinear enhancement. This indicated that the joint influence of any
two perception factors strengthened the explanatory power of the DSP; this also indicated
that the DSP was the result of the joint influence between the factors. The steps applied
for interaction detection for the visual and spatial perception factors are explained in
detail below:

(1) Interaction detection of visual perception factors: Although the influence of the SVM
and SVG on the DSP was not obvious, q(SVG∩ SVM), q(SVG∩ SHDI), q(SVG∩ SVE) and
the interaction between the SVM and other six factors portrayed nonlinear enhancement
(the strongest type of enhanced interaction). This indicated that the influence of the SVM
and SVG on the DSP was mainly reflected in their interaction with other factors. The q value
of the joint influence of the SVE and other factors was higher than 0.7, with the maximum
value being 0.832. The perception factors that had a significant influence on factor detection
also portrayed a stronger explanatory power, when combined with other factors.

(2) Interaction detection of spatial perception factors: The mutual enhancement type
between two factors in each group was two-factor enhancement, and when any two fac-
tors acted together, they had a similar explanatory power to DSP (0.521–0.706). In each
group, the combinations having the strongest explanatory power of joint action were
q(W− T∩W−G), q(C− T∩C−C), q(D− SH∩D−G). Notably, these three combina-
tions contained the factors that portrayed the lowest degree of influence in each group. To
our surprise, among all the driving perception factors, the two factors that had the lowest
independent influence portrayed the highest explanatory power for the DSP.

4.2. Construction of Distribution Trend Prediction Index Based on Analytic Hierarchy
Process (AHP)

To avoid the redundancy of the SII model, we screened the factors involved in the
construction of the model, while ensuring rationality and comprehensiveness. Among
all the visual perception factors of public spaces, we selected SVE, SVS, SVH, and SHDI,
which had significant influences on the DSP. Among the spatial perception factors of urban
facilities, we selected the factors that had the most significant influence on each type
of facilities, namely C-T, C-R, C-O, C-SH, C-G, and C-C (these terminologies have been
explained in Table 1). Therefore, a total of 10 factors were used for the construction of SII.

4.2.1. Analysis of Pearson Correlation Coefficient (PCC)

To further understand the correlation between each perception factor and the DSP,
we drew the scatter diagram of each perception factor against the DSP and calculated the
Pearson correlation coefficient (PCC) (Figure 9). Moreover, the scatter diagram portrayed
a linear correlation between the 10 perception factors involved in the construction of the SII
and the DSP. Notably, the SVS was negatively correlated with the DSP, whereas the other
factors portrayed a positively correlation. According to PCC, the correlation between each
factor and the DSP was significant, with the correlation coefficient between them being
greater than 0.4, indicating that the relationship between each factor and the DSP was close.
The absolute value of PCC between the C-T, C-R, and SVS factors and the DSP was greater
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than 0.7, indicating that the relationship between them was very close. The results of the
correlation analysis portrayed that the selected factors were reasonable and could be used
to construct the SII effectively. Simultaneously, the correlation direction between each factor
and the DSP also provides guidance for the construction of the SII.

Figure 9. (a–j) Scatter diagram of human perception factors and the density of the settled population
(DSP) (k) Pearson correlation coefficient (PCC) between human perception factors and the density of
the settled population (DSP).

4.2.2. Index Calculation Model

According to the idea of the “nine scale” method and the results of factor detection
in the geographic detector method, we determined the core principle for constructing
a comparison matrix, using Equation (7), as follow:
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Xij =


1 + int

( qi−qj
0.1

)
, qi > qj

1

1+int
(

qj−qi
0.1

) , qi < qj
, (7)

where Xij indicates the importance of Xi, compared to Xj, and qi, qj (i, j = 1, 2, 3, . . . . . . n)
represents the q value of item i or item j of factor detection.

The pairwise comparison matrix was obtained according to the abovementioned
principle, as shown in Figure 10. The CR of the three matrices was less than 0.1 and passed
the consistency test. Finally, the weight of each factor in the SII model was obtained using
the AHP (Table 5). Combined with the results of the Pearson correlation analysis, the weight
of the SVS factor was negative, whereas those of the other factors were positive. In summary,
the SII calculation formula was constructed according to the steps described below.

SII = 0.1786∗SVE− 0.1786∗SVS + 0.0806∗SVH + 0.0659∗SHDI + 0.1028∗C− T + 0.1028∗C− R
+0.0819∗C−O + 0.0819∗C− SH + 0.0653∗C−G + 0.0653∗C−C

(8)

Figure 10. Pairwise comparison matrix. (A) SII, (B1) visual perception factors of public space,
(B2) spatial perception factors of urban facilities, (C1) SVE, (C2) SVS, (C3) SVH, (C4) SHDI, (C5) C-T,
(C6) C-R, (C7) C-O, (C8) C-SH, (C9) C-G, (C10) C-C.

Table 5. Hierarchy and metric weight of settlement intention index (SII) model.

Target Layer Rule Layer Index Layer Weight

Settlement intention
index (SII)

Visual perception
factor of public space

SVE 0.1768
SVS 0.1768
SVH 0.0806
SHDI 0.0659

Spatial perception
factor of urban

facilities

C-T 0.1028
C-R 0.1028
C-O 0.0819

C-SH 0.0819
C-G 0.0653
C-C 0.0653

For abbreviations, please see Table 1.

For abbreviations, please see Table 1. Notably, to eliminate the influence of dimension,
when calculating the SII, before input, all the perception factors were standardized to 0–1.

4.3. Settlement Intention Index (SII) Mapping at Block Scale

We used the SII calculation model to determine the distribution of the SII at block scale
in the fifth ring road of Beijing. The SII values of each block within the fifth ring road in
Beijing ranged from −0.11 to 0.55. To make the spatial distribution of SII values clearer,
we used the natural breaks method to divide the blocks into eight categories according
to the SII value (Figure 11a). The study area was divided into four areas, namely A, B, C,
and D, by the ring line, from the center of the area to its periphery. Area A, also known as
the Old City, are known as the central government functional area of Beijing. Areas A, B
and C are known as the central districts of Beijing and have the most mature life support
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services. Area D is known as park district of Beijing. Large-scale urban greening and
parks have been built in area D, and the supporting service facilities for life are insufficient
compared with other areas. The distribution of the SII in each area is shown in Figure 11b.
From the center of Beijing urban area to the fifth ring road, the SII portrayed an obvious
decreasing trend, with the decline being most obvious in the south. SII values obviously
varied with the urban planning and construction in different areas of the city. The more
perfect the living supporting service of the block, the higher the value of SII. Similarly,
the more inhospitable the neighborhood, the lower or even negative the SII. To further
verify the calculation results of SII, we extracted the high-value (top 20%) and low-value
(bottom 20%) areas of the SII, as shown in Figure 11c. Specifically, the SII value range of
high value area is −0.11 to 0.02, and the SII value range of low value area is 0.42 to 0.55.
The high value areas were concentrated in the north of Area A and the east and north of
Area B. In terms of the administrative division, the high value areas of the SII involved the
Dongcheng, Xicheng, Chaoyang, and Haidian districts, which were consistent with the
development and construction level of the Beijing administrative region. The low value
area of the SII was mainly distributed near the outer edge of Area B. The boundary of the
fifth ring road was close to the suburbs, which consisted of industrial areas, airports, and
scenic spots, where people did not prefer to, or could not, settle. The low value areas of the
SII in areas A, B, and C mostly consisted of uninhabitable blocks, such as large parks and
bare land, such as the Beihai, Yuyuantan, and Longtan parks and the bare land areas in the
southwest of Area B. A few low SII-value areas portrayed an irregular “L” or “U” shape
that had small distribution areas, mostly consisting of street shops and green belts. These
results portrayed that the calculation results of the SII were reliable and consistent with
general cognition.

Figure 11. Cont.
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Figure 11. (a) Spatial distribution of settlement intention index (SII), (b) violin diagram of SII between
ring roads, and (c) spatial distributions of high and low values of SII.

5. Discussion
5.1. Methodological Contributions

Previous studies analyzed the influence of urban environment and human perception
on the settlement behavior of people, with only a few studies analyzing the characteristics
of human perceived urban environment, to study the distribution of settled population.
In this study, we used open-source data and automatic processing tools to make a fine
and comprehensive description of the human perception of an urban environment. We
used DeepLab-v3 and isochrone API to extend the use of SVIs and POI and enable the
automatic large-scale quantitative extraction of human perceived information of urban
environment. On the basis of previous studies, we established perception factors from
the human perspective, while covering a variety of visual and spatial perception factors.
Geographic detectors have been proved to be powerful tools. They can process different
types of data flexibly, reveal the individual and interactive effects of various factors on
the DSP, and serve as a foundation for the construction of the SII. The results of factor
detection and PCC guided the establishment of the AHP judgment matrix and increased
the reliability and objectivity of the SII, while skillfully avoiding the weight calculation
error caused by strong subjectivity.

Notably, the SII values cannot represent the actual value of the spatial distribution
of the settled population in an area. However, the SII is used to predict the relative
distribution trend of settled population in the short term. Generally, the population in
the same area is constantly changing [66]. The SII represents the trend of accumulation
or loss of settled population in the current urban environment. It can also be used to
evaluate the attractiveness of each block to the new urban-settled population and internal
relocated population.

5.2. Potential Contributions
5.2.1. Relationship between Settlement Intention Index (SII) and Urban Land
Use Categories

Using the map of essential urban land use categories in China (EULUC-China) drawn
by Gong et al. [39], we summarized the distribution of the SII values for the land use
types of each block (Figure 12a). According to the average value of SII, different land
use types were sorted as: business office, administrative, medical, educational, sport and
cultural, residential, commercial service, park and greenspace, industrial. Among them,
the average value and distribution range of SII of administrative, medical, educational,
sport and cultural were similar. The SII value of residential had the widest distribution
range. The SII value distribution of industrial was significantly lower than that of other
land use types.
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Figure 12. (a) Settlement intention index (SII) values of different land use categories, (b) influence of
perception factors on the density of total population distribution (DTP), sorted from high to low.

To meet the growing population demand of the city, the urban land function is chang-
ing from the traditional single type to the mixed type [67,68]. Notably, the residential
type classified by land use classification is no longer the only choice of population set-
tlement [21,69]. As shown in Figure 12a, the SII value of residential land in the study
area was widely distributed and portrayed no obvious aggregation. According to the
SII calculation model, the residential areas having high SII values often portrayed higher
environmental quality and better geographical locations. However, limited by their eco-
nomic level, people will choose the most suitable residence within the affordable range [70].
Li et al. indicated that the spatial distribution of the accessibility of service facilities may
shape the spatial distribution of apartment prices, which greatly affected the settlement
choice of people having lower income [71]. Therefore, residential households with low
SII values may be occupied by low-income populations; this conclusion can guide future
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studies on social equity and urban planning. In this study, the SII values of industrial areas
were the lowest, which was consistent with peoples’ negative attitude towards industrial
areas, when choosing potential residential locations [72]. Notably, a few SII values for
the office, commercial, medical, sports, and cultural land types were high, reflecting the
tendency of these blocks to transform to mixed land use. The distribution of SII values
for commercial land were scattered, related to the block types of large commercial areas
and mixed commercial and residential areas. However, the main commercial areas with
fewer residential buildings, such as Xidan, Wangfujing, and Sanlitun, portrayed low SII
values, whereas the commercial plots with more residential buildings portrayed high SII
values. However, the prevailing land use classification could not divide the types of parks
and green land plots into commercial tourist attractions and leisure places near houses
according to their functions, resulting in the mixed distribution of high and low SII values
of parks and green land plots.

Therefore, the SII model constructed in this study portrayed the following application potential:

• Identification of population mobility in residential areas: the higher the SII value, the
stronger the peoples’ desire to live in the region for a long time, and people settled in
residential areas having lower SII values may have the idea of migrating to areas with
high SII values.

• Identification of mixed land use: the model provides a basis for the detailed study of
land use categories and assists in the identification of mixed land use. In addition to
residential areas, land use types having high SII values may include, or be close to,
more residential buildings. This can also be used as one of the references to judge the
mixing degree of land use in a particular area.

5.2.2. Comparison with Prevailing Population Distribution Studies

At present, the interdisciplinary studies on urban environment and population are
generally based on the total population data in the census results. In addition to these
results, compared to settled population, the total population also includes migrant work-
ers, people visiting relatives, and other floating population. Using this information, we
supplemented the factor detection analysis of the density of total population distribution
(DTP) at the street scale. The results are shown in Figure 12b. For different travel modes,
the accessibility to residential facilities in the three travel modes had high effects on the
DTP. Compared with the other two travel modes, the driving accessibility to commercial
facilities had a greater influence and the driving accessibility to science education and
health facilities had a lower influence. For different types of facilities, among the three
travel modes, the cycling accessibility various facilities had high influence. The driving
accessibility to traffic, residential, office, and education and health facilities had the least
influence on the DTP. The walking accessibility to commercial facilities, green spaces, and
square facilities had the least influence on the DTP. Visual perception factors that had
a significant influence on DTP are ranked as SVE, SVS, SHDI, SVH, SIDI according to their
relative importance to DTP. Their interpretation rates to the spatial heterogeneity of DTP
were higher than NTL. SVM and SVG have no significant influence on DTP.

Compared with Figure 7a, the influence of perception factors on the DTP was weaker
than that on the DSP. Khraif indicated that urban environment may not be the most
influential determinants for the floating population’s choice of residential location [73].
Moreover, the influence of the SVE and SVS on the DTP was weaker than that on the DSP,
while the influence of two diversity factors, namely, SHDI and SIDI, increased significantly.
This indicated that, when choosing their residence, the floating population paid more
attention to the diversity of urban functions, without considering the degree of motorization
and greening. Among the spatial perception factors and all travel modes, the accessibility of
the cycling travel mode to various facilities was not the most influential, and the accessibility
of walking mode improved. The influence of driving accessibility was still low, which
was consistent with Yan [54]. The difference in the influence of human perceived factors
reflected the different factors considered by the two types of population when selecting
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their residence. Zhang indicated that the floating population was more likely to live in
a relatively low-quality environment [74]. Therefore, the information reflected by the SII
can provide a reliable reference for the refinement of population distribution types in
the future.

5.3. Limitations

This study has the following limitations:

1. We focused on only the human perceptions of the physical characteristics of urban
environment. Social and psychological characteristics, such as economic conditions,
job attributes, and social relationships, are also important influencing factors, and
thus, should be considered and analyzed in future studies [73,75].

2. To ensure the universality of the method, the data sources we used were available
open-source data. Peoples’ sense of smell [76–79] and hearing [80,81] with respect to
the environment are proven to affect their behavior. Due to the limitations in data
acquisition, we did not consider these factors in our study. Notably, whether these
factors have a significant influence on peoples’ living behavior remainss unconfirmed.

3. To simplify the construction of the SII model, we did not add the perception factors
that had a low influence. Future studies need to further consider the interaction
between different factors in the construction of SII.

4. In our study, it was difficult to ensure consistency in the acquisition time of SVIs.
Notably, the urban landscape difference caused by time difference is an important
error source of visual perception quantification of urban public space and must be
addressed in future related studies.

5. Due to the limitation of spatial accuracy of DSP, our contributing factor analysis can
only be carried out at the street scale. In addition, our validation of the effectiveness
of SII is still insufficient due to the limitation of the temporal accuracy of the settled
population distribution data.

6. Conclusions

Based on the measurement of human perceptions, in this study, we explored the
relationship between urban-settled population and urban environment. We explained
the effects of the characteristics of the human perception of urban environment on the
distribution of settled population and determined the SII values of different areas at block
scale, to predict the distribution trend of settled population. The main conclusions of this
study are detailed below:

1. Human perception was one of the important factors influencing the distribution of
urban-settled population. Almost all human perception factors had a significant
influence on the distribution of settled population, and the influence varied with
environmental factors and modes of travel. Visual perception factors related to the
built environment and cycling accessibility to various facilities portrayed the greatest
influence. Notably, human perception factors having low independent influence
portrayed excellent explanatory power, when combined with other factors.

2. The population settled in Beijing is concentrated in the center of the city. Managers
can improve the urban environmental construction around the fifth ring road by
analyzing the mutual enhancement of perception factors, thus alleviating the uneven
distribution of the settled population in the city.

3. A combination of the geographic detector method and AHP for the construction
of the SII values is objective and practical. This combination method considers
the differences in the effects of various human perception factors on the spatial
distribution of settled population in different urban environments and can be extended
to different cities.

The limitations of data and technology led to some limitations in the selection of
human perceptual factors and the validity of research and analysis. In future research,
we need to further improve the human perception system and consider how to take the
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interaction between factors into account in index construction. In addition, we will explore
higher precision data sources and more accurate data processing methods to improve the
rationality of the experiment. A mechanism exploration and adaptability analysis based on
multiple city experiments is also needed.

The settled population and its density in the sustainable urban development indicator
set are important indicators of social indicators. As an effective supplement to population
distribution data, the results of this study can provide data support for the calculation of
relevant indicators in SDG11. For example, SII can be used in SDG 11.3.1 (ratio of land
consumption rate to population growth rate) as the urban-settled population growth rate.
In addition, the results of this study can guide urban planners and managers to carry out
targeted urban optimization construction and improve resource allocation from the view of
the distribution of settled population, so as to ensure the sustainable development of cities.

The research on the distribution of settled population is still weak in the exploration
of urban sustainability. Hope our research can provide new methods and ideas for scholars
all over the world to study the distribution of settled population.
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