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Abstract: To generate high-quality spatial precipitation estimates, merging rain gauges with a single-
satellite precipitation product (SPP) is a common approach. However, a single SPP cannot capture
the spatial pattern of precipitation well, and its resolution is also too low. This study proposed an
integrated framework for merging multisatellite and gauge precipitation. The framework integrates
the geographically weighted regression (GWR) for improving the spatial resolution of precipitation
estimations and the long short-term memory (LSTM) network for improving the precipitation
estimation accuracy by exploiting the spatiotemporal correlation pattern between multisatellite
precipitation products and rain gauges. Specifically, the integrated framework was applied to the
Han River Basin of China for generating daily precipitation estimates from the data of both rain
gauges and four SPPs (TRMM_3B42, CMORPH, PERSIANN-CDR, and GPM-IMAGE) during the
period of 2007–2018. The results show that the GWR-LSTM framework significantly improves the
spatial resolution and accuracy of precipitation estimates (resolution of 0.05◦, correlation coefficient
of 0.86, and Kling–Gupta efficiency of 0.6) over original SPPs (resolution of 0.25◦ or 0.1◦, correlation
coefficient of 0.36–0.54, Kling–Gupta efficiency of 0.30–0.52). Compared with other methods, the
correlation coefficient for the whole basin is improved by approximately 4%. Especially in the lower
reaches of the Han River, the correlation coefficient is improved by 15%. In addition, this study
demonstrates that merging multiple-satellite and gauge precipitation is much better than merging
partial products of multiple satellite with gauge observations.

Keywords: deep learning; multiple-satellite-based precipitation products; gauge observation; GWR; LSTM

1. Introduction

High-quality spatial precipitation estimates are essential for water resources assess-
ment, hydrological and earth system modeling, and natural hazards (such as floods,
droughts, and landslides) monitoring [1–4]. As important sources for precipitation esti-
mates, satellite precipitation products (SPPs) are widely used in the above fields, especially
over the gauge-sparse regions [5,6]. However, due to the influence of terrain, precipitation
type, and other factors, as well as the constraints of specific retrieval algorithms, satellite
sensors, and sampling frequencies, SPP derived from the signals of satellite sensors contains
large deviations [7,8].

To reduce the deviations of SPP, merging rain gauges with a single SPP is a common
approach. Various satellite–gauge fusion methods have been developed, including the
Bayesian combination method [9], Kalman filter calibration method [10], variational cal-
ibration method [11], optimal interpolation method [12], average deviation method [13],
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multisource weighted-ensemble precipitation [14], and geographically weighted regres-
sion (GWR) method [15]. In recent years, deep learning has also been applied to merge
satellite and gauge precipitation. Miao et al. [16] combined a convolutional neural network
(CNN) and a long short-term memory (LSTM) network to predict monsoon precipitation.
Wu et al. [4] also incorporated CNN and LSTM networks to merge TRMM and gauge
precipitation. Kumar et al. [17] conducted near-real-time correction of the TMPA product
by combining the TMPA product with NRT soil moisture through a nonlinear support
vector machine regression (SVR) model. Those methods merged rain gauges with only a
single SPP. A single SPP cannot capture the spatial pattern of precipitation well, and it is
still a challenging task to generate high-quality spatial precipitation estimates [18,19].

In recent decades, several satellite-based precipitation retrieval algorithms have been
developed, and their related precipitation products are available at the global scale [19],
such as the Global Precipitation Climatology Project (GPCP) [20], the Tropical Rainfall
Measuring Mission (TRMM) [21], the Climate Prediction Center (CPC) morphing tech-
nique (CMORPH) products [22], the PERSIANN-CDR precipitation products [23], and the
GSMaP precipitation products [24]. Each SPP has its own advantages and disadvantages
in capturing the spatiotemporal pattern of precipitation [25]. Some studies have found
that merging rain gauges with multisatellite precipitation products can provide a more
reliable spatial pattern estimation than individual SPPs [19]. The merging of multisatellite
precipitation products and rain gauges has become a trend [26]. Chen et al. [18] proposed a
geographically weighted ridge regression (GWRR) algorithm for merging four SPPs in the
Xijiang River Basin of China. Rahman et al. [27] merged GPM and TMPA3B43v7 using prin-
cipal component analysis (PCA) and the sample T test comparison method. Ma et al. [28]
proposed a dynamic Bayesian model averaging (BMA) algorithm for merging multisatellite
precipitation products. Rahman et al. [26] merged four SPPs in Pakistan using a dynamic
cluster Bayesian average (DCBA) algorithm. However, those fusion methods rely on strong
assumptions (e.g., the mutual independence between features and conforming to normal
(Gaussian distribution, etc.), which may be invalid in reality, and their performance is also
affected by the gauge network density [4,18]. In addition, the temporal correlation patterns
between rain gauge and multisatellite precipitation products are largely ignored.

Deep learning has powerful feature extraction capabilities without any assumptions
and has been widely used in multisource data fusion [29,30]. As the current state-of-
the-art network architecture, the long short-term memory (LSTM) network, which is a
variant of the recurrent neural network (RNN), overcomes the weakness of the traditional
RNN of learning long-term dependency representations [31]. LSTM has a memory cell;
every output is based on previous outputs, and has the ability to take advantage of the
information between time series data. Thus, an LSTM network has been successfully
applied to multisource data fusion in the fields of driving behavior classification, automatic
transaction, emotion classification, and target recognition [32–35]. To the best of our
knowledge, there are no related studies merging multisatellite and gauge precipitation
using an LSTM network.

In this paper, an integrated framework for merging multisatellite and gauge precipi-
tation was proposed. The framework integrates the geographically weighted regression
(GWR) for improving the spatial resolution of precipitation estimates and the long short-
term memory (LSTM) network for improving the estimation accuracy by exploiting the
spatiotemporal correlation pattern between multisatellite precipitation products and rain
gauges. The framework (GWR-LSTM) was applied to the Han River Basin of China
for generating daily precipitation estimates from the data of both rain gauges and four
SPPs (TRMM_3B42, CMORPH, PERSIANN-CDR, and GPM-IMAGE) during the period of
2007–2018.

The rest of the paper is organized as follows. The materials and methods are presented in
Section 2. The evaluation of the framework performance in estimating precipitation is presented
in Section 3. Finally, the discussion and conclusions are provided in Sections 4 and 5, respectively.
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2. Materials and Methods
2.1. Materials

The Hanjiang River, the largest tributary of the middle reaches of the Yangtze River,
is the water source for large interbrain water transfer projects, such as the Midroute of
the South-to-North Water Transfer Project and the Hanjiang-to-Weihe River Diversion
Project. As shown in Figure 1, it is located at 106◦15′–114◦20′E and 30◦10′–34◦20′N, with
the basin covering approximately 159,000 km2. The Hanjiang River Basin is divided into
three regions: the upper, middle, and lower reaches. The upper reaches of the Hanjiang
River Basin are mainly in the middle and low mountains, and the middle and lower reaches
are mainly dominated by plains. The average rainfall in the basin had been 894 mm from
1956–2016. The rainfall mainly comes from the southeast and southwest via warm moist air.
It is unevenly distributed throughout the year, with rainfall from May to October accounting
for approximately 75% of the yearly rainfall. As shown in Figure 1, meteorological stations
are mainly distributed in the upper and middle reaches (the average control area of the
stations is 247 km2) and less in the lower reaches (the average control area of the stations is
277 km2).

Remote Sens. 2022, 14, 3939 3 of 21 
 

 

gauges and four SPPs (TRMM_3B42, CMORPH, PERSIANN-CDR, and GPM-IMAGE) 

during the period of 2007–2018.  

The rest of the paper is organized as follows. The materials and methods are 

presented in Section 2. The evaluation of the framework performance in estimating 

precipitation is presented in Section 3. Finally, the discussion and conclusions are 

provided in Sections 4 and 5, respectively. 

2. Materials and Methods 

2.1. Materials 

The Hanjiang River, the largest tributary of the middle reaches of the Yangtze River, 

is the water source for large interbrain water transfer projects, such as the Midroute of the 

South-to-North Water Transfer Project and the Hanjiang-to-Weihe River Diversion 

Project. As shown in Figure 1, it is located at 106°15’–114°20’E and 30°10’–34°20’N, with 

the basin covering approximately 159,000 km2. The Hanjiang River Basin is divided into 

three regions: the upper, middle, and lower reaches. The upper reaches of the Hanjiang 

River Basin are mainly in the middle and low mountains, and the middle and lower 

reaches are mainly dominated by plains. The average rainfall in the basin had been 894 

mm from 1956–2016. The rainfall mainly comes from the southeast and southwest via 

warm moist air. It is unevenly distributed throughout the year, with rainfall from May to 

October accounting for approximately 75% of the yearly rainfall. As shown in Figure 1, 

meteorological stations are mainly distributed in the upper and middle reaches (the 

average control area of the stations is 247 km2) and less in the lower reaches (the average 

control area of the stations is 277 km2). 

 

Figure 1. Location of the study area and the meteorological stations. 

Four level 3 SPPs and daily time series of 64 rain gauges between 2007 and 2018 were 

used in the GWR-LSTM model. The latest Version-7 TMPA products (TRMM 3B42-V7) 

and GPM IMERG Final Run V06B products were used. The two products were developed 

by the United States National Aeronautics and Space Administration (NASA) and the 

Japan Aerospace Exploration Agency (JAXA). Moreover, this study considered high-

quality climate data (PERSIANN-CDR) and CMORPH products. The PERSIANN-CDR 

products were developed by the Center for Hydrometeorology and Remote Sensing 

(CHRS) using a PERSIANN algorithm. CMORPH products were developed by the 

Climate Prediction Center (CPC). Table 1 shows the basic information of the four SPP 

datasets used in this study. The rain-gauge observation data were collected from the 

China Meteorological Data Service Center (CMDC) (http://data.cma.cn/, accessed on 12 

March 2020). The quality control techniques (such as extreme values check, internal 

Figure 1. Location of the study area and the meteorological stations.

Four level 3 SPPs and daily time series of 64 rain gauges between 2007 and 2018 were
used in the GWR-LSTM model. The latest Version-7 TMPA products (TRMM 3B42-V7)
and GPM IMERG Final Run V06B products were used. The two products were developed
by the United States National Aeronautics and Space Administration (NASA) and the
Japan Aerospace Exploration Agency (JAXA). Moreover, this study considered high-quality
climate data (PERSIANN-CDR) and CMORPH products. The PERSIANN-CDR products
were developed by the Center for Hydrometeorology and Remote Sensing (CHRS) using
a PERSIANN algorithm. CMORPH products were developed by the Climate Prediction
Center (CPC). Table 1 shows the basic information of the four SPP datasets used in this
study. The rain-gauge observation data were collected from the China Meteorological Data
Service Center (CMDC) (http://data.cma.cn/, accessed on 12 March 2020). The quality
control techniques (such as extreme values check, internal consistency check, and spatial
consistency check) for all the data were implemented [12,28].

In addition, to generate a high-quality precipitation dataset with a fine spatial res-
olution (0.05◦), a lot of factors (such as NDVI, elevation, slope, longitude, and latitude)
related to precipitation and used for spatially downscaling were obtained. The DEM data
with a spatial resolution of 90 m were obtained from the SRTM data (https://srtm.csi.cgiar.
org/srtmdata/, accessed on 25 May 2022). Then, this study resampled the 90 m resolution
DEM data to 0.05◦ resolution elevation data using bilinear interpolation. The factors (i.e.,
elevation, slope, longitude, and latitude) were obtained from the resampled DEM with
0.05◦ resolution using GIS technology. Moreover, the MODIS monthly NDVI products

http://data.cma.cn/
https://srtm.csi.cgiar.org/srtmdata/
https://srtm.csi.cgiar.org/srtmdata/
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(MOD13C2) of 0.05◦ resolution were obtained from NASA’s Land Processes Distributed
Active Archive Center (LP DAAC) (https://e4ftl01.cr.usgs.gov/MOLT/MOD13C2.006/,
accessed on 25 May 2022) and used in this study.

Table 1. Summary of the satellite precipitation datasets used in this study.

Products Version Temporal Resolution Spatial Resolution Range Download URL

GPM IMERG V06B Daily 0.1◦ 90◦N–90◦S https://gpm.nasa.gov/ (accessed on 25 May 2022)
TRMM 3B42V7 Daily 0.25◦ 50◦N–50◦S https://gpm.nasa.gov/ (accessed on 25 May 2022)

CMORPH V1.0 Daily 0.25◦ 60◦ N–60◦S https://ftp.cpc.ncep.noaa.gov/ (accessed on 25 May 2022)
PERSIANN-CDR V1.0 Daily 0.25◦ 60◦N–60◦S https://www.ncei.noaa.gov (accessed on 25 May 2022)

2.2. Methods

This study proposed an integrated framework for merging multisatellite and gauge
precipitation. The framework integrates the geographically weighted regression (GWR)
for improving the spatial resolution of precipitation estimations and the long short-term
memory (LSTM) network for improving the estimation accuracy by exploiting the spa-
tiotemporal correlation pattern between multisatellite precipitation products and rain
gauges. Figure 2 shows the flow chart of merging multisatellite and gauge precipitation
based on the GWR-LSTM framework. The whole modelling process includes three steps:
(1) data preprocessing, which includes downscaling the four SPPs to 0.05◦ resolution us-
ing the GWR, extracting precipitation information from each downscaled SPP, matching
the rain gauge observations to generate a sample dataset, and transforming the sample
dataset by Box–Cox transformation to generate the final calibration dataset and validation
dataset; (2) precipitation fusion and evaluation, training the LSTM network with the final
calibration dataset and validation dataset to build a deep fusion model, and quantitative
evaluation carried out through specific metrics; and (3) producing a long-term daily spatial
precipitation dataset with higher resolution and accuracy using the deep fusion model.
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2.2.1. Downscaling by GWR

The geographically weighted regression (GWR), which can construct the relation-
ship between the dependent variable and explanatory variables, is a local regression
model [15,36]. The GWR method can be written as:

yi = αi0 + ∑m
k=1 αikxik − εi (1)

where yi and xik are the dependent variable and the k-th explanatory variable at location i,
respectively; there are m explanatory variables; αi0, αik, and εi are the intercept, regression
coefficient, and random error at location i, respectively.

The intercept αi0 and regression coefficient αik are estimated by minimizing a weighted
residual sum of squares and are shown as follows:

α̂(i) = argmin
α

{
∑n

j=1 wj(i)
(

yi − αi0 −∑m
k=1 xjkαik

)2
}

(2)

where n denotes the total number of samples at location i, α̂ = (α̂i0, α̂i1, · · · , α̂im) is the
regression coefficient vector of GWR at location i, and wj is the geographic weight of the
j-th sample at location i.

Formula (2) is solved by the weighted least square method, and the regression coeffi-
cient α̂ at location i is estimated as the following matrix form:

α̂(i) =
(

XTW(i)X
)−1

XTW(i)y (3)

where W(i) is a diagonal matrix denoting the spatial weight of each sample at location i, X
denotes the matrix of explanatory variables with a column of 1s for the intercept, and y
denotes the dependent variable vector.

To generate high-resolution spatial precipitation estimations, the original SPPs (GMP,
TRMM, CMORPH, and PERSIANN-CDR) are downscaled to 0.05◦ based on the constructed
relationship between precipitation and explanatory variables (NVDI, elevation, slope,
longitude, latitude) by the GWR model. The relationship at the original low resolution
can be used to predict precipitation with the explanatory variables at a high resolution.
Due to the fact that relationship at a daily scale is far less statistically significant than that
at monthly scales [37], this study constructs the relationship between precipitation and
explanatory variables at a monthly scale by the GWR model, and then disaggregates the
downscaled monthly result into daily precipitation to generate the downscaled daily SPP.
The specific steps are shown as follows:

Step (1): Resample the explanatory variables (NVDI, elevation, slope, longitude, lat-
itude) from 0.05◦ resolution to 0.25◦ and 0.1◦ resolutions using a bilinear interpolation.
The monthly NVDI of 0.05◦ resolution is marked as NVDI0.05◦

m , and the resampled NVDIs
are marked as NVDI0.25◦

m and NVDI0.1◦
m , respectively. The 0.05◦ resolution elevation, slope,

longitude, and latitude data are marked as Elevation0.05◦ , Slope0.05◦ , Lon0.05◦ , and Lat0.05◦ ,
respectively, and the resampled 0.1◦ and 0.25◦ resolution elevation, slope, longitude, and lat-
itude data are marked as Elevation0.1◦ , Slope0.1◦ , Lon0.1◦ , Lat0.1◦ , Elevation0.25◦ , Slope0.25◦ ,
Lon0.25◦ , and Lat0.25◦ , respectively.

Step (2): Construct the relationship between monthly precipitation (accumulate origi-
nal satellite daily precipitation) and explanatory variables (the resampled NDVI, elevation,
slope, longitude, and latitude) by the GWR. The original 0.25◦ resolution satellite daily pre-
cipitation (TRMM, CMORPH, and PERSIANN-CDR) is marked as P0.25◦,TRMM

d , P0.25◦,CMO
d ,

and P0.25◦,PER
d . The original 0.1◦ resolution satellite daily precipitation (GPM) is marked

as P0.1◦,GPM
d . The accumulated 0.25◦ resolution satellite monthly precipitation (TRMM,

CMORPH, and PERSIANN-CDR) is marked as P0.25◦,TRMM
m , P0.25◦,CMO

m , and P0.25◦,PER
m . The

accumulated 0.1◦ resolution satellite monthly precipitation (GPM) is marked as P0.1◦,GPM
m .

The constructed relationship between the satellite precipitation data P0.25◦,SAT
m (representing
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P0.25◦,TRMM
m , P0.25◦,CMO

m , and P0.25◦,PER
m ) and the explanatory variables (NVDI0.25◦

m , Elevation0.25◦ ,
Slope0.25◦ , Lon0.25◦ , and Lat0.25◦ ) is shown in Equation (4). The constructed relationship
between the satellite precipitation P0.1◦,SAT

m (representing P0.1◦,GPM
m ) and the explanatory

variables (NVDI0.1◦
m , Elevation0.1◦ , Slope0.1◦ , Lon0.1◦ , Lat0.1◦ ) is shown in Equation (5):

P0.25◦ ,SAT
m = α0.25◦ ,SAT,0

m + α0.25◦ ,SAT,1
m ∗NVDI0.25◦

m + α0.25◦ ,SAT,2
m ∗ Elevation0.25◦

+α0.25◦ ,SAT,3
m ∗ Slope0.25◦ + α0.25◦ ,SAT,4

m ∗ Lon0.25◦

+α0.25◦ ,SAT,5
m ∗ Lat0.25◦ + ε0.25◦ ,SAT

m

(4)

P0.1◦ ,SAT
m = α0.1◦ ,SAT,0

m + α0.1◦ ,SAT,1
m ∗NVDI0.1◦

m + α0.1◦ ,SAT,2
m ∗ Elevation0.1◦

+α0.1◦ ,SAT,3
m ∗ Slope0.1◦ + α0.1◦ ,SAT,4

m ∗ Lon0.1◦

+α0.1◦ ,SAT,5
m ∗ Lat0.1◦ + ε0.1◦ ,SAT

m

(5)

where α0.25◦ ,SAT,0
m and α0.1◦ ,SAT,0

m are the intercepts; α0.25◦ ,SAT,1
m , α0.25◦ ,SAT,2

m , α0.25◦ ,SAT,3
m , α0.25◦ ,SAT,4

m ,
α0.25◦ ,SAT,5

m , α0.1◦ ,SAT,1
m , α0.1◦ ,SAT,2

m , α0.1◦ ,SAT,3
m , α0.1◦ ,SAT,4

m , and α0.1◦ ,SAT,5
m are the regression coef-

ficients; and ε0.25◦ ,SAT
m and ε0.1◦ ,SAT

m are residuals of the two GWR models.
Step (3): Resample the regression coefficients (α0.25◦ ,SAT,0

m , α0.25◦ ,SAT,1
m , α0.25◦ ,SAT,2

m , α0.25◦ ,SAT,3
m ,

α0.25◦ ,SAT,4
m , α0.25◦ ,SAT,5

m , α0.1◦ ,SAT,0
m , α0.1◦ ,SAT,2

m , α0.1◦ ,SAT,3
m , α0.1◦ ,SAT,4

m , and α0.1◦ ,SAT,5
m ) to obtain

the 0.05◦ resolution regression coefficients (α0.050,SAT,0
m , α0.050,SAT,1

m , α0.050,SAT,2
m , α0.050,SAT,3

m ,
α0.050,SAT,4

m , and α0.050,SAT,5
m ) by the bilinear interpolation method, and resample the residu-

als (ε0.25◦ ,SAT
m , ε0.1◦ ,SAT

m ) to obtain the 0.05◦ resolution residuals (ε0.05◦ ,SAT
m ) by the ordinary

kriging interpolation method.
Step (4): Estimate monthly precipitation (P0.05◦ ,SAT

m ) by using the resampled 0.05◦

resolution regression coefficients (α0.050,SAT,0
m , α0.050,SAT,1

m , α0.050,SAT,2
m , α0.050,SAT,3

m , α0.050,SAT,4
m ,

and α0.050,SAT,5
m ), and the resampled 0.05◦ resolution residuals (ε0.25◦ ,SAT

m , ε0.1◦ ,SAT
m ) are shown

in Equation (6).

P0.05◦ ,SAT
m = α0.05◦ ,SAT,0

m + α0.05◦ ,SAT,1
m ∗NVDI0.05◦

m + α0.05◦ ,SAT,2
m ∗ Elevation0.05◦

+α0.05◦ ,SAT,3
m ∗ Slope0.05◦ + α0.05◦ ,SAT,4

m ∗ Lon0.05◦

+α0.05◦ ,SAT,5
m ∗ Lat0.05◦ + ε0.05◦ ,SAT

m

(6)

Step (5): Disaggregate the downscaled satellite monthly precipitation into daily pre-
cipitation according to a proportional fraction. The fraction of the 0.25◦ and 0.1◦ resolution
daily precipitation to the 0.25◦ and 0.1◦ resolution monthly precipitation is denoted as
F0.25◦ ,SAT

d and F0.1◦ ,SAT
d , respectively. F0.25◦ ,SAT

d and F0.1◦ ,SAT
d are calculated by Equation (7).

F0.25◦ ,SAT
d =

P0.25◦ ,SAT
d

P0.25◦ ,SAT
m

, F0.1◦ ,SAT
d =

P0.1◦ ,SAT
d

P0.1◦ ,SAT
m

(7)

Next, the 0.25◦ and 0.1◦ resolution fractions (F0.25◦ ,SAT
d and F0.1◦ ,SAT

d ) are resampled to
obtain the 0.05◦ resolution fraction (F0.05◦ ,SAT

d ) by a bilinear interpolation method. Then,
Equation (8) is used to obtain the 0.05◦ resolution daily precipitation.

P0.05◦ ,SAT
d = F0.05◦ ,SAT

d ∗ P0.05◦ ,SAT
m (8)

P0.05◦ ,SAT
d represents the 0.05◦ resolution daily precipitation (the downscaled TRMM,

CMORPH, PERSIANN-CDR, and GPM).

2.2.2. Calibration and Validation Dataset Generation

As shown in Figure 3, for each grid, 1× 4 matrix data centered on it are extracted
day by day from the downscaled SPPs (TRMM, CMORPH, PERSIANN-CDR, and GMP).
Then, the extracted matrix data are matched with the daily time series of rain gauges in
chronological order and geographic coordinates to generate a sample dataset. Due to the
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spatiotemporal intermittency of daily precipitation, the generated dataset from the original
SPPs contains a large number of zero values (no rain). Directly using the generated dataset
to train the deep neural network will lead to the failure of training work. To solve this
issue, Box–Cox transformation [38,39] was used to transform the generated dataset to a
new sample dataset. The Box–Cox transformation, also called the power transformation,
transforms a non-normally distributed variable to a normally distribute one [40]. The
Box–Cox transformation is shown as in Equation (9):

PT
i =

(PSAT
i )

δ − 1
δ

(9)

where PT
i is the precipitation value after Box–Cox transformation at location i, and PSAT

i is
the precipitation value at location i before Box–Cox transformation. The optimal value of δ
changes slightly with the number of days, 87% of which is between 0.2 and 0.3, and the
annual average is close to 0.25 [39]. In this study, a fixed value of 0.25 is used.
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Finally, the calibration dataset and the validation dataset are generated according to a
certain proportion.

2.2.3. Fusion by LSTM Network

A long short-term memory (LSTM) network, which is composed of an input layer, one
or more memory cells, and an output layer, is well suited to study time series data [41].
The main structure of an LSTM network contains so-called memory cell in the hidden
layer. The memory cell controls the communication of information within the memory cells
through three gates (i.e., input gate it, forget gate ft, and output gate ot). Each gate controls
the information to participate in the update of the memory state and selectively retains or
discards information. The key equation of the LSTM network is shown as follows:

it = σ(wxixt + whiht−1 + wci � ct−1 + bi)
ft = σ(wx f xt + wh f ht−1 + wc f � ct−1 + b f )
ct = ft � ct−1 + it � tanh(wxcxt + whcht−1 + bc)
ot = σ(wxoxt + whoht−1 + wco � ct−1 + bo)
ht = ot � tanh(ct)

(10)

where “�” represents element-wise multiplication, xt represents the input vector at time t,
each w represents the adjustable weight of the network, b represents the adjustable bias
vector, h represents the internal hidden state,c represents the cell state of the memory cell,
and σ represents the activation function.

As shown in Figure 4, this study uses the LSTM network for improving the estimation
accuracy of spatial precipitation by exploiting the spatiotemporal correlation pattern be-
tween multisatellite precipitation products and rain gauges. The LSTM network extracts
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the spatiotemporal correlation patterns through a series of memory cells and merges those
extracted patterns to generate high-quality daily precipitation estimates. The key to the
LSTM-based fusion to realize long-term memory lies in keeping the multiple precipitation
information of each time step in the memory cells. For a certain time step, the multiple
precipitation information at the past moment will be retained in the memory cells, and
provide a reference for the merged precipitation at the current moment. In this fusion
model, the LSTM network includes multiple memory cells in the hidden layers. The output
neurons (the extracted spatiotemporal patterns of multisatellite precipitation) at the last
time step from the last hidden layer of the LSTM network are merged to a single output
neuron (the merged precipitation) through the fully connected network.
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gauge precipitation.

In this paper, we trained the LSTM network with four SPPs (TRMM, CMORPH,
PERSIANN-CDR, and GMP) as input and gauge observations as output. The specific
hyperparameters (i.e., number of layers, number of neurons, learning rate, and epoch) of
this fusion model were the optimal choices based on the data size and multiple experiments.
The epoch and learning rate of the LSTM network were 200 and 0.01, respectively. The
number of hidden layers was 3. The number of neurons in each hidden layer were 128, 128,
and 64, respectively.

2.2.4. Evaluation Metrics

A set of evaluation metrics, including the correlation coefficient (CC), root mean square
error (RMSE), mean absolute error (MAE), Kling–Gupta efficiency (KGE), probability of
detection (POD), false alarm ratio (FAR), bias rate (BIAS), and equity threatened score (ETS),
is selected to evaluate the results of the GWRR-LSTM framework. The evaluation metrics
used in this study are listed in Table 2. CC reflects the degree of linear correlation between
the estimations and observations, RMSE reflects the overall error level and fluctuation of the
estimations, MAE represents the average absolute deviation between the estimations and
the observations, and the KGE coefficient considers different types of model errors (the error
in the mean, the variability, and the dynamics). Four categorical metrics (POD, FAR, BIAS,
and ETS) are selected to evaluate the ability of the GWRR-LSTM framework to identify
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whether precipitation occurs and to capture precipitation events of different intensities (0.1,
10, 25, and 50 mm/d). The probability of detection POD represents the probability that
actual precipitation is correctly detected, the false alarm rate FAR represents the probability
of errors, the BIAS reflects whether precipitation is overestimated or underestimated, and
the ETS reflects the comprehensive detection accuracy of the estimations in different times
and spaces.

Table 2. The evaluation metrics for precipitation product accuracy.

Metrics Unit Equation Ideal Value

CC - CC =
∑N

i=1 (ŷi−ŷ)(yi−y)√
∑N

i=1(ŷi−ŷ)
2

∑N
i=1(yi−y)

2
1

RMSE mm/d RMSE =

√
∑N

i=1(ŷi−yi)
2

N
0

MAE mm/d MAE =
∑N

i=1 |ŷi−yi |
N

0

KGE - KGE = 1−
√
(CC− 1)2 +

(
ŷ
y − 1

)2
+
(

σ̂/ŷ
σ/y − 1

)2 1

POD - POD = H
H+M 1

FAR - FAR = F
F+H 0

BIAS - BIAS = H+F
H+M 1

ETS - ETS = H−Hs
H+M+F−Hs

, Hs =
(H+M)(H+F)

H+M+F+Z
1

Note: N is the number of samples, yi is the observed precipitation, y is the mean of observed precipitation, ŷi
is the estimated precipitation, ŷ is the mean of estimated precipitation, σ̂ is the standard deviation of estimated
precipitation, and σ is the standard deviation of observed precipitation. H denotes precipitation events recorded
by a rain gauge and SPPs. F denotes precipitation events recorded by SPPs but not recorded by the rain gauge. M
denotes precipitation events recorded by the rain gauge but not recorded by SPPs. Z denotes precipitation events
not recorded by the rain gauge and SPPs.

3. Results

The integrated framework (GWR-LSTM) was applied to estimate daily spatial precipi-
tation from the data of rain gauges and four SPPs (TRMM_3B42, CMORPH, PERSIANN-
CDR, and GPM) in the Hanjiang River Basin of China during the period of 2007–2018. The
application effect was evaluated and analyzed.

3.1. Merged Precipitation Product (MPP)

Figure 5 shows the scatter density plots between the downscaled monthly precipitation
(0.05◦) based on the GWR model and the original satellite monthly precipitation (0.25◦ for
TRMM_3B42, CMORPH, and PERSIANN and 0.1◦ for GPM) during the period of 2007 to
2018. The CC values are 0.98, 0.98, 0.99, and 0.98. The GWR for downscaling performed
well for all original four SPPs. In addition, Figure 5 verifies the conclusion of Chen et al. [18]
that the vegetation index (NVDI), elevation, slope, and geographical location have a very
stable relationship with the four SPPs at a monthly scale for different spatial resolutions,
which benefits the spatial downscaling.

Figure 6 shows the scatter density plots between gauge observations and the final
merged precipitation product (MPP) generated by the GWR-LSTM framework, with a
CC of 0.86, which indicates that the GWR-LSTM framework performed well for merging
multisatellite precipitation products and gauge precipitation. Figure 7 shows the spatial
daily precipitation estimates from the gauge observations, the final MPP, the original
four daily SPPs, and the downscaled daily SPPs on 9 August 2007. The MPP and the
downscaled daily SPPs provide more detailed information, but their spatial patterns are
different. The spatial pattern of the original GPM is similar to the original PERSIANN-CDR
and TRMM_3B42 and significantly different from the gauge observations. The spatial
patterns of the original CMORPH and the MPP are similar to the gauge observations,
but the spatial pattern of MPP is more consistent with that of the gauge observations. In
addition, the maximum daily precipitation of CMORPH is 20.49 mm/day, which is far
lower than the maximum daily precipitation of the gauge observations (103.8 mm/day).
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In summary, the MPP has more accurate and detailed spatial representativeness than any
other original or downscaled SPPs.
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Figure 7. Spatial daily precipitation estimates from (a) the rain gauge observation, (b) the final
MPP with 005◦ resolution, (c1) the original 0.25◦ resolution TRMM_3B42, (d1) the downscaled 0.05◦

resolution TRMM_3B42, (c2) the original 0.25◦ resolution PERSIANN-CDR, (d2) the downscaled 0.05◦

resolution PERSIANN-CDR, (c3) the original 0.25◦ resolution CMORPH, (d3) the downscaled 0.05◦

resolution CMORPH, (c4) the original 0.1◦ resolution GPM, (d4) the downscaled 0.05◦ resolution
GPM, on 9 August 2007.

Table 3 shows the performances for the original SPPs, the downscaled SPPs, and
the final MPP with reference to gauge observations during 2007–2018. There is little
difference between the performances of the original four SPPs and the downscaled four
SPPs. Therefore, the above results lead to the preliminary conclusion that the GWR model
only downscales for the original SPPs without improving the SPPs’ accuracy, and the
accuracy improvement of spatial precipitation estimates is owing to the powerful feature
extraction ability of the LSTM network.
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Table 3. CC, MAE, RMSE, KGE for the final MPP, the downscaled SPPs, and the original SPPs at a
daily scale with a reference to gauge observations during 2007–2018.

Name CC MAE (mm/d) RMSE (mm/d) KGE

Original

TRMM 0.39 3.13 9.18 0.39
PERSIANN 0.36 3.38 8.56 0.30
CMORPH 0.54 2.51 7.64 0.52

GPM 0.46 3.02 8.89 0.45

Downscaled

TRMM 0.41 3.07 8.93 0.40
PERSIANN 0.37 3.36 8.50 0.30
CMORPH 0.55 2.48 7.54 0.51

GPM 0.46 2.99 8.76 0.45

MPP 0.86 1.26 4.55 0.60

3.2. Performance Evaluation of MPP

Figure 8 shows the time series of average monthly precipitation of original SPPs
and MPP, gauge observations at the whole basin from 2007 to 2018. The time series of
original SPPs and MPP are similar to the gauge observations, but the time series of MPP
is more consistent with that of gauge observations. Table 4 shows the evaluation results
of four continuity metrics (CC, MAE, RMSE, and KGE) of the original four SPPs (TRMM,
PERSIANN, CMORPH, and GPM) and the final MPP across the entire period and different
seasons from 2007 to 2018. All these indices of MPP had much better scores than the
four original SPPs, indicating that the GWR-LSTM framework substantially improved the
accuracy of the daily precipitation estimates. The continuous indices of MPP had the best
scores in autumn, followed by spring, summer, and winter. However, due to the winter
snowfall, the original four SPPs cannot capture the spatial pattern of precipitation well,
and the MPP derived from the original four SPPs did not perform perfectly in winter.
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Figure 8. Time series of average monthly precipitation of gauge observation, original SPPs
(TRMM_3B42, CMORPH, PERSIANN-CDR, and GPM), and MPP at the whole basin from 2007
to 2018.

Table 5 shows the evaluation results of four continuity metrics (CC, MAE, RMSE, and
KGE) of the original four SPPs (TRMM, PERSIANN, CMORPH, and GPM) and the final
MPP at the upper, middle, and lower reaches of the Hanjiang River during 2007–2018.
There are differences among metrics of the original four SPPs. Each SPP has its own
advantages and disadvantages in capturing the spatiotemporal pattern of precipitation
in different regions. All CMORPH metrics are better than those of the other three SPPs
(TRMM, PERSIANN, and GPM). Metrics of PERSIANN performed worst in the upper,
middle, and lower reaches of the Hanjiang River and the whole basin. All metrics of
MPP performed better than the original four SPPs, CC was increased by approximately
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56%, MAE was decreased by approximately 49%, RMSE was decreased by approximately
39%, and KGE was increased by approximately 19%, indicating that the GWR-LSTM
framework significantly improves the quality of spatial daily precipitation estimation. The
CC exceeded 0.84 at the upper reaches of the Hanjiang River with complex terrain, and the
CC reached 0.9 at the lower reaches with a sparse rain gauge network, indicating that the
GWR-LSTM framework proposed in this paper has good adaptability.

Table 4. CC, MAE, RMSE, and KGE of the MPP and the original four SPPs with reference to gauge
observations across the entire period and different seasons from 2007 to 2018.

Period Metrics TRMM PERSIANN CMORPH GPM MPP

Entire

CC 0.39 0.36 0.54 0.46 0.86
MAE (mm/d) 3.13 3.38 2.51 3.02 1.26
RMSE (mm/d) 9.18 8.56 7.64 8.89 4.55

KGE 0.39 0.30 0.52 0.45 0.60

Spring

CC 0.35 0.33 0.53 0.41 0.86
MAE (mm/d) 3.19 3.47 2.46 3.11 1.20
RMSE (mm/d) 8.51 7.43 6.75 8.26 3.84

KGE 0.34 0.25 0.52 0.38 0.62

Summer

CC 0.37 0.31 0.50 0.43 0.85
MAE (mm/d) 5.67 6.00 4.78 5.31 2.29
RMSE (mm/d) 13.84 13.37 11.97 13.39 7.23

KGE 0.35 0.24 0.46 0.43 0.57

Autumn

CC 0.44 0.44 0.61 0.50 0.87
MAE (mm/d) 2.95 3.10 2.26 2.90 1.20
RMSE (mm/d) 8.06 7.27 6.34 7.72 3.74

KGE 0.44 0.41 0.60 0.47 0.67

Winter

CC 0.29 0.28 0.57 0.42 0.80
MAE (mm/d) 0.66 0.91 0.48 0.72 0.32
RMSE (mm/d) 2.62 2.23 1.76 2.67 1.16

KGE 0.19 0.09 0.57 0.18 0.44

Table 5. CC, MAE, RMSE, and KGE of the final MPP and the original four SPPs with reference to
gauge observations across the whole, upper, middle, and lower reaches of the Hanjiang River during
2007–2018.

Regions Metrics TRMM PERSIANN CMORPH GPM MPP

Whole

CC 0.39 0.36 0.54 0.46 0.86
MAE (mm/d) 3.13 3.38 2.51 3.02 1.26
RMSE (mm/d) 9.18 8.56 7.64 8.89 4.55

KGE 0.39 0.30 0.52 0.45 0.60

Upper
reaches

CC 0.41 0.39 0.57 0.49 0.84
MAE (mm/d) 3.09 3.21 2.48 2.79 1.32
RMSE (mm/d) 8.66 7.96 7.10 7.93 4.49

KGE 0.41 0.33 0.55 0.48 0.57

Middle
reaches

CC 0.38 0.32 0.51 0.43 0.84
MAE (mm/d) 2.90 3.25 2.34 2.81 1.16
RMSE (mm/d) 8.58 8.24 7.33 8.41 4.41

KGE 0.37 0.26 0.48 0.42 0.58

Lower
reaches

CC 0.39 0.39 0.57 0.47 0.9
MAE (mm/d) 3.91 4.20 3.04 4.25 1.39
RMSE (mm/d) 11.88 10.75 9.60 12.09 5.03

KGE 0.39 0.31 0.53 0.35 0.69

Figure 9 visually compares the estimation accuracy of daily precipitation from the
final MPP, the original four SPPs, and the gauge observation through a Taylor diagram. The
point of MPP was closer to the gauge point than any other original four SPPs at the upper,
middle, and lower reaches and the whole Hanjiang River Basin. Figure 9 also confirms
that the fusion model based on the GWR-LSTM framework significantly improves the
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estimation accuracy of daily spatial precipitation, especially in the lower reaches with
flat terrain.
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Figure 10 shows the statistical results of the four categorical metrics (POD, FAR, BIAS,
and ETS) for four types of precipitation intensity (0.1, 10, 25, and 50 mm/d). As shown in
Figure 10a, the final MPP and original four SPPs identify the no rain events well, but MPP
shows better performance than the original four SPPs in rainy event detection. As shown
in Figure 10b, with the increase in precipitation intensity, the FAR of all the products also
increased, but the FAR of MPP was significantly lower than that of any other SPP under
different precipitation intensities. As shown in Figure 10c, the MPP underestimated the
amount of all rain events, and the other four SPPs obviously overestimated the number
of no-rain events and underestimated the amount of light rain, moderate rain, or heavy
rain events. As shown in Figure 10d, the comprehensive detection accuracy of MPP was
significantly higher than that of the other four SPPs. In terms of the four categorical metrics,
the GWR-LSTM framework significantly improved the estimation accuracy of the daily
spatial precipitation.
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3.3. Comparisons
3.3.1. Comparison with Other Fusion Models

Table 6 shows the evaluation results of the GWR-LSTM framework, the simple model
average method (SMA) [42], and the geographically weighted ridge regression method
(GWRR) [18] across the whole, upper, middle, and lower reaches of the Hanjiang River
from 2007 to 2018. The GWR-LSTM framework obtained much better scores than the
other two fusion models (SMA, GWRR) on these metrics for the whole Hanjiang River
Basin, indicating that the GWR-LSTM framework well improved the estimation accuracy
of the daily precipitation. The SMA model performed the worst. The GWRR framework
performed excellently, but at the lower reaches of the Hanjiang River Basin with a sparse
rain gauge network, all the evaluation metrics of GWRR were relatively poor. Figure 11
shows the spatial distribution of the MAE for the estimated daily precipitation by the
three models (GWR-LSTM, GWRR, SMA). The MAE value of the SMA model is large over
the whole Hanjiang River Basin; the MAE value of the GWRR model was large only in
the lower reaches of the Hanjiang River Basin, which has a sparse rain gauge network
density, while the MAE of the GWR-LSTM framework is evenly distributed over the whole
basin. The GWR-LSTM framework significantly improves the estimation of spatial daily
precipitation, especially in areas with sparse rain gauge networks.

3.3.2. Comparison with Different Combinations of SPPs

An important factor, which affects the performance of the fusion model, is the abilities
of SPPs to capture the spatiotemporal patterns of precipitation [15,18]. Because no SPP
is superior to other products at all times and regions [25], it is necessary to evaluate the
performance of various SPPs for merging. Table 7 shows the evaluation results of the spatial
precipitation estimates generated by the GWR-LSTM framework merging different combi-
nations of SPPs and gauge precipitations. ModelTC represents the fusion model for merging
TRMM, CMORPH, and gauge precipitation; ModelTP represents the fusion model for merg-
ing TRMM, PERSIANN, and gauge precipitation; ModelTG represents the fusion model for
merging TRMM, GPM, and gauge precipitation; ModelCP represents the fusion model for
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merging CMORPH, PERSIANN, and gauge precipitation; ModelCG represents the fusion
model for merging CMORPH, GPM, and gauge precipitation; ModelPG represents the
fusion model for merging PERSIANN, GPM, and gauge precipitation; ModelTCP represents
the fusion model for merging TRMM, CMORPH, PERSIANN, and gauge precipitation;
ModelTCG represents the fusion model for merging TRMM, CMORPH, GPM, and gauge
precipitation; ModelCPG represents the fusion model for merging CMORPH, PERSIANN,
GPM, and gauge precipitation; ModelTCPG represents the fusion model for merging TRMM,
CMORPH, PERSIANN, GPM, and gauge precipitation. As listed in Table 7, the results of
all combinations of SPPs have significantly improved the accuracy of spatial precipitation
estimates, but the results of four SPPs in this paper are the best. In this study, the use
of multisatellite precipitation products can make full use of the advantages of each SPP,
without selecting a well-performing SPP or multiple well-performing SPPs for merging.

Table 6. CC, MAE, RMSE, and KGE of the GWR-LSTM framework proposed in this study and the
traditional fusion model (SMA, GWRR) across the whole, upper, middle, and lower reaches of the
Hanjiang River.

Regions Metrics SMA GWRR GWR-LSTM

Whole

CC 0.50 0.83 0.86
MAE (mm/d) 2.80 1.37 1.26
RMSE (mm/d) 7.75 4.85 4.55

KGE 0.45 0.61 0.60

Upper reaches

CC 0.53 0.85 0.84
MAE (mm/d) 2.69 1.34 1.32
RMSE (mm/d) 7.12 4.47 4.49

KGE 0.47 0.62 0.57

Middle reaches

CC 0.47 0.84 0.84
MAE (mm/d) 2.63 1.23 1.16
RMSE (mm/d) 7.36 4.65 4.41

KGE 0.41 0.61 0.58

Lower reaches

CC 0.51 0.77 0.90
MAE (mm/d) 3.59 2.08 1.39
RMSE (mm/d) 10.07 6.25 5.03

KGE 0.46 0.59 0.69
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Table 7. Evaluation results of spatial precipitation estimation generated by the GWR-LSTM frame-
work merging different combinations of satellite precipitation products and gauge observations.

Model CC MAE RMSE KGE

ModelTC 0.80 1.54 5.32 0.47
ModelTP 0.76 1.70 5.77 0.35
ModelTG 0.75 1.75 5.89 0.32
ModelCP 0.82 1.44 5.03 0.55
ModelCG 0.82 1.47 5.04 0.55
ModelPG 0.75 1.72 5.86 0.39

ModelTCP 0.84 1.34 4.75 0.60
ModelTCG 0.83 1.40 4.88 0.56
ModelCPG 0.84 1.36 4.72 0.60

ModelTCPG 0.86 1.26 4.55 0.60

4. Discussion

To investigate whether a multi-SPP fusion model performs well compared with a
single-SPP fusion model, we compared a fusion model for merging a single-satellite and
gauge precipitation. Unlike the fusion model for merging multisatellite and gauge precipita-
tion, the fusion model for merging a single-satellite and gauge precipitation generally intro-
duces relevant auxiliary factors, such as elevation and brightness temperature. Wu et al. [4]
proposed a CNN-LSTM fusion model for merging single-satellite and gauge precipitation.
In this paper, we used the CNN-LSTM model and relevant auxiliary factors (elevation and
brightness temperature) to merge four SPPs (TRMM_3B42, CMORPH, PERSIANN-CDR,
and GPM) and gauge precipitation. The constructed models were marked as ModelT,
ModelC, ModelP, and ModelG. Figure 12 visually compares the performance of the four
models (ModelT, ModelC, ModelP, and ModelG) and the GWR-LSTM framework through a
Taylor diagram. The four fusion models, which used different single-satellite precipitation
products, can improve the accuracy of spatial precipitation estimation. Due to the differ-
ent abilities of SPP capturing the spatial pattern of precipitation, the four fusion models
(ModelT, ModelC, ModelP, and ModelG) have different accuracies of spatial precipitation
estimation. The CC values of spatial precipitation estimated by the four fusion models
(ModelT, ModelC, ModelP, and ModelG) were 0.62, 0.59, 0.68, and 0.60, respectively. The
evaluation results (CC was 0.86, MAE was 1.26, RMSE was 4.55, and KGE was 0.60) of
spatial precipitation estimated by the GWR-LSTM framework can fully show that using
multiple SPPs can provide more reliable spatial precipitation estimation than using a single
SPP, which is consistent with the conclusion of Chen et al. [18].
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There are still some limitations and uncertainties in the study. The spatial scale mis-
match between the SPPs and gauge observations was neglected. The neglect would affect
the satellite–gauge merging results and, meanwhile, bring some biases to the performance
assessments of the precipitation products, especially over the regions of complex topogra-
phy [19]. Although downscaling for the SPPs might help to ameliorate the influences of the
spatial scale mismatch, the mismatch may still exist. In addition, this study first downscales
for the SPPs based on GWR using explanatory variables (NVDI, elevation, slope, longitude,
and latitude). The GWR may be highly susceptible to a collinearity problem [43]. We
should first diagnose whether collinearity exists, and then solve this problem in future.

5. Conclusions

In this paper, an integrated framework for merging multisatellite and gauge precipi-
tation was proposed. The framework integrates the geographically weighted regression
(GWR) for improving the spatial resolution of precipitation estimations and the long short-
term memory (LSTM) network for improving the precipitation estimation accuracy by
exploiting the spatiotemporal correlation pattern between multisatellite precipitation prod-
ucts and rain gauges. The GWR-LSTM framework was applied to estimate the daily spatial
precipitation in the Hanjiang River Basin of China from 2007 to 2018. The main findings of
this study are as follows:

(1) The proposed framework (GWR-LSTM) can significantly improve the spatial reso-
lution and accuracy of precipitation estimates (resolution of 0.05◦, CC of 0.86, and
KGE of 0.6) over original SPPs (resolution of 0.25◦ or 0.1◦, CC of 0.36–0.54, KGE
of 0.30–0.52), and this study also demonstrates that the use of merging multiple-
satellite and gauges precipitation is much better than merging partial datasets of
multiple-satellite precipitation with gauge observations (Table 7).

(2) In the fusion process, the GWR model only downscales for the original SPPs without
improving the SPP accuracy, and the accuracy improvement of spatial precipitation
estimates is owing to the powerful feature extraction ability of the LSTM network.

In summary, the proposed framework (GWR-LSTM) can be applied to merge multi-
satellite and gauge precipitation, which improves daily spatial precipitation estimations.
Multisource precipitation observation data represented by ground rain gauges, weather
radar, and space satellites are descriptions of precipitation information in different modes
facing the same observation object. In the future work, multisource precipitation obser-
vation data and multimodal deep learning data fusion methods can be combined to fully
exploit the advantages of each satellite product data and further improve the accuracy of
spatial precipitation estimation.
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