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Abstract: Deep learning is the subject of increasing research for fruit tree detection. Previously
developed deep-learning-based models are either too large to perform real-time tasks or too small
to extract good enough features. Moreover, there has been scarce research on the detection of
pomelo trees. This paper proposes a pomelo tree-detection method that introduces the attention
mechanism and a Ghost module into the lightweight model network, as well as a feature-fusion
module to improve the feature-extraction ability and reduce computation. The proposed method was
experimentally validated and showed better detection performance and fewer parameters than some
state-of-the-art target-detection algorithms. The results indicate that our method is more suitable for
pomelo tree detection.

Keywords: convolutional neural network; object detection; attention mechanism; remote-sensing
image; pomelo tree detection

1. Introduction

Citrus is the world’s largest fruit group, and pomelo is the largest citrus fruit [1].
High-quality pectin can be extracted from the peel of the pomelo, and the pulp can be
processed into juice and wine. Pomelo tree-planting information is vital to growers, as it
can provide a basis to scientifically manage planting and improve income per unit area and
unit time. Detecting the location and quantity of pomelo trees helps growers to develop
precision and intelligence in orchard management, such as in fertilization and irrigation [2],
pruning [3], and pesticide application [4], to reduce production costs, reduce environmental
pollution, and improve fruit yield and quality [5]. However, in actual production, data
are obtained largely manually, which requires much labor, and samples limited numbers
of trees. This will result in inaccurate data analysis and unreliable experimental results.
Therefore, a quick, non-destructive, and accurate pomelo tree-detection method is needed
to replace manual inspection.

Remote sensing technology has developed rapidly, and studies have demonstrated
its applicability to agriculture. For example, a plant water stress model was established
by combining satellite remote-sensing data with ground agrometeorological data [6], an
orange tree-detection model was established by a remote sensing platform combined with
unmanned aerial vehicles (UAVs) and sensors [4], and phytophthora root rot (PRR) disease
on avocado tree roots was detected by remote sensing and hyperspectral imaging [7]. Aerial
and satellite remote sensing are limited by weather conditions and monitoring costs [8].
Compared with satellites, UAVs are less dependent on weather conditions [9], and they
can be deployed in harsh environments with fast data collection [10].
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Tree-detection methods for remote-sensing images are mainly based on three kinds of
methods: traditional image processing, traditional machine learning, and deep learning.
Traditional image processing-based tree-detection methods have no parameter-learning
process, such as the local maximum method [11], watershed segmentation algorithm [12],
and multi-scale segmentation algorithm [13]. Srestasathiern et al. [14] proposed a method
for oil palm identification based on algorithms such as feature selection, semi-variance
function calculation, and local maximum filtering. Dos Santos et al. [15] proposed a palm
tree-detection method based on shadow extraction and template matching, which correctly
detected 75.45% of the trees in a study area of about 95 square kilometers. However,
traditional image-processing methods have lower recognition accuracy. Furthermore, they
require manual setting of many parameters.

Traditional machine learning-based methods typically comprise steps such as feature ex-
traction, image segmentation, classifier training, and prediction [16–18]. López-López et al. [19]
proposed a method for detecting unhealthy trees based on image segmentation and support
vector machine classifiers. Nevalainen et al. [20] proposed a method for tree detection and
species classification, which includes tree detection using local maximum filtering, feature
extraction, and tree species classification using random forest and artificial neural network
methods. Wang et al. [21] proposed utilizing a gradient histogram operator and a support
vector machine classifier to identify oil palm trees in UAV imagery. In general, traditional
machine-learning-based methods outperform traditional image-processing-based methods.
However, their feature extraction capability is insufficient, which limits them regarding
achieving higher detection accuracy.

A deep-learning-based algorithm can extract complex structural information from
huge amounts of high-dimensional data, using a neural network with multiple hidden
layers to automatically learn features from the original image [22]. Convolutional Neural
Networks (CNNs) are among the best-known deep learning-based methods owing to
their good image interpretability. CNNs are widely used to solve agricultural production
problems, including plant pest detection and classification [23,24], plant leaf identification
and classification [25,26], weed identification and classification [27,28], fruit and vegetable
harvesting and identification [29,30], and land cover classification [31,32].

Deep-learning-based algorithms have improved tree-detection performance. Li et al. [33]
proposed a CNN-based framework for detection and counting of oil palm trees in high-
resolution remote-sensing images, and this framework showed greater accuracy than three
other models. Pibre et al. [34] proposed a tree-identification method using multi-scale
sliding windows and neural networks. Wu et al. [35] researched the dead branches of apple
trees in winter, using remote-sensing data collected by UAVs, and used Faster R-CNN
to determine the number and location of trees. Zheng et al. [36] proposed a multi-type
method to accurately detect oil palm trees and monitor their growth. The method is based
on Faster R-CNN [37], and uses a refine pyramid feature module for feature extraction,
which can integrate deep and shallow features to help distinguish similar classes and detect
smaller oil palms. Osco et al. [38] proposed a method to estimate the number and location
of citrus trees in an orchard using an estimated density map, and this method achieved
higher F1-scores than Faster R-CNN and RetinaNet. Zheng et al. [39] proposed a coconut
tree crown-detection method, which contains three major procedures: feature extraction,
a multi-level Region Proposal Network (RPN), and a large-scale coconut tree-detection
workflow. The method achieves a higher average F1-score than pure Faster R-CNN. Some
methods based on domain adaption methods were proposed for tree detections [40,41].
They divide the data into a target domain that has few or no labels and a source domain
that has many labels. These techniques achieve detection by applying the information
acquired in the source domain to the target domain.

Most of the above methods use a two-stage target-detection network: (1) generation of
candidate region proposals through a RPN; and (2) classification and bounding-box regres-
sion tasks for selected candidates. Two-stage detection networks more time-consuming
and have lower computational efficiency than single-stage detection networks [42]. As a
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single-stage target detector, SSD [43] and YOLO [44–46] treat target detection as a regres-
sion problem. YOLOx-nano [47], the lightweight version of the model, has fewer model
parameters and runs faster, so it is suitable for real-time tasks, but it is not good enough
due to the complex and changeable environment of remote-sensing systems in agriculture.
Moreover, there is scant research on the detection of pomelo trees.

To improve recognition accuracy in complex environments, some researchers incor-
porated attention mechanisms into neural network models [48–50], and some researchers
used feature-fusion modules that combine features at different scales to enable the network
to extract richer features [51–53]. However, they did not consider that shallow and deep
feature information in deep networks have complimentary characteristics.

In summary, the existing methods for tree detection have the following problems:

• The two-stage algorithm has good performance in tree detection, but the algorithm is
complex, leading to computational inefficiency and slow detection.

• The one-stage algorithm runs faster than the two-stage one, but the model size is still
too large for real-time application. The lightweight version of the one-stage algorithm
is fast enough, but the feature-extraction ability is limited.

• Some studies used an attention mechanism and a feature-fusion module to improve
feature-extraction ability. However, they did not consider the advantage of the compli-
mentary characteristics between different layers.

To address the above problems, we propose a pomelo tree-detection method for UAV
remote-sensing images based on YOLOx-nano; it utilizes the complementary characteristics
of features at different levels to hierarchically aggregate rich information, thereby achieving
more accurate detection and counting of pomelo trees. A hybrid attention mechanism
module learns more representative features from the underlying features extracted from
the backbone feature extraction network. A feature-fusion module utilizes the complemen-
tary characteristics of the extracted low-level detail information and high-level semantic
information to perform cross-layer fusion of feature maps. A Ghost module replaces the
convolution module for better computational efficiency.

In this study, we make the following contributions:

• A hybrid attention mechanism module weights the pixels of the feature map with
channel attention and spatial attention to improve feature extraction and highlight
pomelo tree regions in backgrounds;

• A feature-fusion module fuses the feature maps of different layers without greatly
increasing computation, so it effectively aggregates feature maps;

• A Ghost module replaces the convolution module, reducing the number of parameters
and the computational complexity of the deep network, so as to further improve the
model-detection effect.

2. Materials and Methods
2.1. Materials
2.1.1. Image Data Collection

The remote-sensing dataset used in this study was obtained from an orchard of
pomelo trees in ShiShan and Yanyang Town, Meizhou City, Guangdong Province, China
(23◦23′~24◦56′N and 115◦18′~116◦56′E). Known as the “hometown of the pomelo”, Meizhou
is in the eastern part of Guangdong Province. The warm and humid climate, abundant
rainfall, and deep and well-drained soil provide good conditions for pomelo cultivation.
The test site covers an area of about 50 hectares, and the spacing of pomelo trees is 4× 4 m.
UAV remote-sensing images were collected from a quadrotor UAV (Phantom 4, DJi, Guang-
dong, China) equipped with a visual spectral (RGB) camera with a spatial resolution of
0.05 m. A total of 1222 UAV remote-sensing images (5642 × 3648 pixels) were collected,
from an altitude of 120 m, with an overlap rate of 60%, in two areas heavily planted with
pomelo trees, including images of other trees, houses, and roads, as shown in Figure 1.
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Image A2 Image B Image C3

Image D

Image A1

Image C1

Image C2

Figure 1. Aerial image of pomelo orchard. Image B is the original image from the vertical overhead
shot of the UAV. Images A1 and A2 contain dense and sparse pomelos, respectively; images C1–C3
contain pomelo trees in the adult, middle-aged, and young-growth stages, respectively; image D
contains other trees in the orchard.

The first dataset was collected at 10:00 on 26 December 2021 in Shishan town (24◦26′N
and 116◦05′N), Meizhou City, Guangdong Province, China. The shooting location was on
a flat terrain, as shown in Figure 2a–c. A large number of pomelo trees were planted in
this region. We used UAVs for vertical overhead photography and collected 1022 UAV
remote-sensing photos in this area.

The second dataset was captured at 16:00 on 16 January 2022 in Yanyang Town
(24◦22′N and 116◦22′N), Meizhou City, Guangdong Province, China. The shooting area
is located in hilly mountainous terrain. This dataset is more challenging than the first
one. Due to the diverse topography undulations, pomelo trees were planted at various
heights and were exposed to varying amounts of sunshine, as shown in Figure 2d–f. In
addition, there is a large amount of other vegetation planted in mountainous areas with a
complex environment of overgrown trees. For vertical overhead photography, we obtained
233 remote-sensing images using UAVs.

2.1.2. Image Annotation and Data Generation

We selected 20 and 8 images (5642 × 3648 pixels) from the Shishan and Yanyang Town
UAV image database, which were cropped without overlap to obtain 1674 cropped images,
respectively. Each image contained 0–20 pomelo trees, and was of the size 640× 640 pixels,
as shown in Figure 2. We used the open-source image-editing tool LabelImg to manually
label the images, with one box to label a pomelo tree. For each dataset, we randomly
selected 60% for training, 20% for validation, and 20% for testing. Half of the images in the
training dataset were brightened, darkened, flipped, and scaled to increase the richness of
the training sample data.
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(a) (b) (c)

(f)(d) (e)

Figure 2. Samples of dataset 1 (a–c) and dataset 2 (d–f). The pomelo trees in dataset 1 are planted on
a plain, under uniform lighting. The pomelo trees in dataset 2 were planted on hillsides with uneven
distribution, under drastic lighting variation.

2.2. Proposed Method

We introduce an attention mechanism behind the backbone feature extraction network,
which allows the model to focus on the pomelo canopy, improving the differentiation of
the pomelo trees from the backdrop. A cross-layer feature-fusion model (CLFF) helps
the network to more effectively fuse features at different layers so as to enrich feature
information extracted by the model and improve model-detection capability. The CNN
module can create a large number of similar feature maps, and it has been shown that these
redundant feature maps enable the CNN’s excellent feature-extraction capabilities [54].
The proposed method can reduce model parameters and improve feature extraction. The
proposed network structure is shown in Figure 3.

2.2.1. Hybrid Attention Mechanism Module

Despite the increasing resolution of remote-sensing images, there is still ambiguity in
the boundaries between objects, which increases false detection. In addition, the sizes of
pomelo trees vary by growth stages, causing poor performance. To address this problem, we
use an attention mechanism [55] to enhance the importance of target pixels in both channels
and space, which can strengthen the information of pomelo trees and weaken background
information by weighting the features extracted by the backbone feature network. The
attention score indicates the degree of correlation between pixels and targets [56], and can
be used to focus on pomelo trees and reduce the impact of canopy sizes.

The hybrid attention mechanism (Figure 4) has channel and spatial attention mecha-
nisms, focusing on both channel and pixel point weighting during model training.

In the channel attention mechanism, maximum and average pooling are applied to the
h× w× c feature map to obtain two 1× w× c feature strips, which are fed into the shared
full-connected module, which contains two full-connected layers. The number of neurons
in the first full connection is small, and the number in the second full connection is equal
to the number of input channels. The resulting two features are summed, and the weight
coefficients of each 1× w× c channel are obtained by the sigmoid function. The weight
coefficients are multiplied with the input feature map.
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Figure 3. Proposed network structure. Backbone: Focus, CBS (convolution, batch normalization,
and sigmoid weighted liner unit (SiLU) activation), Ghost, and cross-stage partial (CSP) module
downsample input image and convolve data. Spatial pyramid pooling (SPP) module is embedded in
last Ghost and CSP module, including three maxpooling layers and concat mode. End of backbone:
convolutional block attention module (CBAM) adds weight for target information. Neck section:
bidirectional feature pyramid network (BiFPN) and CLFF module transfer feature information. Three
convolution sets predict class label and object location.

In the spatial attention mechanism, maximum and average pooling are applied for
the feature map on the channels, and the outputs are stacked in the channel dimension to
obtain an h× w× 2 feature map. The stacked feature map is fed to a convolution module,
and the weight of each feature point is obtained by the sigmoid function. The input feature
map is multiplied by the weight of each feature point.

The channel and spatial attention mechanisms are formulated as

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])), (2)

where σ denotes the sigmoid function, F represents the feature map, MLP represents the
fully connected neural network, and f 7×7 represents convolution with a 7× 7 filter.

In this study, the spatial attention module uses a 7× 7 convolution kernel, which
empirically outperforms a 3× 3 convolution kernel. Within a certain interval, the larger the
convolution kernel, the better the performance of the network. We maintain the original
backbone feature network structure. To retain the excellent feature extraction capability of
the original model, a hybrid attention mechanism is added after the backbone network.
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MLP
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ConvConv

Sigmoid
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H×W×1

H×W×C

(a) Channel attention mechanism (b) Spatial attention mechanism

Figure 4. Hybrid attention mechanism. Maximum and average pooling are applied for the feature
map to obtain channel attention as well as spatial attention.

2.2.2. Cross-Layer Feature Fusion Pyramid

The low-level features from the shallow layers of the network contain much fine-
grained feature information and background noise, while features extracted from the deeper
layers have more semantic information [57]. Therefore, integrating low- and high-level
features can produce high-quality feature maps that complement each other. The original
model feature fusion section uses a feature pyramid network (FPN) with a path-aggregation
network (PANet) structure. The FPN structure conveys the deep feature information by
upsampling to fuse and obtain the predicted feature map. A bottom-up feature pyramid
containing two PANet structures is added after the FPN structure. The PANet can convey
strongly localized features in a bottom-up manner. However, the FPN+PAN structure uses
some transformations to feature maps so that their sizes are equal, which leads to the loss
of some useful information. Furthermore, the FPN+PAN structure does not fully use the
complementary features across the shallow and deep layers of the network, so it does not
achieve better performance.

EfficientDet [58] uses BiFPN to combine different levels of features to detect objects,
using features with stronger semantic information to detect large objects, and features with
stronger spatial information to detect small objects. It shows good performance.

Inspired by EfficientDet, we propose the CLFF module (Figure 5) to extend the feature
fusion network structure of BiFPN, which exploits the complementary features of the
shallow and deep layers of the network. Unlike the aggregation strategy of series or
additive operations, we consider the complementary features between different layers of
the network to overcome the lack of some detailed and semantic information of deep and
shallow features, respectively, about the pomelo tree. We multiply the masks of the feature
maps of the middle layer with those of the shallow and deep layers to take full advantage
of the complementary features between layers, which can enable one to more effectively
focus on the pomelo tree region, while reducing the interference of background noise. We
use the feature maps in the bottom-up path to generate the masks. The steps are as follows.

1. For the middle feature map s, we generate the semantic mask w using a convolution
with a 3× 3 kernel;

2. We multiply the semantic mask w and shallow-feature map h, and the semantic mask
w and deep-feature map g;

3. We sum the above two results, and feed the sum to a 3× 3 convolution layer to obtain
the output of the feature-fusion module.
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P3_in
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P3/8

P4/16

P5/32

Neck

Multiplication AddF2 F3Two-layer Feature fusion Three-layer Feature fusion

Figure 5. Neck structure and CLFF module. On the neck section, we delete low-utilization nodes and
connect nodes with different layers. On CLFF, we generate the mask using the feature map of the
bottom-up feature pyramid, and multiply the mask with the shallow and deep-feature maps. The
two or three feature maps are fused by addition.

2.2.3. Ghost Convolution Module

The feature maps obtained by traditional convolution have high similarity and redun-
dancy, resulting in a large computational cost. We replace this with the Ghost module to
reduce the computational cost and make the model more lightweight and efficient. The
Ghost module uses linear operations instead of some convolutions, as shown in Figure 6.

Conv

1
f

2
f

n
f Concat

Identity

Figure 6. Ghost module. Convolution module generates intrinsic feature maps with small channels.
Linear operation expands features and increases number of channels.

The Ghost module has two steps. Traditional convolution generates a small number
of intrinsic feature maps, and a linear operation expands features and increases the number
of channels. Linear operations can produce similar feature maps with fewer parameters
and less computing cost. The total number of required parameters and the computational
complexity of the Ghost module are less than those of traditional convolution.



Remote Sens. 2022, 14, 3902 9 of 21

2.3. Pomelo Tree-Detection Network

Figure 3 shows the proposed network structure for pomelo tree detection. Follow-
ing the divide-and-conquer principle, module y1 focuses on large-scale object detection,
and modules y2 and y3 focus on medium- and small-scale objects, respectively. A hy-
brid attention mechanism, a cross-layer feature-fusion pyramid, and the Ghost module
improve performance.

The proposed network has a backbone, neck, and prediction sections, including a
Focus module, CBS structure, CSP residual structure, and SPP module.

• The Focus module uses a slicing operation to split a high-resolution feature map
into multiple low-resolution feature maps. This module samples and splices the
input feature maps in each column and obtains output feature maps by convolution
operations, which can reduce information loss due to downsampling;

• The CBS structure consists of convolutional layers, normalization processing, and
SiLU activation functions, which have the characteristics of no upper or lower bound,
smoothness, and non-monotonicity, which can improve accuracy;

• The CSP structure consists of a standard convolutional structure and a bottleneck mod-
ule, which reduces and then expands the number of channels, with the final number
of input and output channels remaining the same. The input feature layer of the CSP
has two branches, one with multi-bottleneck stacking and standard convolution, and
the other with a basic convolution module, as shown in Figure 7. The feature maps of
the two branches are aggregated by a concat operation. To reduce the model size, we
only stack the bottleneck modules once in the CSP structure;

• The SPP module can realize the fusion of local and global features, which enriches
the information of the feature map. It performs well in the case of large differences in
target size.

CBS

CBS

Concat

CBS CBS Add

One Bottleneck unit (n-1)

Bottleneck units

CBS

Figure 7. CSP−n structure. The input feature layer of the CSP has two branches, one with multi-
bottleneck stacking and standard convolution, and the other with a basic convolution module. CSP−1
means one bottleneck unit, CSP−n means n bottleneck units.

We describe the flow of our proposed algorithm. The input of the backbone feature
network is a 640× 640× 3 image, which is turned into a 320× 320× 12 feature map by
the Focus module after one convolution operation with 64 convolution kernels. Through
one layer of CBS and CSP modules, the shallow features are aggregated, and the feature
dimension is transformed to 160× 160× 128, where the CBS module changes the size and
number of channels of the feature map, and the CSP module divides the feature map into
two parts and merges them through the cross-stage hierarchy. The features are further
extracted by three CBS and CSP combination modules to obtain two effective feature
layers, y1 and y2, whose respective feature maps are 80× 80× 256 and 40× 40× 512,
respectively. An SPP module is inserted between the subsequent CBS and CSP structures,
and the 20× 20× 512 feature map is fused with local and global features to improve its
expressiveness. The third effective feature layer, y3, is obtained, which has a 20× 20× 1024
feature map.

The deep feature information enhances the network’s ability to capture the target
by blending the attention mechanism and fusing its weights. The cross-layer feature
fusion network achieves the fusion and multiplexing of multi-level features, thus obtaining
effective feature layers of the size 80× 80× 256, 40× 40× 512, and 20× 20× 1024. After
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prediction, three results are obtained for each feature layer by decoupled head: the category
(cls), coordinates (Reg), and foreground background judgment of the target frame (Obj),
as shown in Figure 8. Reg has four channels, representing the offset of the center of the
prediction frame compared to the feature points, and the offset of the width and height
of the prediction frame compared to the logarithmic index of the reference. Obj has one
channel, representing the probability of each feature point predicting the objects contained
in the frame. Cls has num_classes channels, representing the probability that each feature
point corresponds to a class of objects.

We use complete-IoU (CIoU) loss instead of intersection over union (IoU) in the pre-
diction phase. IoU is commonly used as a matching degree evaluation metric of prediction
bounding boxes and ground-truth boxes in a dataset, calculated by the ratio of their area
intersection and union. We consider the effects of the overlap region, centroid distance,
and aspect ratio on the loss function, which makes the regression of target-detection frames
more stable. The CIoU loss is defined as

CIoU = IoU − ρ2(b, bgt)

c2 − αν (3)

α =
ν

1− IoU + ν
(4)

ν =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (5)

LOSSCIoU = 1− IoU +
ρ2(b, bgt)

c2 − αν, (6)

where c is the diagonal distance of the smallest closed area that can contain both the
predicted and real bounding boxes; ρ2(b, bgt) is the Euclidean distance between the center
point of the predicted and real boxes, and the corresponding loss is 1− CIoU.

Cls

H×W×256

H×W×256

H×W×256

Reg H×W×4

Obj H×W×1

Feature

3×3 conv

1×1 conv

H×W×C

Decoupled Head

Figure 8. Decoupled head structure. For each level of neck output feature, we first adopt a 1× 1
convolution layer to reduce the feature channel to 256 and then add two parallel branches with two
3× 3 convolution layers each for classification and regression tasks, respectively. Obj branch is added
on the regression branch.
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3. Results

Table 1 shows the experimental environment. The proposed method used stochastic
gradient descent (SGD) for training with 500 iterations, where the batch size was 16, the mo-
mentum coefficient was 0.937, the weight decay rate was 0.0005, and the initial learning rate
was 0.01 and dynamically decreased to 0.0001. The enhancement factors of hue (H), satura-
tion (S), and luminance (V) were set to 0.015, 0.7, and 0.4, respectively. The final output was
the identified pomelo canopy location boxes and the probability of belonging to the pomelo
tree category. The training, validation, and testing sets are described in Section 2.1. The
source code for the proposed method is available at https://github.com/hr8yhtzb/PTDM.

Table 1. Lab environment.

Configuration Parameter

CPU Intel Core i9-10900kes
GPU 2 NVIDIA GeForce RTX 3090

Accelerated environment CUDA 11.3 CUDNN8.2.1
Development PyCharm2021.1.1

Operating system Ubantu 18.04
Model frame PyTorch 1.10

3.1. Standard of Performance Evaluation

We used the common index AP to evaluate the performance of different methods.
Because the detection target of this study only belonged to one class, the value of mAP was
equal to the single-target AP value. Hence, mAP was not used as an evaluation metric. AP
was calculated as

AP =
∫ 1

0
P(R)dR, (7)

where P and R are the respective precision and recall of the detection model,

P =
TP

TP + FP
(8)

R =
TP

TP + FN
, (9)

where TP, FP, TN, and FN denote true positive, false positive, true negative, and false
negative, respectively.

The counting performance was evaluated using mean error (MAE), counting accuracy
(ACC), R2, and root mean square error (RMSE). MAE reflects the accuracy of counting,
and RMSE reflects the robustness of the counting network. They were defined as

MAE =
1
n

n

∑
1
|ti − ci| (10)

ACC = (1− 1
n

n

∑
1

|ti − ci|
ti

) (11)

R2 = 1− ∑n
1 (ti − ci)

2

∑n
1 (ti − t̃i)2

(12)

RMSE =

√
∑n

1 (ti − ci)2

n
, (13)

where ti, t̃i, and ci are the actual count, average true count, and predicted count, respectively,
of image i (total number of anchors detected), and n is the number of UAV images in the
test set. MAE and ACC quantify prediction accuracy. R2 and RMSE were used to evaluate
the counting performance of the proposed method.



Remote Sens. 2022, 14, 3902 12 of 21

3.2. Comparison to State-of-the-Art Object-Detection Algorithms

We compare our proposed method with state-of-the-art object-detection algorithms,
including Faster R-CNN [37], SSD [43], YOLOv3 [45], YOLOv4-tiny [46], Libra [42], and
CCTD [39]. Faster R-CNN is a famous two-stage detection algorithm, and many tree-
detection models are based on Faster R-CNN. SSD, YOLOv3, and YOLOv4-tiny are famous
single-stage detection algorithms. They do not have the bounding box proposal and
resampling steps, so they have a faster computational speed. YOLOv4-tiny is a lightweight
version of YOLOv4 with fewer parameters and faster detection speed. Libra and CCTD are
state-of-the-art two-stage detection algorithms. Libra optimized two-stage detection using
IoU-balanced sampling. CCTD used a multi-level region proposal network to optimize
the selection of region proposals. The two datasets described in Section 2.1 were selected
for experiments.

3.2.1. Comparison of Detection Performance

We first evaluated the precision, recall, AP, F1-score and complexity for different state-
of-the-art algorithms, as shown in Tables 2–4, where the best value of different methods is
shown in bold, from which we can observe the following.

• Faster R-CNN had the lowest precision, with just 43.17% and 16.08%, respectively, in
datasets 1 and 2, perhaps because of the complex background. Faster R-CNN does not
build an image feature pyramid, and cannot effectively use shallow and small-scale
features, resulting in a high number of false detections and low precision. In addition,
this method appears to overfit, which resulted in much lower accuracy than other
methods, indicating that this method is unsuitable for pomelo tree detection.

• SSD had an extremely low recall, with 58.23% and 30.06% in datasets 1 and 2, re-
spectively, because SSD has no feature pyramid, the same as in Faster R-CNN. The
recall rate of SSD was 1% to 4% lower than that of Faster R-CNN, which uses two-step
detection. It first generates the region of interest, and then detects within it. Therefore,
two-step detection could reduce the number of missed objects, and had a higher recall
rate. However, the recall rates of SSD and Faster R-CNN were both lower than those
of other methods owing to the lack of a feature pyramid.

• YOLOv3 had the highest precision of all methods, reaching over 93% in the first
dataset and 91% in the second region. However, its recall was less than 80% and 50%
in the two datasets, respectively. YOLOv3 is the most complex because it includes a
large number of convolution modules, which incur more computational cost.

• YOLOv4-tiny had similar detection results to YOLOv3, as they are both single-stage
detectors. Although YOLOx-nano is also a single-stage detector, it had about 6% to
25% higher recall than YOLOv4-tiny and YOLOv3 in both regions because it has two
PANet structures that can constitute a bottom-up feature pyramid, which can enhance
feature extraction. In addition, YOLOx-nano is anchor-free, which is better than an
anchor-based detector for single-tree detection in remote-sensing images [59]. Because
an anchor-based detector matches the object based on the anchor box’s size, it misses
detection if the object’s size exceeds that of the anchor box. The anchor free detector
efficiently eliminates the problem that the anchor box does not match the object size
and lowers the possibility of missed detection.

• Libra and CCTD are both two-stage detectors and therefore have a high recall rate on
both datasets, with about 87% in the first dataset and 80% in the second dataset. This
result indicated that Libra and CCTD method had fewer missed detections. However,
because Libra and CCTD are anchor-based method, their accuracy is limited, with
only about 63% to 75% in the second dataset.

• Our method obtained the highest AP among all algorithms, which demonstrates its
effectiveness. The precision was 92.41% and 87.18% in datasets 1 and 2, respectively,
the recall was 87.07% and 75.35%, and the AP value was 93.74% and 87.81%. Among
all compared methods, the AP value of ours was the highest. The outstanding perfor-
mance of our method can be attributed to the attention mechanism, the cross-layer
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feature-fusion pyramid, and the Ghost module. The attention mechanism improves
the capacity to extract feature information across space and channels, and provides
enough feature suppression background information. The cross-layer feature-fusion
pyramid combines semantic information from feature maps at different levels of lay-
ers, allowing it to learn rich information. Use of the Ghost module instead of 3× 3
convolution reduces the variance of the feature geometry, thus deepening the feature
information association between deep and shallow feature maps.

• The model size of our proposed method was 7.8 MB only, which is 98% and 96%
smaller than that of Libra and YOLOv3, respectively, and is just slightly more than that
of YOLOx-nano. In addition, our method was the fastest of all methods. It is worth
noting that the size of our proposed method is larger than YOLOx-nano, but it runs
faster than YOLOx-nano. This is because the ghost module we used can reduce the
computational complexity. In summary, our improvements make the model lighter
and more computationally efficient.

Table 2. Comparison of state-of-the-art object-detection algorithms in dataset 1.

Algorithm Precision (%) Recall (%) AP (%) F1-Score

Faster R-CNN 43.17 63.99 53.98 0.52
SSD 82.56 58.23 68.92 0.68

YOLOv3 93.64 79.24 91.74 0.86
YOLOv4-tiny 89.93 81.26 89.53 0.85
YOLOx-nano 90.99 86.43 93.08 0.89

Libra 87.12 87.85 89.25 0.87
CCTD 87.29 87.64 91.61 0.87
ours 92.41 87.07 93.74 0.90

Table 3. Comparison of state-of-the-art object-detection algorithms in dataset 2.

Algorithm Precision (%) Recall (%) AP (%) F1-Score

Faster R-CNN 16.08 30.16 8.99 0.21
SSD 87.91 30.06 60.26 0.45

YOLOv3 91.81 46.72 73.31 0.62
YOLOv4-tiny 84.73 62.37 79.09 0.72
YOLOx-nano 84.41 71.09 83.66 0.77

Libra 63.98 72.22 69.25 0.68
CCTD 76.67 83.84 84.72 0.80
ours 87.18 75.35 87.81 0.81

Table 4. Comparison of computational complexity.

Algorithms Model Size The Average The Shortest
(MB) Detection Time Detection Time

Faster R-CNN 107.86 0.262 s 0.248 s
SSD 90.07 0.159 s 0.125 s

YOLOv3 234.69 0.196 s 0.174 s
YOLOv4-tiny 22.41 0.133 s 0.119 s
YOLOx-nano 2.7 0.133 s 0.121 s

Libra 466 0.872 s 0.828 s
CCTD 315 0.615 s 0.588 s
ours 7.8 0.099 s 0.091 s

Figure 9 shows the visual detection effects of different methods. Faster R-CNN and
SSD had a large number of missed detections, whereas YOLOv3, YOLOv4-tiny, Libra, and
CCTD had a small number. This result showed that the recalls of the Faster R-CNN and
SSD detectors were much lower than those of the YOLO series because they lack an image
pyramid and are unable to properly integrate the information from the feature layer. Libra
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and CCTD are both anchor-based detection methods, and they are insensitive to tiny targets.
Overall, our method outperformed the other methods, without the yellow box and the blue
box for the testing image. Moreover, as a lightweight model, our method is better suited
for pomelo tree recognition.

Faster R-CNN SSD

Yolov3 Yolov4-tiny

Our proposed 

method

Libra

CCTD

Figure 9. Detection effects of different methods (yellow box: missed detection; blue box: error
detection). It can be seen that Faster R-CNN and SSD without feature pyramids had a large number
of missed detections. YOLO series with feature pyramids had a small number of missed detections.
Libra and CCTD could not detect tiny targets. The proposed method had no missed detection.

Figure 10 shows the ability of the proposed method to distinguish similar targets. In
Figure 10a,b, an area planted with a large number of pomelo trees is confused with a small
number of orange trees. The proposed method could accurately treat orange trees with
slightly different leaf colors as negative samples. In Figure 10c, the proposed method could
accurately treat other trees with mostly the same leaf color but with a few white leaves
as negative samples. Overall, our proposed method had good ability to distinguish trees
similar to pomelo trees.

(a) (b) (c)

Figure 10. The ability of the proposed method to distinguish different citrus trees (yellow box: other
citrus fruit tree). In (a,b) the proposed method distinguishes orange trees well. In (c), the method
can accurately distinguish other trees with slightly different leaf colors. It can be seen that proposed
method had a good ability to distinguish similar targets.

3.2.2. Counting Performance

We evaluated the detection of the number of pomelo trees for different state-of-the-
art methods, choosing 15 images of pomelo orchards captured by a UAV as the dataset.
Each image contained 504 to 1490 pomelo trees, in terrain types of flat plains and uneven
mountains, with both dense and sparse distributions of pomelo trees. The comparison
results are shown in Table 5. The MAE and RMSE of the proposed method were 36.4
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and 42.7, respectively, significantly better compared with Faster R-CNN, SSD, YOLOv3,
YOLOv4-tiny, CTDD, and Libra. In particular, the MAE and RMSE of the proposed method
were significantly better than those of YOLOv3, with improvements of 39.6% and 42.2%,
respectively. Therefore, the proposed method can better extract features of different scales,
and can deal with multi-scale changing scenes as well as negative samples.

Table 5. Tree counting performance for different methods.

Algorithm MAE RMSE ACC (%) R2

Faster R-CNN 170.9 221.2 82.18 0.24
SSD 162.7 184.7 82.61 0.47

YOLOv3 60.3 73.9 92.91 0.92
YOLOv4-tiny 59.9 73.5 93.12 0.92

Libra 55.5 67.1 92.97 0.93
CCTD 56.1 77.9 93.07 0.91
ours 36.4 42.7 95.93 0.97

Figure 11 compares the MAE and RMSE counting results for different methods. The
MAE and RMSE of Faster R-CNN were the highest, with 170.9 and 221.2, respectively. This
result confirmed that Faster R-CNN performs poorly in two locations for detection. SSD’s
MAE and RMSE were much higher than those of YOLOv3 and YOLOv4-tiny and only
slightly lower than those of Faster R-CNN. This is because SSD lacks the feature pyramid
structure, which prevents the method from extracting sufficient features to identify pomelo
tree. The MAE and RMSE of YOLOv3, YOLOv4-tiny, Libra, and CCTD were similar, with
MAE fluctuating between 55 and 60 and RMSE between 65 and 80. The MAE and RMSE
of our proposed method were lower than those of other methods, with 36.4 and 42.7, which
indicates its advantages in terms of computational accuracy and robustness.

Figure 11. Comparison of MAE and RMSE counting results for different methods. The proposed
method has the lowest MAE and RMSE.

Figure 12 illustrates the predicted counts of the proposed method and true counts
of the 15 images, including the predicted counts obtained by the result of detection, and
the ground truth counts. For almost all images, the proposed method predicted counts
that were extremely near to ground-truth box counts for all images. The errors between
the predicted counts and the true counts were from 7 to 71. In the UAV images with large
errors, the orchards are complex and contain many additional plants, such as bushes. The
number of false detections increased because they were mistakenly identified as pomelo
trees. Even yet, the accuracy of prediction exceeded 95%, which indicates the proposed
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method produces a reasonable estimate of the number of pomelo trees. Note that most
images in the test data set contain over 900 pomelo trees, and the counting results here are
the correctly detected fruit trees.

Figure 12. Predicted counts of proposed method and true counts of 15 images.

3.3. Ablation Experiments

Through ablation experiments, we could analyze the impact of different components
on the proposed method. We chose AP.5 and AP.5:.95 as assessment indicators after testing
the model’s performance with several modules. AP.5 was the AP value when IoU was
taken as 0.5. AP.5:.95 is the AP value when IoU increased from 50% to 95% in steps of
5%. AP.5 could reflect the performance of model detection, and AP.5:.95 could reflect
the robustness of model-detection performance. The experimental results in Table 6 show
that our method (last row) significantly improved the detection effect compared with the
original method.

Table 6. Comparison of components of proposed method.

YOLOx-
Nano CBAM CLFF Ghost AP.5 (%) AP.5:.95 (%)

√
93.08 61.0√ √
93.38 61.1√ √
93.21 60.9√ √
93.36 61.1√ √ √
93.53 61.3√ √ √ √
93.74 61.5

3.3.1. Attention Mechanism

When we added a hybrid attention mechanism module at the end of the backbone
feature extraction network, AP increased from 93.08% to 93.38%. Owing to the relatively
simple backbone structure of the original lightweight network, it performed poorly when
the background and target were not sufficiently distinguished. The hybrid attention
mechanism module weights the pixels of the feature map with channel attention and spatial
attention, which can improve the ability of feature extraction and effectively highlight
pomelo tree regions over backgrounds.

3.3.2. Use of Cross-Layer Fusion Feature Pyramid

When we added the cross-layer fusion feature module, AP improved from 93.08% to
93.21%. This indicates that the CLFF module improves detection performance because it
utilizes complementary characteristics between the extracted shallow detail information
and deep semantic information.
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3.3.3. Use of Ghost Module

When we used the Ghost module instead of traditional convolution for feature extraction,
AP increased from 93.08% to 93.36% because the Ghost module can obtain a large number of
redundant feature maps with a simple linear operation. In addition, the Ghost module could
reduce the effect of feature geometry variation, reduce the parameters and computational
complexity of the deep network, and extract more effective feature information. It is worth
noting that when the Ghost, CBAM, and CLFF modules were combined, the AP improved
from 93.08% to 93.74%, which indicates that the proposed method is more capable of feature
extraction and has better detection performance than the original method.

3.3.4. Visual Effect

Figure 13 compares the original YOLOx-nano and the proposed method. From
Figure 13a,d, we can find that the pomelo trees partially obscured by wires are not recog-
nized by the original method, while the proposed method successfully identifies them,
which indicates our method’s better robustness against and recognition of obscured objects.

According to Figure 13b,e, the young pomelo trees had small canopies that the orig-
inal method could not recognize. In addition, the original method ignored two closely
adjacent pomelo trees, treating them as negative samples with no obvious boundary. In
contrast, the proposed method could accurately identify small objects and pomelo trees
with inconspicuous edges. The original method expands the perceptual field under the
layer-by-layer convolution, which ignores some small pomelo trees. The proposed method
adds an attention mechanism and a cross-layer feature-fusion mechanism, making it more
capable of identifying small targets and targets with unclear edges.

According to Figure 13c,d, the original method incorrectly identified a banana tree as
a pomelo tree, while the proposed method avoided this error. This is because the original
method has fewer parameters in the backbone feature extraction network, and the extracted
features are insufficient. The proposed method adds an attention mechanism, improving
feature fusion and making the scale of feature differentiation between positive and negative
samples more obvious.

Yolox-nano

Our proposed 

method

(a) (b) (c)

(d) (e) (f)

Figure 13. Comparison of the detection effect between the original and proposed methods (yellow
box: missed detection; blue box: error detection): (a) the original method missed a pomelo tree
obscured by power lines; (b) the original method missed pomelo trees with small canopies and
inconspicuous canopy boundaries; (c) the original method incorrectly treated banana trees as pomelo
trees; (d–f) the proposed method avoids all the above errors to accurately identify all pomelo trees.
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4. Discussion

We proposed a pomelo tree-detection method for UAV remote-sensing images. We in-
troduced a hybrid attention mechanism module to improve the ability of feature extraction
and effectively highlight pomelo tree regions over backgrounds. We designed a feature-
fusion module to fuse feature maps of the same scale but different levels, without greatly
increasing computation. We replaced the convolution module with a Ghost module to im-
prove model detection. The proposed method reduces model parameters while extracting
more effective feature information. Compared with some state-of-the-art target-detection
algorithms, our method experimentally showed better detection performance and fewer
parameters, so it is better suited for pomelo tree detection in UAV images.

In our future work, we will research how to use domain adaption to detect pomelo
trees according to a different time and space, and extend our proposed method to different
types of trees in orchards.
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