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Abstract: Drought assessment in any region primarily hinges on precipitation deficiency, which is
subsequently propagated to various components and sectors, leading to different drought types.
In countries such as India, an intricate relationship between various governing factors, drought
types, and their quantification methodologies make it elusive to timely initiate government relief
measures. This also prevents comprehensive inclusion of the integrated effect of the principal drivers
of drought, resulting in ambiguous categorization of severity, where groundwater storage variability
is often neglected despite its significant role in irrigation. Here, we developed a multivariate Joint
Drought Index (JDI) combining satellite and model-based standardized indices of precipitation and
evapotranspiration (SPEI), soil moisture (SSI), groundwater (SGI), and surface runoff (SRI) with
different temporal scales by employing two robust methods, principal component analysis (PCA)
and Gaussian copula, and applied the index to highly drought-prone Marathwada region from
central India. Our novel approach of using different scale combinations of integrated indices for
two primary seasons (Kharif and Rabi) provides more realistic drought intensities than multiple
univariate indices, by incorporating the response from each index, representing the seasonal drought
conditions corroborating with the seasonal crop yields. JDI, with both methods, successfully iden-
tified two major drought events in 2015 and 2018, while effectively capturing the groundwater
drought. Moreover, despite the high correlation between JDI using PCA and copula, we observed a
significant difference in the intensities reported by these methods, where copula detected exceptional
drought conditions more frequently than PCA. JDI effectively detected the onset, duration, and
termination of drought, where the improved accuracy of drought detection can play a critical role
in policy formation and socioeconomic security of the related stakeholders. Seasonal agriculture
drought categorization for holistic quantification of drought conditions as presented in this study
should provide broad methodological implications on drought monitoring and mitigation measures,
especially for agriculture-dominated regions in semiarid climates.

Keywords: agricultural drought; copula; drought classification; GLDAS; multivariate drought
index; PCA

1. Introduction

Droughts are spatially extensive water extreme events with multidimensional impacts
that have incurred a huge cost in related damages in the past century, with multifold
devastation in worldwide economies [1–3]. This widespread water scarcity is increasing
year by year, pertaining to population growth, agricultural expansion, and growing water
demands for energy and industrial sectors, exaggerating the pronounced and multifarious
impacts of droughts [4]. The droughts in specific areas of the world are projected to increase
in severity as well as intensity in the near future, subject to climate shifts towards warmer
temperatures, decrease in precipitation, and an increase in evapotranspiration [5–7]. On the
backdrop of progressively detrimental effects of climate change, drought assessment, espe-
cially in countries such as India, is of paramount importance, considering its exclusively
agrarian economy. Despite being a global agriculture powerhouse, about 68% of cropped

Remote Sens. 2022, 14, 3891. https://doi.org/10.3390/rs14163891 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14163891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1704-4486
https://orcid.org/0000-0002-6602-5644
https://doi.org/10.3390/rs14163891
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14163891?type=check_update&version=2


Remote Sens. 2022, 14, 3891 2 of 26

area in India is highly vulnerable to drought, with 33% being chronically drought-prone [8],
where compounding effects of droughts have caused an immense loss in terms of agricul-
ture failures, food insecurities, widespread distress issues, and even farmer suicides [9–13].
The societal impacts of droughts are more persistent and prolonged than other natural
calamities, which see great migrations, water scarcity, political instabilities, livestock issues,
women, and health-related problems, along with intensifying agricultural crises [14]. India
has also faced miserable famines owing to droughts in the past century [15]. Moreover,
unsustainable extraction of groundwater, which is the primary source of irrigation in India,
is expected to further magnify the agricultural stress under the threat of climate change,
disturbing the routine agricultural activities to a great extent [9,16,17]. Considering these
profound social, economic, and hydro-climatological impacts of the droughts on multiple
aspects of life, comprehensive and efficient drought monitoring and mitigation, along with
a subsequent assessment of drought severity, is imperative to maintain the socioeconomic
security in India.

Unfortunately, a comprehensive universal definition of drought is difficult to formu-
late, considering its diverse range of drivers and impacts. This has led to the classification of
drought in multiple domains (meteorological, agricultural, hydrological, groundwater, so-
cial, etc. [18]), hindering the inclusion of the integrated effect of various critical parameters
and thorough determination of drought characteristics (such as onset, end, and duration)
using a single indicator. The conventional approach of drought quantification is mainly
dependent on ground-based hydro-meteorological data. Multiple indices have been devel-
oped to date for drought monitoring, including traditional ones, such as Palmer Drought
Severity Index [19], Standardized Precipitation Index (SPI; [20]), Standardized Precipitation,
Evapotranspiration Index (SPEI, [21]), and remote-sensing-based indices, such as Nor-
malized Difference Vegetation Index (NDVI; [22,23]), Vegetation Health Index (VHI; [24]),
Vegetation Condition Index (VCI; [25]), Evaporative Stress Index (ESI; [26,27]), and many
more ([28]). The accuracy of these traditional approaches is mainly constrained by the
data gaps, inadequate monitoring network, and data unavailability in required spatiotem-
poral scales. Remote-sensing-based indices, on the other hand, provide fine-resolution,
near real-time, and consistent data observations, which are advantageous over traditional
methods and provide unique drought monitoring opportunities [18]. However, all these
indices rely on a single surface or subsurface water storage and vegetation character irre-
spective of the combined effect from other hydro-climatological parameters, thus failing
to capture the integrated water deficit effect, which may have a further intensifying effect
on the overall drought situation. Amid these challenges in drought analysis, researchers
recently have also focused on integrating the information from multiple hydroclimatic
variables to optimize the drought monitoring efforts to provide a more robust method to
capture diverse vegetation responses across the ecosystems [4,18,29]. For example, the
Vegetation Drought Response Index (VegDRI; [30,31]) integrates climate (precipitation)
and satellite-based observations (NDVI), along with biophysical information, whereas
Microwave Integrated Drought Index (MIDI; [32]) integrates precipitation, soil moisture,
and surface temperature. Similarly, Multivariate Standardized Drought Index (MSDI; [33])
integrates precipitation and soil moisture information, while the Combined Drought In-
dicator (CDI) [34] combines SPI and anomalies of soil moisture and fraction of Absorbed
Photosynthetically Active Radiation (fAPAR). Due to complex physical interconnections
between natural energy fluxes, a single indicator may not satisfactorily define the drought
characteristics, highlighting the importance of multivariate drought analysis.

In India, drought monitoring is implemented using a drought manual [8] developed
by the Ministry of Agriculture and Farmers Welfare (https://agricoop.nic.in/en, accessed
on 12 December 2021), which deals with multiple individual indices (e.g., precipitation
anomalies, NDVI/VCI, crop area anomalies, hydrological indices, such as streamflow
and reservoir storage, etc.) to set the thresholds/triggers to initiate the government relief
measures. Pertaining to the complexities involved in the declaration of drought using these
triggers, the process is challenging for the state governments, where discrepancy has often
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been observed in the declaration and the on-ground situations of droughts [35,36]. These
inherent ambiguities and inconsistencies in the drought conditions by different indices
make the judgment very strenuous and intricate, where the final decision regarding the
drought status is subjective to the assumptions of local authorities responsible for analyzing
the drought. In addition, the identification and characterization of droughts become even
more complex in the region of groundwater overexploitation, which, unlike surface water,
is not commonly visible [37]. While numerous studies have indicated the unsustainable
groundwater use leading to its depletion and its impact on magnifying drought conditions
in India [9,16,38–41], due to the lack of continuous spatiotemporal groundwater data, it
has often been ignored in the drought assessment, monitoring, and declaration, despite
heavy dependence of agriculture on groundwater for irrigation. Recently, the development
of global land surface models has made the continuous gridded datasets of hydroclimatic
variables easily and freely available, which can be used for data-sparse regions [42]. This
avoids the simulation of complex hydrological models for data inputs, as postprocessed
satellite observations are proven useful in drought characterization, especially with the help
of Gravity Recovery and Climate Experiment [43,44]. Monitoring droughts using these
variables is a reliable alternative to the in situ measurements, especially for groundwater
drought [29,42,45–47].

In this study, a novel multivariate drought index was developed considering multi-
dimensional hydro-climatological drought propagation, and the applicability of the de-
veloped index was examined for spatiotemporal drought characterization in the highly
drought-prone Marathwada region of central India by using two approaches: principal
component analysis (PCA) and copula. With a goal of reducing the complexity involved
in the drought monitoring methods and to efficiently analyze the interdependence of
hydroclimatic variables in drought classification, the specific objectives of this study are
(i) development of a multivariate Joint Drought Index (JDI) incorporating meteorological
(SPEI), agricultural (SSI), groundwater (SGI), and hydrological (SRI) conditions, (ii) to
define onset, termination, and duration of drought, and (iii) spatiotemporal analysis of
drought severity. Here, the relevance of land surface model (LSM) outputs for the devel-
opment of multivariate drought index, which is unexplored so far, especially for tropical
semiarid regions, was also validated. The comparative analysis of drought assessment
using the two methods in this study further provides a better representation of drought
severity assessment, enabling users to understand the integrated effect of multiple drought
characteristics by assimilating the critical information from the constituent variables.

2. Materials and Methods
2.1. Data

We obtained the data related to the hydro-climatological variables used in this study
from various sources and then formed the standardized index of each variable. These
indices were then integrated into the joint drought index (JDI), which was further com-
pared with the seasonal crop production. A schematic of these data sources and methods
employed in this study is illustrated in Figure 1 and discussed in detail in the following
sections.
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is highly important in arid climates, which is not contemplated in the commonly used 
Standardized Precipitation Index (SPI) [20]. To account for this, the Standardized Precip-
itation Evaporation Index (SPEI) was used in constructing the JDI, which comprehends 
the changes in the evaporative demand of plants caused by temperature fluctuations 
[21,29]. SPEI is a multi-scalar index based on climatic water balance, having similar prop-
erties of SPI but also incorporating temperature data to define drought characteristics. 

Daily gridded precipitation data of 0.25° [48] were obtained from the India Meteoro-
logical Department (IMD, https://www.imdpune.gov.in/, accessed on 21 October 2021), 
which uses Inverse Distance Weighted Interpolation scheme proposed by Shepard [49] on 
a dense network of 6955-gauge stations. The climatological variations in the precipitation, 
especially in the leeward side of the Western Ghats of the central west coast of India, are 
more realistic in IMD data than other existing datasets [48]. The 1° × 1° minimum and 
maximum temperature data of 30 years, from 1990 to 2020, were also retrieved from IMD, 
which was developed by using the modified version of Shepard’s angular distance 
weighting algorithm [50] to interpolate 395 quality-controlled stations’ temperature data. 
This dataset was then re-gridded to 0.25° using bilinear interpolation to make it spatially 
consistent with other datasets. 

  

Figure 1. A schematic diagram depicting the methodology, various data sources, and the analyses
conducted in this study. JDI_PCA and JDI_Copula represent the joint drought index derived from the
PCA and Gaussian copula methods. Please refer to Section 2.1 for the abbreviation related to various
data sources and the drought indices.

2.1.1. Precipitation and Temperature

The effect of temperature and resulting evapotranspiration in drought propagation
is highly important in arid climates, which is not contemplated in the commonly used
Standardized Precipitation Index (SPI) [20]. To account for this, the Standardized Precipita-
tion Evaporation Index (SPEI) was used in constructing the JDI, which comprehends the
changes in the evaporative demand of plants caused by temperature fluctuations [21,29].
SPEI is a multi-scalar index based on climatic water balance, having similar properties of
SPI but also incorporating temperature data to define drought characteristics.

Daily gridded precipitation data of 0.25◦ [48] were obtained from the India Meteoro-
logical Department (IMD, https://www.imdpune.gov.in/, accessed on 21 October 2021),
which uses Inverse Distance Weighted Interpolation scheme proposed by Shepard [49] on
a dense network of 6955-gauge stations. The climatological variations in the precipitation,
especially in the leeward side of the Western Ghats of the central west coast of India,
are more realistic in IMD data than other existing datasets [48]. The 1◦ × 1◦ minimum
and maximum temperature data of 30 years, from 1990 to 2020, were also retrieved from
IMD, which was developed by using the modified version of Shepard’s angular distance
weighting algorithm [50] to interpolate 395 quality-controlled stations’ temperature data.

https://www.imdpune.gov.in/
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This dataset was then re-gridded to 0.25◦ using bilinear interpolation to make it spatially
consistent with other datasets.

2.1.2. Soil Moisture

Soil moisture (SM) mainly drives the drought-induced vegetation stress, where plants
reduce transpiration to conserve water as a result of depletion in available soil moisture
towards the wilting point [29,51]. The Global Land Data Assimilation System (GLDAS) SM
data products are found to be potentially efficient and reliable in capturing the temporal
variations in the SM characteristics [52–54]. Moreover, in India, the GLDAS SM data
products generally follow the characteristics of monsoon rainfall, and the general features
and variations in the datasets broadly match with the spatiotemporal variations in the
rainfall and, therefore, have been used in several regional studies [42,52,55,56]. Despite
varying definitions of soil layers in different GLDAS models (VIC, NOAH, and CLSM), we
found a strong correlation (r > 0.9) between their SM retrievals.

Although the depth/thickness required for proper representation of soil moisture
content for agricultural droughts is still under exploration [57–59], we considered the layer
between 10 and 40 cm below ground level by NOAH, which will better represent the soil
moisture conditions due to ancillary sources, such as local rainfall or irrigation, avoiding
quick saturation of upper layers and lags in the lower layers. Thus, to incorporate the soil
moisture drought in JDI, 0.25◦, monthly standardized soil moisture drought index (SSI)
was constructed from 2000 to 2020, using the method proposed by McKee et al. [20], which
is also preferred by many researchers to study SM drought [44,60–64].

2.1.3. Groundwater Storage

More than 90% of the irrigation in central parts of India is through groundwater [9],
making its availability crucial for agricultural activities, while little attention is given to
its management and inclusion in the regional drought analysis. Groundwater droughts
often take time to reflect after the meteorological drought is manifested due to inherent
complexities in the aquifer response and may persist for a longer period [65]. Effects are
exacerbated due to high water demand and excessive use of available resources, especially
in the case of droughts, which negatively offsets the availability of water for vegetation
growth. Thus, groundwater potentially shapes the regional drought conditions.

GLDAS provides 0.25◦ gridded groundwater storage (GWS) data products by assim-
ilating the terrestrial water anomaly observations from Gravity Recovery and Climate
Experiment (GRACE) via simulating the Catchment Land Surface Model (CLSM) [45,46].
The GLDAS groundwater storage data have been commonly used by researchers to study
drought in regional, arid, or small-scale areas [47,66,67]. The advantage of GLDAS ground-
water storage data is that they do not require any pre- or postprocessing to obtain the GWS
and are temporally consistent (without data gaps) with comparatively finer resolution.
Thus, 0.25◦ gridded daily GWS data were obtained from GLDAS version 2.2 from 2003 to
2020 and were further aggregated into monthly time series to construct the standardized
groundwater index (SGI; [20,44,62]).

2.1.4. Surface Runoff

For holistic assessment of drought characteristics, surface runoff is an important
indicator suggested in the drought manual of India for planning and mitigation [8], bearing
direct impacts of the hydrological anomalies. The issue of data availability for such critical
variables is potentially solved by global-scale terrestrial models, such as GLDAS, where
the uncertainties in the runoff estimates can be greatly reduced by the ensemble mean of
surface runoffs from different models in the suite [68,69].

The 0.25◦ monthly surface runoff data were obtained from three models of GLDAS:
VIC, NOAH, and CLSM between 2000 and 2020, and their ensemble mean was used to
construct the monthly standardized runoff index (SRI; [20,44,62]).
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2.1.5. Crop Production

Agriculture bears the direct brunt of droughts with immediate impacts adversely
affecting the crop yield. Consequently, crop losses and limited productivity are often
observed in drought situations [70]. We used seasonal crop production data (food-grains,
cereals, pulses, and oilseeds) in the Kharif and Rabi seasons as an indicator against which
the accuracy of the developed integrated index JDI was verified. Statistical data related to
crop production (CP) were obtained from the Economic Survey Department, Government
of Maharashtra (https://mahades.maharashtra.gov.in/, accessed on 3 November 2021)
and the Department of Agriculture and Cooperation (http://krishi.maharashtra.gov.in/,
accessed on 7 November 2021).

2.1.6. Administrative Boundaries

Data related to state- and district-level administrative boundaries were obtained
from the latest version (3.6) of the Database of Global Administrative Areas (GADM,
https://gadm.org/, accessed on 4 September 2021).

In view of the minimal influence of reservoir operations in the region during droughts
and considering the high dependency on groundwater, the effect of irrigation and reservoir
storage was not considered in the analysis.

2.2. Methodology
2.2.1. Principal Component Analysis (JDI_PCA)

Principal component analysis (PCA) is widely used to describe the dominant patterns
in the observational data [60,62,71,72]. Using linear combinations of the variables, new
orthogonal (independent to each other) variables, i.e., PCs, can be constructed without
losing much information from each variable. In this study, the Joint Drought Index (JDI)
was constructed by extracting the essential hydrologic information from each variable
integrated in the JDI in the form of PC1, i.e., first principal component [73]. In PCA, the PCs
are determined such that the variance of any ith PC is maximum and sum of the square of
loadings is unity (eigenvectors) [73]. The square of loadings can serve as the percentage
contribution by each variable in the joint index, which were thus estimated with the help of
the eigenvector. This contribution was represented in the form of weights. This process
was followed for each month separately and the weights of four variables (SPEI, SSI, SGI,
and SRI) for 12 months were estimated (total 48) [60,72]. The JDI using PCA for ith month
and jth year is represented by JDI_PCA(i,j), where:

JDI_PCA(i,j) = W1i × [SPEI](i,j) + W2i × [SSI] (i,j) + W3i × [SGI](i,j) + W4i × [SRI](i,j) (1)

For each grid point, W1i, W2i, W3i, and W4i are the weights for ith month (i = 1 to
12) for SPEI, SSI, SGI, and SRI, respectively, which are multiplied by the respective index
for ith month and jth year. Moreover, to account for the different response time of each
variable to the existing hydro-climatological conditions, we executed a new approach of
integrating these indices in JDI, which involves using various combinations of the involved
indices, which may have different temporal scales. The combination of the variables having
a maximum correlation with the seasonal crop yield is then selected for further analysis
(further discussed in Section 2.2.3).

2.2.2. Copula (JDI_Copula)

Copulas are often used to derive the joint distribution of multiple variables using their
one-dimensional marginal distribution [33,62,74,75]. Copulas are efficient in modeling
the general dependence between multivariate data [76–79], where, out of copula families,
meta-elliptical copulas (Gaussian and Student-t) are found to be a better fit for modeling
joint distribution of more than two variables [64,76]. Assuming SPEI, SSI, SGI, and SRI as
random variables, Gaussian copula was used to find the joint distribution of multivariate

https://mahades.maharashtra.gov.in/
http://krishi.maharashtra.gov.in/
https://gadm.org/
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drought index. Using Sklar’s theorem [80], if p is the joint cumulative probability of random
variables, A, B, C, and D, then there exists a copula Cp, such that:

P (A ≤ a; B ≤ b; C ≤ c; D ≤ d) = Cp[F(A), F(B), F(C), F(D)] = p (2)

where, F(A), F(B), F(C), and F(D) are marginal cumulative distribution functions of the
random variables, i.e., SPEI, SSI, SGI, and SRI in this study. The inverse of the joint
cumulative probability p will give the joint drought index JDI represented as JDI_Copula,
which can be written as:

JDI_Copula = ϕ−1(p) (3)

where ϕ is the standard normal distribution function. The detailed interpretations of
the copulas can be found in Hao and AghaKouchak [63] and Nelson [74]. The classical
penalized criterion based on log-likelihood, viz., Akaike and Bayesian information criterion
(AIC and BIC), which discourages the overfitting, was used to select the appropriate copula
from various copula families (e.g., Gaussian, t-copula, Joe, Clayton, and Gumbel) [81]. AIC
and BIC are common methods to measure the fitting biases in copulas [82]. Moreover,
Cramer–von Mises (Sn) and Kolmogorov–Smirnov (Tn) are two classical goodness-of-fit
tests often considered to fit the continuous distributions [81,83]. These statistical methods
were considered to check the goodness of fit for the proposed cumulative distribution
function. For the construction of joint distribution, a copula is acceptable when the p-value
of the goodness-of-fit tests is greater than 0.05.

2.2.3. Integration of the Indices in JDI

Multivariate distributions, in general, are mainly focused on statistical properties of
drought indices without concern for physical processes that cause a certain time lag [62,84].
In this study, the effect of time lag in response of different variables to climatic condi-
tions [44,85,86] was incorporated by forming JDI with combinations of these variables with
different time scale, ranging from 1 to 12 months (1, 2, 3, 4, 6, and 12 months for SPEI, 1 to
3 months for SSI, and 1 to 4 months for SRI and SGI). In total, 288 unique combinations of
these indices having different temporal scales were used to generate JDI based on PCA and
copula.

Since seasonal crop conditions are directly associated with the prevailing drought
conditions, crop yield can presumably be used as an indicator to analyze the accuracy
of JDI. Hence, the mean drought intensity of JDI for each season (Kharif and Rabi) was
correlated to the standardized crop yield of the respective season to analyze the potential of
JDI to capture the drought characteristics. A JDI combination having the highest correlation
with the crop yield is assumed to represent the actual drought conditions better than other
combinations. We also evaluated the JDI against each integrated index to understand
whether the responses of each variable are satisfactorily captured through the integration.
The combination giving a highest correlation with the seasonal CP and capturing the
optimal response (having the highest correlation with each of its integrated variables) from
the integrated variables is then finally selected for the analysis for each season. It is possible
that the combination of variables in JDI giving the highest correlation with the seasonal
crop yield is different in both seasons. In such a case, different time scale combinations are
considered to define JDI and categorize drought in the respective season.

A previous study has verified the consistent use of groundwater for irrigation in semi-
arid parts of central India, along with its role in vegetation response to hydro-climatological
changes [9]. Soil moisture is another important indicator conveying immediate water
stress faced by vegetation due to lack of irrigation. Since crop conditions can greatly vary
depending on the monthly state of these two variables, a 1-month scale was set for SSI and
SGI in deciding the seasonal combination for JDI, along with varying scales of SPEI and
SRI. For better representation and easy comparisons, the scales of variables used in the
development of JDI are included in the JDI nomenclature, along with the method used.
The numbers included the index name representing the temporal scales of SPEI, SSI, SGI,
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and SRI in the order of appearance. For example, JDI_PCA_3_1_1_3 represents JDI_PCA
using SPEI (3 months), SSI (1 month), SGI (1 month), and SRI (3 months). Here, the drought
classification scheme by Svoboda et al. [87], based on the percentile approach for magnitude
category thresholds, was adopted (Table 1), which is also preferred by many researchers
for related studies [33,44,88].

Table 1. Drought classification categories and description with respect to JDI intensities.

JDI Description Category

−0.50 to −0.79 Abnormally Dry D0
−0.80 to −1.29 Moderate drought D1
−1.30 to −1.59 Severe drought D2
−1.60 to −1.99 Extreme drought D3
−2.0 or less Exceptional drought D4

2.3. Case Study Region

In this study, the semiarid region of Aurangabad division, also known as Marathwada,
from central state of Maharashtra in India was considered for the development of the JDI
(Figure 2). Maharashtra is the largest economy state in India, where more than 50% of
the state population depends on agriculture and allied businesses (Figure 2a, Economic
Survey Reports of Maharashtra, https://mahades.maharashtra.gov.in/publications.do?
pubId=ESM, accessed on 3 November 2021). The region is highly susceptible to drought
vulnerabilities and has often seen farmers suicides related to drought and agriculture
failures [9,11,89]. Due to Sahyadri mountain ranges running parallel to the west seacoast,
the state is mainly divided into two parts: Western Ghats of Kokan to the west and Deccan
plateau to the east. A similar distinction is formed in terms of precipitation, which is
highly influenced by the Arabian branch of the monsoon coming perpendicular to the
Ghats. Marathwada is located in the leeward side of the Sahyadri and consists of eight
districts—Aurangabad, Beed, Latur, Osmanabad, Parbhani, Hingoli, Beed, and Nanded
(Figure 2b), with an area of about 69,899 km2. The region has a tropical-semiarid climate
with four distinct seasons: monsoon (June–September), post-monsoon (October–December),
winter (January–February), and summer (March–May). The average annual precipitation
of Marathwada is minimum in the state (811 mm), more than 80% of which occurs during
four months of monsoon season (Figure S1). There are two main agriculture seasons of the
region: Kharif (coincides with monsoon season, i.e., June–September) and Rabi (October–
March). The monsoon rainfall is crucial for agriculture, as it is mainly rainfed, where
post-monsoon rainfall also plays a key role in the Rabi season and aquifer recharge. Out
of four months of monsoon season, Marathwada receives the highest rainfall in July, with
August and September having similar intensities (Figure S1). The maximum and minimum
monthly temperatures for the region are observed in May (~41 ◦C) and in December
(~13 ◦C), respectively (Figure S1). Marathwada is underlain by a hard rock aquifer system,
where even minor fluctuations in the monsoon rainfall may exaggerate the prevailing
drought conditions [90,91], ultimately hampering the various aspects of the agriculture
sector. The land is primarily used for agriculture (Figure 2c), where food grains, cereals,
pulses, and oilseeds are mainly grown. The arid hydro-climatological conditions are similar
over the whole region, which is highly vulnerable to water deficit conditions, further
aggravated by lack of adequate infrastructure and developmental backlogs [9,89], where,
during 2003–2020, some or the whole of the region was frequently subject to negative
precipitation anomalies (which often leads to different types of droughts) (Figure S2).

https://mahades.maharashtra.gov.in/publications.do?pubId=ESM
https://mahades.maharashtra.gov.in/publications.do?pubId=ESM
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as 3_1_1_3, was best correlated to CP in Kharif season in both methods, i.e., JDI_PCA and 
JDI_Copula (Figure 3a,b and Table S1). 

Figure 2. (a) Location of the study area. Black and red borders represent India and the state of Maha-
rashtra, respectively, while the filled area represents Marathwada region. (b) Administrative map of
Aurangabad division (Marathwada) with eight districts. (c) MODIS land cover product MCD121Q1,
International Geosphere-Biosphere Program (IGBP) classification in Marathwada illustrated for the
year 2019.

3. Results
3.1. Selected Combination of Indices for JDI

Amidst all the combinations of SPEI, SSI, SGI, and SRI used to construct JDI, the com-
bination of SPEI (3 months), SSI (1 month), SGI (1 month), and SRI (3 months), represented
as 3_1_1_3, was best correlated to CP in Kharif season in both methods, i.e., JDI_PCA and
JDI_Copula (Figure 3a,b and Table S1).
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Figure 3. Correlation of mean drought intensity by JDI_PCA and JDI_Copula with the seasonal crop
production (CP) in (a,b) Kharif season and in (c,d) Rabi season. The scales of the integrated indices in
JDI_PCA and JDI_Copula in Kharif (3_1_1_3) and in Rabi (6_1_1_4) season are in the order of SPEI,
SSI, SGI, and SRI.

Similarly, in Rabi season, a combination of SPEI (6 months), SSI (1 month), SGI
(1 month), and SRI (4 months), represented as 6_1_1_4, had the highest correlation with
Rabi CP and could be considered to best represent the corresponding drought conditions
(Figure 3c,d and Table S1). Furthermore, to evaluate the potential of JDI to incorporate
feedback from each integrated variable and to strengthen the choice of the combination,
the correlation between the JDIs to each of its four constituent indices was estimated. We
found that both JDIs were able to capture the responses from each hydroclimatic variable
with strong correlation (Table S2). Although overall correlations of the integrated variables
(SPEI, SSI, SGI, and SRI) with JDIs gave comparable responses (Table S2), the correlation of
larger scale SRI (3–4 months) with JDI is stronger (r~0.8) than the shorter scale (r~0.5 to
0.7) attributable to the increased accumulation period. Among the hydroclimatic variables
used in this study, surface runoff was highly correlated with precipitation (r~0.9), while
SM and GWS were highly correlated to precipitation with lagging by 1 month (r~0.8) and
2 months (r~0.8), respectively (Figure S3).

3.2. JDI Based on PCA (JDI_PCA)

The weight of each parameter used for the selected JDI_PCA for average Marathwada
in each season and for each month is provided in Table 2. Comparing the contribution
of each variable, SPEI and SSI were found to be important variables in both seasons,
having higher weights, while the weightage for SGI was higher in Rabi season than Kharif
season (Table 2). This can also be seen in the spatial distribution of weight components
over the region, associated with the increased use of groundwater in the Rabi season
(Figures S4 and S5). We observed that drought intensity estimated by PCA is, in general,
an average of the intensities of the integrated variables. In each season, the average weight
allocated by PCA to each index is quite comparable (0.26~0.29) (Table 2), except for SGI in
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Kharif and SRI in Rabi, which have lower weights (average of the season, 0.18 and 0.19,
respectively) than other variables in respective seasons.

Table 2. Weights of indices for JDI_PCA_3_1_1_3 for Kharif and JDI_PCA_6_1_1_4 for Rabi season
over Marathwada.

Month
Kharif (June–September)

SPEI
(3 Months)

SSI
(1 Month)

SGI
(1 Month)

SRI
(3 Months)

June 0.27 0.30 0.19 0.23
July 0.29 0.29 0.17 0.25

August 0.29 0.26 0.19 0.26
September 0.29 0.27 0.15 0.29

Month
Rabi (October–March)

SPEI
(6 Months)

SSI
(1 Month)

SGI
(1 Month)

SRI
(4 Months)

October 0.29 0.25 0.25 0.21
November 0.28 0.27 0.26 0.19
December 0.27 0.27 0.25 0.21

January 0.28 0.27 0.24 0.21
February 0.27 0.30 0.29 0.13

March 0.28 0.30 0.26 0.16

Apart from monthly weights, JDI_PCA using seasonal weights (four weights per
season, total eight for Kharif and Rabi) was also evaluated using the same process as
discussed in Section 2.2.1, where a similar phenomenon was observed when SGI was
given higher weight in Rabi than in Kharif season (Table S3). It should be noted that the
intensities by JDI_PCA using monthly and seasonal weights were very highly correlated
(r > 0.95; Figure S6), subject to the similarity in weights for the integrated indices. Despite
this similarity, to even capture any slight changes in the JDI response to monthly variations
in the hydro-climatic variables, monthly weights were used in this analysis.

3.3. JDI Based on Copula (JDI_Copula)

The classical AIC and BIC criteria show that, among the selected family of copulas,
Gaussian copula can best represent the joint distribution of hydroclimatic variables (Table 3).
The JDI_Copula using Gaussian transformation for Kharif and Rabi season also satisfy the
Sn and Tn statistics, with a p-value greater than 0.05. Spatially, 99% of grid points over the
region satisfy the Sn and Tn criteria in Kharif season, while, in Rabi season, the percentage
is 97% and 90%, respectively (Figure S7). Moreover, as the scale of SPEI in JDI increases,
the number of grid points satisfying the goodness-of-fit criterion decreases (85% and 81%
of grid points satisfy Sn and Tn criterion, respectively, for JDI_Copula_12_1_1_4).

Table 3. Akaike information criterion (AIC) and Bayesian information criterion (BIC) statistics for
different types of copulas.

AIC Gaussian t-Copula Joe Clayton Gumbel

JDI_Copula_3_1_1_3 −427.09 −424.65 −231.44 −256.62 −297.00
JDI_Copula_6_1_1_4 −433.36 −430.86 −248.73 −290.79 −327.24

BIC Gaussian t-copula Joe Clayton Gumbel

JDI_Copula_3_1_1_3 −411.86 −405.91 −218.42 −281.12 −284.74
JDI_Copula_6_1_1_4 −417.22 −411.06 −252.95 −296.89 −327.91

Figure 4 shows the time series of both the JDIs in the Kharif and Rabi seasons, along
with the variables used for the integration. It was observed that JDI_PCA and JDI_Copula
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are highly correlated with each other (r > 0.95) in both seasons (Figure S8). If there is a
drought in any one of the integrated variables, there is a higher chance of its detection by
copula than PCA, as copula constitutes a larger probability space [63,74]. Notwithstanding
the normal conditions in other variables, if there is drought in a single integrated variable,
JDI_Copula will indicate a drought situation (for example, in year 2005 in Figure 4a,b), due
to severe conditions in SGI, JDI_Copula displayed more severe intensities than JDI_PCA).
More severe behavior is displayed when all the variables are excessively diverted towards
the negative side, where JDI_Copula will show exceptional drought conditions compared
to the integrated variables (for example, the years 2015 and 2018 in Figure 4a,b)). JDI_PCA,
on the other hand, tries to optimize the responses from the individual variables through
linear transformation by taking maximum information from each integrated variable in the
form of a principal component and, consequently, the weight component (Figure 4).

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 27 
 

 

copula than PCA, as copula constitutes a larger probability space [63,74]. Notwithstand-
ing the normal conditions in other variables, if there is drought in a single integrated var-
iable, JDI_Copula will indicate a drought situation (for example, in year 2005 in Figure 
4a,b), due to severe conditions in SGI, JDI_Copula displayed more severe intensities than 
JDI_PCA). More severe behavior is displayed when all the variables are excessively di-
verted towards the negative side, where JDI_Copula will show exceptional drought con-
ditions compared to the integrated variables (for example, the years 2015 and 2018 in Fig-
ure 4a,b)). JDI_PCA, on the other hand, tries to optimize the responses from the individual 
variables through linear transformation by taking maximum information from each inte-
grated variable in the form of a principal component and, consequently, the weight com-
ponent (Figure 4). 

 
Figure 4. Time series of JDI_PCA and JDI_Copula during 2003 to 2020 for scales (a) 3_1_1_3 and (b) 
6_1_1_4, where the scales are in the order of SPEI, SSI, SGI, and SRI, along with time series of the 
integrated indices SPEI, SSI, SGI, and SRI with their respective scales. 

3.4. Seasonal Analysis of the Drought Intensities 
3.4.1. Kharif Season 

During four months of the Kharif season, JDI_PCA detected a minimum of three, 
while JDI_Copula detected a minimum of nine drought events in June and September, 
respectively. One interesting finding is that, despite receiving ample monsoon rainfall 
(173 mm, Figure S1), the month of August witnessed the highest drought frequency (num-
ber of drought events) in both methods (Figure S9a). We found that the detection of 
drought events using JDI_Copula was much higher than that of JDI_PCA pertaining to 
more severe drought intensities. Spatially, Marathwada showed a minimum of seven 
droughts in each month per pixel detected by JDI_Copula, which is just two in the case of 
JDI_PCA (except for few pixels showing only one drought in January and February (Fig-
ure S10a,b)). 

The drought conditions in any month of the Kharif season are crucial for farmers, as 
they affect overall crop performance for the season. The analysis of the spatial distribution 
of various drought events detected by JDI_PCA revealed that, in year 2015, 100% of the 
Marathwada region was under moderate to extreme drought, except for June (Figures 5 
and 6a). The onset of the monsoon in the year 2015 was normal, with no drought 

Figure 4. Time series of JDI_PCA and JDI_Copula during 2003 to 2020 for scales (a) 3_1_1_3 and
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3.4. Seasonal Analysis of the Drought Intensities
3.4.1. Kharif Season

During four months of the Kharif season, JDI_PCA detected a minimum of three,
while JDI_Copula detected a minimum of nine drought events in June and September,
respectively. One interesting finding is that, despite receiving ample monsoon rainfall
(173 mm, Figure S1), the month of August witnessed the highest drought frequency (num-
ber of drought events) in both methods (Figure S9a). We found that the detection of drought
events using JDI_Copula was much higher than that of JDI_PCA pertaining to more severe
drought intensities. Spatially, Marathwada showed a minimum of seven droughts in each
month per pixel detected by JDI_Copula, which is just two in the case of JDI_PCA (except
for few pixels showing only one drought in January and February (Figure S10a,b)).

The drought conditions in any month of the Kharif season are crucial for farmers,
as they affect overall crop performance for the season. The analysis of the spatial dis-
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tribution of various drought events detected by JDI_PCA revealed that, in year 2015,
100% of the Marathwada region was under moderate to extreme drought, except for June
(Figures 5 and 6a). The onset of the monsoon in the year 2015 was normal, with no drought
conditions in June (Figure 5). However, the remaining months of the season experienced
severe to extreme drought conditions, especially in the southern part of the region, causing
overall Kharif crop losses of more than 60% (Figure S11), where parts of Osmanabad district
also recorded exceptional drought conditions in August. Similar characteristics of the
2015 drought were also registered by JDI_Copula, with some differences in the drought
intensities (JDI_Copula showed exceptional drought conditions over the entire region,
Figures 6b and 7). In both methods, a linear decreasing trend in drought severity was
observed in the Kharif season (except for June), which suggests an increase in drought
intensities and frequency (Figure S9a). However, the trend was not significant.
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Figure 6. Percentage of drought area in each month of Kharif (a,b) and Rabi (c,d) season for different
drought events during 2003 to 2020 using PCA (a,c) and copula (b,d). Drought severity varies from
D0 (yellow bars with least severity) to D4 (dark blue bars with highest severity).

In most of the drought years recorded by JDI_Copula, 100% of the region showed
drought conditions ranging from moderate to exceptional categories, with certain pockets
having at least abnormally dry conditions (Figures 6b and 7). JDI_Copula exhibited a ten-
dency to show exceptional drought conditions in cases of severe droughts in JDI_PCA by
encapsulating every response of the integrated variables. This resulted in higher drought in-
tensities by JDI_Copula, such as in the last three months of the Kharif season of 2015, where
100% of the area was shown to be under exceptional drought conditions (Figures 6b and 7).
The difference in the intensities of the drought severity by both methods is especially
evident in the initial years of the analysis (Figure 6). For example, in 2005, JDI_PCA
showed moderate drought conditions in June, while the conditions were exceptional by
JDI_Copula during the same period, while, in other months, only JDI_Copula showed
drought conditions with varying intensities over the region, with no drought detection by
JDI_PCA (Figure 6a,b). Detailed analysis of the integrated variables for the Kharif season
of 2005 showed that the entire region of Marathwada was under meteorological drought in
June, while only Aurangabad district in the northwest suffered from extreme to moderate
drought conditions in three months of the season (Figure S12 for SPEI 3, 2005). In the same
year, groundwater displayed severe drought conditions covering the entire area during the
same period, whereas SSI and SRI exhibited normal conditions, except for June (Figure S12
for SSI 2005, SGI 2005, and SRI 2005). As PCA allocates lower weights to SGI in Kharif
season and pertaining to comparatively higher contribution from other integrated variables
(Table 2), JDI_PCA averages the responses, and the drought severity was not significant by
JDI_PCA in 2005, except for June. Consequently, by capturing this groundwater drought,
JDI_Copula exhibited exceptional to moderate drought conditions throughout the season of
2005. In conclusion, JDI_Copula was more efficient in capturing the groundwater drought
than JDI_PCA.
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3.4.2. Rabi Season

Rabi season in Marathwada primarily depends on the groundwater for irrigation and
lasts for about six months, from October to March. We observed similar characteristics of
JDI_PCA and JDI_Copula in the Rabi season as those in Kharif, where JDI_Copula was able
to record a higher number of drought events than JDI_PCA (Figures 6c,d and S9b). The
number of drought occurrences is lower in December (JDI_Copula) and January (JDI_PCA)
compared to other months, which, again, increased in February and March as the season
progressed (Figure S9b).
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In the Rabi season, JDI_PCA showed abnormal to moderate drought conditions in
most of its captured events (Figure 8). During these events, 100% areal coverage over the
study area was observed for only two drought years, i.e., 2015–2016 and 2018–2019, with
more severe intensities than the rest of the events (Figures 6c and 8; 2015–2016 represents
Rabi season from October 2015 to March 2016. Same for other years). JDI_Copula, on the
other hand, showed 100% of the area under drought during most of the events by capturing
the integrated response of the involved hydroclimatic variables and water storage deficits,
with higher drought intensities than JDI_PCA (Figures 6d and 9). Rabi seasons of 2015–2016
and 2018–2019 were particularly critical for Marathwada. Pertaining to higher (negative)
precipitation anomalies in the Kharif season of 2015, the Rabi season of 2015–2016 expe-
rienced severe to exceptional drought conditions throughout (Figures 8 and 9), bringing
down the Rabi CP to about 65% of the average (Figure S11). Likewise, in 2018–2019, the
drought conditions were extreme to exceptional during the whole season, covering the
entire area and causing a loss of around 42% in the Rabi CP (Figures 8, 9, and S11). During
both years, the preceding Kharif season had suffered from severe to exceptional drought
conditions. However, in 2018–2019, with respect to drought in the earlier Kharif season,
the crop area was already lowered by about 35% (https://mahades.maharashtra.gov.in/,
accessed on 3 November 2021). This may be one of the reasons behind comparatively less
loss of Rabi production in 2018–2019, despite having severe drought conditions compared
to 2015–2016.
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3.5. Multiseason and Multiyear Droughts

Multiseason droughts gravely impact the ability of the farmers to deal with drought
situations by seizing their financial capabilities due to agriculture losses in the current
season in conjunction with the previous one. During 18 years of analysis, Marathwada was
subject to several drought events spanning multiple seasons and sometimes extending up
to years (Figure 10). We considered the season to be drought-affected when the drought
conditions were observed for three consecutive months in both the seasons and in any
of the three months for the Kharif season. If the drought situation possesses sporadic
breaks of one or two months owing to the anonymously heavy localized precipitation,
those months were also included in the drought duration. For April and May, scale 6_1_1_4,
in continuation to Rabi season, was considered to analyze the drought intensity.
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Figure 10. Continuous time series of JDI_PCA and JDI_Copula from 2003 to 2020 with scale 3_1_1_3
for June–September and scale 6_1_1_4 from October to May. Brown and green shaded regions
represent drought periods for JDI_PCA and JDI_Copula, respectively. The dotted horizontal line
represents JDI with intensity −0.5.

Considering the difference in the recorded intensities by both the methods, multiyear
droughts recorded by JDI_Copula persisted longer and were more severe than those by
JDI_PCA. For example, a 13-month drought was recorded by JDI_PCA, which started from
November of the Rabi season of 2011–2012 and continued to the Kharif season in 2012,
with a slight extension in the following Rabi season (Figure 10). The same drought was
recorded by JDI_Copula, starting from Kharif in 2011 and ending in Rabi 2012–2013, with
a duration of about 24 months (Figure 10). Similarly, with a gap of a few months in Rabi
season of 2014–2015, the drought starting in 2014 also continued till the Rabi season of
2015–2016, making 2015 the most critical drought year in Marathwada (Figure 10, [92]).
Although there is no specific crop season in the summer months of April and May, severe
drought conditions in these months increase the land surface temperature and soil moisture
demands of the following Kharif season. Similar behavior can be observed in the persistent
drought conditions in 2017, which started in February 2017 and continued till the end of
the Kharif season. Although there are no particularly abnormal drought conditions shown
by JDI_PCA for the remaining season of 2017–2018, the conditions were below normal,
causing soil moisture deficit and stress in the crops, which caused a decrease in the Rabi CP
compared to the previous year (Figure S11). In contrast, JDI_Copula discerned the multiyear
drought conditions from February 2017 until August 2019, covering drought conditions of
years 2017–2018, as well as the severity of drought in 2018–2019 (Figure 10). JDI_Copula
also unveiled the incessant multiyear drought conditions starting from February 2003 to
August 2006, together with some recoveries in Kharif of 2003 and in end of the Rabi season
of 2005–2006, which were typically absent in JDI_PCA (Figure 10). Although below normal
(JDI = 0) conditions can be observed for JDI_PCA for a majority of this period, the drought
severity detected by JDI_PCA was negligible. Detailed analysis for each integrated index
for this period suggests abnormal groundwater conditions over this region, which was
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satisfactorily captured by JDI_Copula (Figures S12 and S13). These results compare well
with the recorded CP anomalies. The Rabi CP in 2003–2004 and 2004–2005 was lower by
40% and 20%, respectively, while, for 2005–2006, it was slightly higher by 5% (Figure S11).
Despite abnormal groundwater conditions in Kharif in 2005, other variables contributed
to improving the CP by approximately 11%, which, again, decreased in 2006, mostly due
to the persistent groundwater anomalies and drought conditions in the initial months of
the season (Figures S11 and S12). Although category D0 leans towards the recovery of
the drought, prolonged exposure to abnormal conditions causes many lingering hazards
(environmental, social, etc.). We observed that JDI_Copula was highly effective in analyzing
the drought conditions covering multiple drought parameters compared to JDI_PCA and
can, therefore, be used to predict the CP anomalies in the respective season.

3.6. Prediction of CP from JDI

The significant association between CP and JDI can be established for copulas through
a regression equation, where the p-values for both the intercept and the slope were signifi-
cant (p < 0.05; while, for PCA, p > 0.05 for the intercept). Thus, JDI_Copula_3_1_1_3 was
used to predict the CP in the Kharif season with Equation (4) and JDI_Copula_6_1_1_4 for
Rabi CP prediction using Equation (5).

Kharif CP = 1.21 + 1.14 × JDI_Copula_3_1_1_3 (r = 0.82) (4)

Rabi CP = 0.76 + 0.84 × JDI_Copula_6_1_1_4 (r = 0.71) (5)

The CP is particularly sensitive for JDI values in Kharif season associated with the
volatile monsoon precipitation characteristics and its influence on the indices integrated in
the JDI (deviation of ±0.1 in JDI shows fluctuation of ~22.8% and ~16.8% in Kharif and
Rabi CP, respectively).

4. Discussion

The multivariate drought indices JDI_PCA and JDI_Copula prove to be potentially
competent and coherent in capturing the responses of each integrated hydroclimatic vari-
able and overall water deficit conditions of the study region in the case of drought. Al-
though different combinations of SPEI (3 and 6 months), SSI (1 month), SGI (1 month),
and SRI (3 and 4 months) were used for the development of JDI, there is no fixed effective
and common (applicable everywhere) combination of indices to construct the joint index.
Closely related combinations were found to exhibit comparable correlations with the crop
yield and showed similar drought intensities (Table S1 and Figure S14a–d). However,
when the time scale of the integrated index is longer, it often involves conditions that no
longer influence the current hydrological situations, which can result in higher correlation
between the JDI and the CP [72,87] (for example, scale 12_1_1_4 in Table S1). JDI with
different combinations of integrated indices are found to be highly correlated with each
other (Tables S4 and S5). The difference in these JDIs lies in the persistence of the drought
with change in the scale of any variable in the combination as the drought progresses
(Figure S14e,f). When there is a difference in the accumulation period (scale) of any one
index of the combination, the response of JDI differs accordingly. Shorter scale indices
attain positive values more quickly, while longer scale indices persist over a longer pe-
riod (Figure S14e,f). For example, JDI_PCA, as well as JDI_Copula for the shorter scale
(3_1_1_3), show higher drought intensity for June 2014, while longer scale indices (6_1_1_4
and 12_1_1_4) remain at comparatively lower intensities (Figure S14e,f) for June 2014.
Moreover, partial drought recoveries are captured more effectively by JDI having lower
scale SPEI by reducing the drought intensities, while JDI with 12-month SPEI still shows
severe drought conditions (e.g., from December 2015 to June 2016, Figure S14e,f). Drought
intensities in Kharif season are more efficiently captured by scale 3_1_1_3 by both JDIs than
scale 6_1_1_4 (e.g., Kharif 2014 and 2015 in Figure S14e,f), while, for Rabi season, scale
3_1_1_3 shows higher intensities than scale 6_1_1_4 (e.g., Rabi season 2005–2006, 2010–2011,
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and 2016–2017, Figure S14e,f). While JDI intensities for Kharif season are more comparable
for both the scales (3_1_1_3 and 6_1_1_4) used in this analysis (Figure S15a,b), there is
higher variability of drought intensities in Rabi season (Figure S15c,d). This shows that sep-
arate indices, using appropriate scale variables for integration, used to define the seasonal
drought characteristics provide more realistic results than using a single index for analyzing
the drought for the whole year. An area under drought by differently scaled JDIs also
shows variations with higher persistence of JDIs involving longer scale indices (Figure 11).
Moreover, the area under drought by JDI_PCA varies considerably with JDI_Copula, where
100% of the area is frequently under drought (Figure 11).
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The probability of agricultural drought occurrence increases with increase in the sever-
ity of meteorological drought [93]. Integrated indices, such as JDI, play an important role
in capturing the drought conditions created by different hydro-climatological abnormali-
ties. The periodic precipitation spells may improve the meteorological drought conditions
temporarily depending on the precipitation volume, subsequent meteorological conditions,
crop growing stage, and cropping seasons and patterns. However, it may not ameliorate
the agricultural, groundwater, or hydrological drought conditions, as observed for the
initial years of the analysis. JDI reasonably incorporates responses of all the integrated
variables and, thus, puts forward an improved understanding of the drought onset, which
is crucial for employing the mitigation strategies by the governing agencies. In particular,
JDI_Copula is more efficient in capturing the groundwater drought than JDI_PCA, as
observed in this analysis. However, as copula tries to consider the critical responses from
each integrated variable, JDI_Copula might give lower estimates, even in wet periods,
similar to the higher estimates in the case of droughts.

PCA and copula both possess the potential to be included in the drought management
of India, avoiding separate judgment of individual indices, which may not always capture
the integrated effect. Groundwater, being the main source of irrigation, has major influence
on the drought conditions in the region as observed by JDI_Copula. JDI_PCA’s limitation
lies in the fact that it is essentially a linear combination of the drought indices assumed to
represent maximum information from each variable through the variance [62]. JDI_Copula,
on the other hand, preserves the marginal distributions of the integrated variables and
their dependence structure. Although both JDIs are highly correlated and have a similar
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direction of the drought intensities, the captured drought intensity varies considerably,
with JDI_Copula frequently showing exceptional drought conditions. Similar observations
were reported by other studies, indicating the ability of copula-based integrated index to
capture extreme drought conditions better than other methods (e.g., entropy) [94]. How-
ever, this may not be advisable for the mitigation measures, as this overestimation may
stress the official resources to always deal with extreme conditions. Nevertheless, the
standardized JDI_Copula and standardized JDI_PCA (removing the mean and dividing by
standard deviation) give more similar drought intensities, where extreme behaviors are
better captured by JDI_Copula (Figure S16). Determination of the threshold for the drought
categorization is, however, a subjective assumption, where upscaling or downscaling the
threshold may result in changes in the drought severities and area under drought. Despite
these, JDI_Copula is recommended for evaluating the overall drought conditions with due
consideration to the response from every critical variable in the region, whereas JDI_PCA
can be used to inspect the average integrated response of regional drought characteristics.
Considering the wide impacts of droughts and their involved complexity, qualitative depic-
tions of drought impacts are as necessary as quantitative analysis. Synergizing the regional
expert knowledge from local bodies, agriculturists, and climatologists is also critical for
drought categorization and can play an important role in the interpretation of JDI to cor-
rectly capture the drought impacts. Furthermore, such multidisciplinary considerations
will also play a critical role in identifying weak links in the drought monitoring system and
for future mitigation strategies [95], especially in vulnerable regions, such as Marathwada.

5. Limitations and Future Scope

Although multivariate drought indices, such as JDI, enhance the collective detection
of various types of droughts, they may not overpower the ability of the univariate indices
to apprehend the drought characteristics, nor are they inherently superior. When a single
drought type, such as meteorological, is to be analyzed, a single standardized index, such
as SPI/SPEI, can still give better insights. Moreover, independent hydrological model
simulations at regional scales may provide more sophisticated inputs for integrated indices
than readily available LSM outputs, which needs further research. Here, we recognize
that longer time-series data would be more beneficial for standardized indices of GLDAS
model outputs, which also reflect the associated uncertainties. Nevertheless, JDI displays
the potential to be used for the assessment of local hydro-climatological conditions, leading
to improved current and future drought assessment techniques. Fine-resolution vegetation
indices, such as NDVI and VCI, can also be used along with JDI for enhanced spatial
details of drought conditions. The lack of high-resolution and seasonal CP data hinders the
accuracy in the assessment of drought severity. However, the approach of using a separate
multivariate index for each season, representing the seasonal crop conditions by the highest
correlation, as discussed in this study, will be beneficial in drought mitigation over any
region by increasing the accuracy of drought detection. Weekly monitoring, particularly in
Kharif season, may be beneficial in the timely detection of drought aggression and effective
mitigation measures. Socioeconomic drought, although difficult to include in multivariate
index, should be contemplated in future drought analysis, considering its grave impacts.
More evolutions are anticipated in JDI by incorporating the locally/regionally critical
drought indicators.

6. Conclusions

In this study, a multivariate joint drought index (JDI) was developed by integrating
standardized indices representing meteorological (SPEI), soil moisture (SSI), groundwater
(SGI), and surface runoff (SRI) drought by using PCA and Gaussian copula. Various
combinations of these indices were analyzed for correlation with seasonal crop production
(CP), and the combination showing the highest correlation was selected for the assessment
of drought conditions in the Marathwada region of central India. The key findings of this
study are as follows:
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1. Unlike traditional indices, JDI efficiently captured the combined effect of drought
variability in the study region. Moreover, the dynamics of seasonal CP and JDI
corroborate each other, showing the advantages of using separate JDI for drought
analysis in each season. JDI_Copula performed better in detecting the extreme drought
characteristics by each integrated variable by preserving their dependence structure
than JDI_PCA, which averaged the responses.

2. Groundwater, being the primary source of irrigation, is an important driver of
droughts over Marathwada, shaping the regional drought characteristics. JDI success-
fully captured this contribution, revealing its potential to support local-scale decision
making and the ability to be evolved for any region having different hydroclimatic
conditions by integrating locally critical inputs (e.g., snow accumulation, reservoir
storage, fire risks, etc.).

3. Multivariate indices are more efficient in capturing overall water deficit from multiple
drought-related indices compared to a univariate index. JDI, as presented in this study,
can play a crucial role in drought analysis with improved accuracy of detection of each
drought type and comprehensive inclusion of various seasonal drought characteristics.

4. JDI proves to be efficient in detecting the onset, termination, and duration of drought
based on the integrated effect of multiple drought indicators, which otherwise was
difficult to analyze. Out of drought characteristics captured by both the methods,
droughts of the years 2015–2016 and 2018–2019 were the most severe in the study
region.

5. The results of this study also highlight the importance of a multidisciplinary approach
in drought classification, which can play a crucial role in policy formation and food
security, by providing a timely and accurate estimation of drought characteristics
by reducing the inherent inconsistencies in the traditional methods. This is also
important for the socioeconomic security of vulnerable regions, such as Marathwada,
experiencing increased suffering of the farmers.

The novel approach of seasonal drought categorization for holistic quantification of
drought conditions, as presented in this study, should provide a unique perspective to
drought monitoring by increasing the accuracy of drought severity analysis worldwide.
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(JDI_PCA_3_1_1_3); Figure S5: Weight allocation to each hydroclimatic variable in each month by
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JDI_Copula_3_1_1_3) and Rabi season (c,d; JDI_Copula_6_1_1_4); Figure S8: Scatterplot showing
correlation between JDI_PCA and JDI_Copula for Kharif (scale 3_1_1_3) and Rabi (scale 6_1_1_4)
season for average Marathwada (a,b, r~0.95) and spatial correlation of the same in each season (c,d);
Figure S9: Time series of JDI_PCA and JDI_Copula in each month of (a) Kharif (June to September)
and (b) Rabi (October to March) season during 2003 to 2020; Figure S10: Number of moderate to
exceptional drought events in each month of Kharif and Rabi season during 2003 to 2020 using
(a) JDI_PCA and (b) JDI_Copula; Figure S11: Crop production (CP) anomaly in Kharif and Rabi
season during 2003–2019; Figure S12: Spatial drought severity over Marathwada in Kharif season
in each index, i.e., SPEI (3 months), SSI (1 month), SGI (1 month), and SRI (3 months) for the year
2004, 2005, and 2006; Figure S13: Spatial drought severity in Rabi season in each index, i.e., SPEI
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Figure S15: Scatterplot of JDI_PCA and JDI_Copula for scales 3_1_1_3 and 6_1_1_4 analyzed for
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Kharif months (a,b) and Rabi months (c and d); Figure S16: Scatterplot of standardized JDI_PCA and
standardized JDI_Copula obtained by removing the mean and dividing by standard deviation; Table
S1: Correlation of mean drought intensities by JDI_PCA and JDI_Copula with standardized crop
productions in Kharif and Rabi seasons for different combinations of the integrated indices; Table
S2: Correlation of JDI_PCA and JDI_Copula with their integrated indices for different combinations;
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