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Abstract: Autonomous parking is an active field of automatic driving in both industry and academia.
Parking slot detection (PSD) based on a panoramic image can effectively improve the perception of
a parking space and the surrounding environment, which enhances the convenience and safety of
parking. The challenge of PSD implementation is identifying the parking slot in real-time based on
images obtained from the around view monitoring (AVM) system, while maintaining high recognition
accuracy. This paper proposes a real-time parking slot detection (RPSD) network based on semantic
segmentation, which implements real-time parking slot detection on the panoramic surround view
(PSV) dataset and avoids the constraint conditions of parking slots. The structural advantages of the
proposed network achieve real-time semantic segmentation while effectively improving the detection
accuracy of the PSV dataset. The cascade structure reduces the operating parameters of the whole
network, ensuring real-time performance, and the fusion of coarse and detailed features extracted
from the upper and lower layers improves segmentation accuracy. The experimental results show that
the final mIoU of this work is 67.97% and the speed is up to 32.69 fps, which achieves state-of-the-art
performance with the PSV dataset.

Keywords: parking slot detection; semantic segmentation; around view monitoring (AVM) system

1. Introduction

During daily driving, an estimated 30% of cars traveling on city streets are actively
looking for parking [1]. The parking task includes multiple backward and forward move-
ments. For beginners who have not yet developed a sense of accurate environmental
perception, parking is the most difficult of all driving tasks [2]. Consequently, about 40%
of accidents with physical loss or damage occur during parking or maneuvering [3]. Au-
tonomous driving has become the leading research trend in future transportation, with
increasing demand for traffic safety and travel convenience. Undoubtedly, self-driving
cars will revolutionize the global automotive industry by improving road safety, traffic
efficiency, and the overall driving experience [4]. Following the definitions of driving
automation systems as outlined by the society of automotive engineers (SAE), automatic
valet parking (AVP) is a typical example of a Level 4 automated driving system (ADS) [5].
AVP will ease the tension of parking tasks by allowing drivers to leave their cars in the
drop-off area [6,7] with the vehicle parking itself. To realize automatic parking, the first
step is to identify parking slot accurately in vehicle movement [8,9].

In today’s complex driving environment, panoramic imaging systems are applied to
vehicle systems and become part of the advanced driving assistance system (ADAS) [10–12].
With deep research on artificial intelligence and deep learning, significant progress has
been made in recognizing parking slots efficiently in multiple scenarios with panoramic
images. For parking slot detection applications, there are mainly two roadmaps based
on deep learning. One is object detection and the other is semantic segmentation. Object
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detection-based parking slot detection networks often require more prior knowledge and
learn features from specific calibration data. L. Zhang et al. [13] proposed a novel deep
convolutional neural network (DCNN)-based parking slot detection approach, DeepPS,
which introduces an object detection-based parking space detection dataset. They com-
bined modified versions of AlexNet [14] and YoloV2 [15,16] to achieve DeepPS. Previous
studies, [13,17], have formulated the parking slot detection problem as two sub-problems:
marking-point detection and local image pattern classification. The marking-point detector
is based on YoloV2 and a customized DCNN architecture, using AlexNet as a template, is
designed to solve classification tasks. The network requires a large amount of prior data
in testing and it is not robust enough to adapt to a variety of parking slots. The seman-
tic segmentation algorithm, represented by the full convolutional networks (FCN) [18],
provides end-to-end training for inputs of arbitrary size, reducing the reliance on a priori
data [19]. This method makes the application scenario more flexible and eliminates prior
data constraints in realistic environments.

Many current prototypical implementations of automated driving heavily build upon
recent advances made in the field of visual semantic scene understanding from camera
sensors [20,21]. Semantic segmentation-based parking slot recognition networks are not
limited to information related to parking slot size and intersection position information.
This method can fully utilize the characteristics of deep learning on image feature extraction,
thus achieving better robustness. In [22,23], a semantic segmentation-based parking slot
detection algorithm and the panoramic surround view (PSV) dataset are proposed, which
provide an end-to-end detection method. To extract linear features of parking slots robustly
and precisely, Wu et al. proposed a VH-HFCN [22] network which added a VH-stage to
improve line segmentation of parking slots. To extract line features, the network contains
independent horizontal and vertical convolution kernels. Jiang et al. [23] proposed a
DFNet network which engaged dynamic loss weights and a residual fusion block (RFB)
to improve the segmentation accuracy of parking spaces. It is well known that fewer
computational parameters indicate faster calculation time under the same calculation
capability. Calculation time is a crucial parameter for real-time systems. In DFNet, after
the up-sampling layer of the feature extraction module, the feature maps are automatically
configured to the same size as the input image. Through the subsequent RFB, the calculation
parameters then increase significantly, also affecting calculation time. The balance of
recognizing accuracy and processing frame rate is critical for practical applications of
parking slot detection. The semantic segmentation-based parking slot detection methods
are more robust than those based on object detection as mentioned above.

Compared with other detection applications, the diversity of parking slot shape and
the complexity of scene light make semantic segmentation more suitable for parking slot
detection. Moreover, its end-to-end feature effectively reduces unnecessary post-processing
and makes the detection results easy to display intuitively. However, the increasing
computational effort results in the time used by the algorithm increasing significantly. As
a result, semantic segmentation poses a considerable challenge in real-time parking slot
detection. The requirement for the detection algorithm is not only to detect the parking slot
more accurately, but also to ensure excellent real-time performance.

There is still room for improvement in the existing technology used for parking slot
detection in practical application scenarios. In parking applications, while ensuring recog-
nition accuracy, real-time performance is also essential. There are various labeled parking
slot datasets in existing works, and the PSV dataset is a kind of semantic segmentation
dataset. The dataset is finely annotated with different marking lines in various parking
scenes. However, the whole parking slot detection is a dynamic process and there is an
urgent need for real-time parking slot detection, which is not well supported by the existing
networks. Therefore, we propose a real-time parking slot detection (RPSD) network with
the following contributions:

1. By cascading multi-scale image information, the number of parameters in the network
is effectively reduced, thereby improving computational efficiency. Due to the multi-
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layers network structure, the upper-layer is responsible for rapid primary information
extraction while the lower-layer extracts more details to ensure accuracy. Therefore,
based on inheriting the previous advantages of semantic segmentation networks, the
proposed network structure maintains recognition accuracy while achieving real-time
parking slot detection.

2. Using the self-attention mechanism for channel domains, the ability to recognize small
lines in the image is effectively improved. Pixel accuracy and the mIoU of the network
are improved.

3. The adaptive weighted loss function based on weighted cross-entropy is proposed to
solve the imbalance of data and classification effectively. The average improvement
in mIoU is almost 2% for small proportion categories.

The RPSD network mainly addresses the demand for real-time performance in parking
slot recognition and ensures the accuracy of the network. The rapid network ensures
network detection speed, which is the design theme of the RPSD network. By optimizing the
network structure, the multi-layers network structure proposed in this paper significantly
improves the computational efficiency of the network to meet real-time requirements
without losing detection accuracy. With the help of feature information extraction between
channels, and small-scale category loss optimization, the network achieves the best mIoU
for the PSV dataset. As a result of the above contributions, the overall detection accuracy of
the RPSD network reaches state-of-the-art performance with the PSV dataset, with a mIoU
of 67.97% in the test, while real-time detection is achieved at the same time with a frame
rate of 32 fps.

2. Related Work

In automatic driving systems [24] based on visual perception, there are already various
road marking detection works that can effectively extract ground information. Based on
different usage scenarios, systems such as lane detection and parking slot detection have
emerged. The goals of these two methods are quite different: lane detection focuses
on extracting the lane in front of the vehicle, while parking slot detection focuses on
detecting the information around the vehicle and the parking slot. The existing lane
detection methods, which do not satisfy the target scenario of this work, are as follows: X.
G. Pan et al. [25] proposed the SCNN network, enabling the information passing between
pixels across rows and columns in a layer. The SCNN is more conducive to segmenting long
continuous shapes in the images, but its running time has reached 42 ms (excluding the
backbone network). Thus, this method cannot meet the requirement of real-time parking
slot detection. S. Lee et al. [26] proposed VPGNet, which projects pixel-level annotation
to the grid-level mask. This grid-level mask is not suitable for parking slot detection
applications. LaneNet [27] proposed a real-time lane detection network for autonomous
driving. LaneNet uses a lane edge proposal network to generate a binary lane edge proposal
map indicating the position of the pixels that likely lie on the edge of lane segments. Hence,
LaneNet is not suitable for semantic segmentation of parking slot datasets such as the PSV
dataset used in this study. Self-attention distillation (SAD) [28] allows a model to learn from
itself, obtains substantial improvements, and searches the corresponding probability map
every 20 rows. In parking slot detection, this feature may significantly reduce detection
accuracy. In [29], a traffic scene semantic segmentation method is proposed. Even with a
lightweight backbone, MobileNet, the running time of their network is 0.428 s, which is
far from the real-time performance requirement. Jingyu Li et al. [30] proposed the Lane-
DeepLab model to obtain accurate lane detection results for high-definition maps. For high
lane detection accuracy, their method has a low detection speed. Therefore, these proposed
lane detection [31] methods may not suit parking slot detection applications, especially for
the PSV datasets used in this study.

In order to obtain the complete image information around the vehicle and generate
a panoramic image, the around view monitoring (AVM) system is introduced into the
automatic driving system. With the AVM system [32–34], drivers can effectively observe
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the information around the vehicle to reduce collisions and improve driving safety. There
are already several previous studies on AVM systems based on different hardware plat-
forms. Y. C. Liu et al. [35] presented a bird’s-eye view system that provides a panoramic
image [36,37] of the vehicle’s surroundings utilizing six fisheye cameras [38–40] mounted
around the vehicle. The panoramic image allows the driver to observe parking slots under
various lighting conditions effectively. Some previous parking slot detection algorithms
are primarily based on traditional image processing methods. Suhr proposed a series of
methods [41–43] based on the hierarchical tree structure of corner–junction–slot, which first
detects corner points and then performs line detection and parking slot detection. When
light in the application scene is variable, the accuracy of the traditional algorithms for
corner detection decreases. Thus, the methods proposed in [41–43] are not robust enough
and cannot be applied to various scenarios.

The rapid development of artificial intelligence and deep learning has brought com-
puter vision to a new level. Convolutional networks are driving advances in recognition [28].
The application of deep neural networks in semantic segmentation has dramatically im-
proved the accuracy of object recognition and the intersection ratio. Pioneering studies
in this field are reviewed as follows: Jonathan Long et al. [18] proposed the FCN for
image semantic segmentation and realized an end-to-end network. In 2015, Olaf Ron-
neberger et al. [44] proposed U-net, which is used for solving simple problems of small
sample segmentation, such as medical film segmentation. PSPNet [45] is a pyramidally
structured network that can capture multi-scale semantic information in an image. The
Deeplab [46–49] series network uses the atrous spatial pyramid pooling (ASPP) structure
and uses limited network parameters to achieve multi-scale image information collection.
Segnet [50] uses unpooling, which needs the position parameters of the pool mask from the
corresponding pooling. ENet [51] optimizes the model parameters and accelerates forward
time while maintaining high accuracy. H. Zhao et al. [52] proposed a multi-layers cascade
network called ICNet. HFCN [53] proposed a highly fused convolutional network based on
multiple soft cost functions. In order to improve accuracy, an attention mechanism [54,55]
was introduced in the deep learning methodology. Wang et al. [56] explored non-local
operation in the spacetime dimension for videos and images with the help of a self-attention
module. Another work [57] discussed the relationship between global context information
and large kernels. Overall, various studies have been conducted, including studies related
to high resolution representation learning [58], object-contextual recognition [59], and the
speed performance of the network [60].

3. Proposed Method

Compared to the general dataset, the most challenging task of applying the semantic
segmentation method to solve the parking slot recognition problem is the proportion of
the background. In common semantic segmentation datasets, such as Cityscapes [61] and
Pascal VOC2012 [62], the proportion of segmented objects in the image is relatively large.
However, in the PSV dataset, the parking line width of the labeled image is represented
by a few pixels. Therefore, the edge part in the general segmentation dataset becomes the
main part of the parking slot segmentation, as shown in Figure 1. Due to the characteristics
of the PSV dataset, the accuracy improvements in pixel recognition and mIoU indicate
a significant improvement in pixel accuracy for all categories except the background.
Accuracy is usually guaranteed at the cost of a complex network structure and huge
network parameters, which imposes a considerable computational load and increases
computation time. We propose a real-time network to address this challenge, significantly
improving the processing frame rate while considering accuracy. Based on ensuring real-
time performance, we propose the RPSD network.
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Figure 1. Multi-dataset image content comparison. In this figure, the general semantic segmentation
datasets: (a) Cityscapes; (b) Pascal VOC2012; and (c) the PSV parking slot detection dataset used
in this study are shown, respectively. In the Cityscapes and Pascal VOC2012 datasets, the labeled
ground truth parts account for most of the entire image. However, in the PSV dataset, most of the
images are background and only small parts are labeled.

The overall structure of the RPSD network is shown in Figure 2. The main body of
the network is composed of a two-layer network. Due to the real-time performance re-
quirement, the ASPP module is used for multi-scale context sampling of the network.
The backbone of RPSD is ResNet50 [63], and some modules are improved from the
DeeplabV3+ network.
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Figure 2. The overall structure of the RPSD network. The network is composed of two layers and
the blue dashed boxes in the figure mark the respective parts of the two layers. The red wireframe
represents the backbones, the ResNet50 and the ResNetly2 for the upper and lower layers, respectively.
The figure shows the 1/4 input image and full-size input image for the upper and lower layers and
the inferred full-size output image.

We resize the input image to 1/4 of the original dataset’s image size, send it to the
upper network as input, and obtain the upper-layer feature map through the semantic
segmentation process of the upper network. The input of the lower-layer network is the
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original image of the PSV dataset, and the feature map of the lower-layer output is obtained
through processing of the lower-layer encoding network ResNetly2. ResNetly2 is the
network that removes the conv4_x and conv5_x layers in the standard ResNet50 network,
which contain many bottleneck architectures. The feature maps generated by the upper
and lower networks are concatenated to generate the final decoding network’s input. The
output image generated after decoding is interpolated to produce the final output image.

Compared to the original Deeplab V3+ network, the RPSD network adds channel
attention module (CAM) [64] to the decoding part of the upper and lower layers. The
CAM effectively improved the accuracy rate without adding much calculation. Therefore,
the CAM is more suitable for real-time networks. In the lower network, the feature map
generated by the decoding module of the upper network is used as a coarse segmenta-
tion input for the lower-layer network. The small size of the image input for the upper
network dramatically reduces the time for image segmentation. Due to the limited image
information, the accuracy of the feature map after segmentation is not sufficient, which
is called coarse segmentation; nevertheless, when used as input to the object feature fu-
sion module (OFFM), this information can guide the lower-layer network to work. The
OFFM fuses the motioned coarse segmentation input with the detailed features extracted
from the original size map by the lower ResNetly2 module and generates the lower ASPP
module’s input. The two layers of the network have their own decoder modules which
respectively deal with input features of different sizes and interpolate the output to the
proper size. The properly sized output image of the upper network decoder is the coarse
segmentation feature map, and the decoded result of the lower network is the final output
segmentation result.

The double-layers architecture of the RPSD network effectively decomposes the seg-
mentation problem that usually needs a further deep network. The entire network com-
prises two parts: a fast network with coarse segmentation and a detailed feature extraction
network. Two delicate computational processes are merged in this structure which sim-
plifies the complex problem. The double-layers architecture of the RPSD network is the
crucial point which achieves better balance in speed and precision.

3.1. Multi-Layers Network Structure

For optimizing network speed, reducing the input image size, optimizing the network
structure, and reducing network parameters are the most effective methods. Especially
for deep networks, the network structure and computational requirements are highly
correlated. The multi-layers cascading network structure has both advantages of the high
speed of small networks and the accuracy of large networks, which is ideal for achieving
high accuracy real-time applications. In this network, the upper network’s input image
size is 1/4 of the original dataset, effectively reducing the input image’s size in the upper
network and optimizing network processing speed. After the upper-layer segmentation, the
output feature map is classified by image content, which is used as part of the lower-layer
network’s decoding input to guide further segmentation. Although the input size used
by the lower-layer network is the original image size of the PSV dataset, after chopping
the backbone, the network parameters of the lower-layer network’s encoding part are
significantly reduced and calculation time is saved. Based on retaining image details,
the original size input of the lower network is combined with the coarse segmentation
prediction part of the upper network as the lower decoding network’s input. On this basis,
the final segmentation accuracy is guaranteed and the operation time is effectively reduced,
making real-time performance of the network possible.

The OFFM effectively fuses feature information from both the upper and lower layers,
as shown in Figure 3. The upper-layer network decoding result is established by the
upper-layer network decoding module based on the 1/4 size image. The upper-layer result
is further interpolated to 75 × 75 to facilitate combining the upper-layer result and the
lower-layer result. The upper and lower layer results of the same size are fed into the OFFM
module to obtain the fusion result. The fusion result has the classification marks after fast
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segmentation of the upper-layer network and maintains the details of the original size
input image of the lower-layer, which plays a vital role in improving the final segmentation
accuracy. After the concatenation, the fusion result consists of 256 + 512 channels which are
convoluted by a 3 × 3 convolution core to generate the output feature map of 256 channels,
then the feature is extracted and output by 3 × 3 convolution.
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Figure 3. The structure of the OFFM. The yellow parts are the size of the input feature map. The
blue parts are the internal compositions of the OFFM. B is the batch size. The figure shows that the
256 input channels of the upper-layer and the 512 input channels of the lower-layer are convoluted
by 3 × 3 kernels. Finally, a 256-channel output feature map is generated by 3 × 3 convolution.

The multi-scale information overlay has greatly improved the pixel accuracy and the
mIoU of the image. The atrous spatial pyramid pooling module’s application keeps the
single kernel parameter at a size of 3 × 3 and collects image information at multiple scales
through dilation. In the decoding part of each layer of the network, due to the use of the
ASPP, the multi-scale context capture of a single image is effectively completed and the
convolution parameters are reduced, which also improves detection efficiency. For specific
calculation parameters, please refer to the Experiments and Results section.

3.2. Self-Attention Mechanism for Channel Domain

Based on application of the multi-layers network structure, the attention mechanism
is introduced to improve inference accuracy further. An attention function can be described
as mapping a Query (Q) and a set of Key (K)—Value (V) pairs to an output. For the
self-attention of image application, the value of Q, K, and V are all from the input feature
maps, as shown in Figure 4. The input shape of the module is B × C × H × W. The CAM
module only uses attention on the channel. Compared to the spatial attention mechanism,
the calculation size of Q and V is changed from H × W × H × W to use only C × C, which
not only maintains the correlation between channels but also reduces computational load.
To calculate the attention between channels, we assign the input feature maps to K, Q, and
V, respectively, and reshape them to B × C × HW. After transposing Q and multiplying it
with K, the feature map shape of the output is B × C × C, and the attention map of each
channel is obtained by softmax:
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xji =
exp

(
Ai·Aj

)
∑C

i=1 exp
(

Ai·Aj
) (1)

where xij measures the ith channel’s impact on the jth channel, Ai represents the original
features of channel I, and Aj represents the original features of channel j.
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Multiply the attention obtained by each channel with V, sum them, and reshape them
to B × C × H × W. Afterwards, multiplying the result by the weight and adding to the
original features obtains the final output of the CAM, as shown in Equation (2). Compared
to the none CAM structure, channel attention effectively digs out the correlation of channel
information and improves the accuracy rate.

Ej = α
C

∑
i=1

(
xji Ai

)
+ Aj (2)

where α gradually learns a weight from 0 and xij measures the ith channel’s impact on the
jth channel.

After the attention mechanism is used on the channel, the entire accuracy can be
improved through limited calculation and the CAM has little effect on the overall timeliness
of the model.

3.3. Adaptive Weighted Cross-Entropy Loss Function

Generally, the labeled parts of the parking slot semantic segmentation dataset are the
parking slot and the auxiliary lane lines in some scenes. The labeled classification with
parking slot as a category is the classification with the highest proportion of removing the
background. In the images collected in the actual dataset, the open road accounts for most
of the entire image. Therefore, this category is marked as the background part with the
largest proportion in the dataset. Due to the characteristics of the PSV dataset, parking slots
and lines occupy a small proportion of the image and pixels in some images do not even
exceed 10% of the image proportion, which has a significant negative impact on the final
pixel accuracy and mIoU. The main reasons for this problem are the uneven distribution
of the dataset and the large proportion of background. To solve the problem, an adaptive
adjustment based on the weighted cross-entropy loss is introduced in this paper. Compared
to the average value of each classification of the typical cross-entropy loss function, the
loss function with adaptive weight can reasonably allocate each category proportion. The
loss function can be given a higher weight for categories with low occupancy, ensuring
better optimization of the final result. The proposed loss function pays attention to the
imbalanced classes and ensures computational efficiency. Segmentation accuracy of a
category is evaluated by the intersection/union metric and the accuracy can be obtained by
the equation:
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segmentation accuracy =
TP

TP + FP + FN
(3)

where TP, FP, and FN represent true positives, false positives, and false negatives, respectively.
Focusing on the imbalanced weight distribution, the weight of each classification is

represented by wi. After every five epochs, the entire network will be evaluated to obtain
the IoU of each part. We use the reciprocal of each type of IoU as the latest wi. To prevent
the proportion of some classifications being too small, which makes their reciprocal too
large and affects the training. We set up the upper and lower thresholds for weight, which
are 1 and 10, respectively. There are W (W = 2) layers and N (N = 7) categories. In layer i,
the spatial size of the predicted feature map P is yi × xi, and the value at position (n, y, x) is
pn,y,x. The corresponding ground truth label is py,x. The loss function is represented by the
following equation:

L = −
W

∑
i=1

wi
1

yixi

yi

∑
y=1

xi

∑
x=1

log
epy,x

∑N
n=1 epn,y,x

(4)

With the help of threshold weights, the model can quickly converge. By adjusting
the weight of each category, the loss function moves the final accuracy of each category
towards the optimal result.

This section introduces improving network speed in principle and proposes the multi-
layers network. While ensuring network speed, the channel attention module is utilized
to improve accuracy without significantly increasing calculation. The application of the
adaptive weighted loss function optimizes the impact of small proportion classifications on
overall accuracy and further improves the final accuracy. The above theoretical benefits are
fully demonstrated in the Experiments and Results section.

4. Experiments and Results

The dataset used in this experiment is the PSV dataset produced and published by
the Tongji Intelligent Electric Vehicle (TiEV) team. The images were collected at Tongji
University in two sizes, 600 × 600 and 1000 × 1000. There are 4249 panoramic RGB images
with the labeled ground truth of six object classes: background, parking slot, white solid
line, white dashed line, yellow solid line, and yellow dashed line. The annotated dataset is
divided into 2550/425/1274 images for training, validation, and testing, respectively. The
proposed method based on Pytorch is implemented and trained on an NVIDIA GeForce
GTX TITAN Xp GPU. The input images are converted to a uniform size of 600 × 600. For
training, we use the stochastic gradient descent (SGD) optimizer with an initial learning rate
of 0.01, weight decay of 0.0005, and momentum of 0.9. Following the previous experimental
setup, we employ the poly learning rate policy where the current learning rate is multiplied
by 0.9 after each iteration. In our experiments, we use pixel accuracy and the mean of
class-wise Intersection over Union (mIoU) as the evaluation metric.

4.1. Ablation Study

In order to verify the efficiency of the network and show the impacts on different
inputs and network structures, we conducted a series of ablation studies. The studies are
as follows: the influence of input parameters and network structure on computational
efficiency; improvement in accuracy via the CAM module extracting inter-channel features;
and improvement in the final accuracy value via use of the adaptive weighted loss function
to balance the classification of small proportions.

In Section 3.1, the cascade structure is designed to optimize the number of calculations
to achieve better real-time performance. This section analyzes the influence of the network
structure and the number of network parameters on computational load. To guarantee
Acc and mIoU, two ResNet50 networks are engaged as the backbone for each layer of
the RPSD network. The backbone of the upper RPSD network is ResNet50, which uses
300 × 300, 3-channel RGB images. The 300 × 300 images are downsampled from the
cropped 600 × 600 uniform size dataset. The backbone of the bottom RPSD network is
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the ResNetly2 network, which is the ResNet50 without the last two layers, and the input
dataset uses the cropped 600 × 600 uniform size directly; for comparison, an original
ResNet50 is introduced using the cropped 600 × 600 uniform size dataset as a benchmark.
The statistical results of the three comparative items mentioned above are shown in Table 1.
The total numbers of trainable parameters, the total number of integer floating-point
numbers, and the total number of multiplication–addition operations are counted in Table 1.
The units of the total number of integer floating-point numbers and the total number of
multiplication–addition operations are Giga Floating-point Operations Per Second (GFlops)
and Giga multiplication-addition Operations (GMAdd), respectively.

1. The total amount of trainable parameters for ResNetly2 with 600 × 600 input size
is 1,444,928, which is about 6% of the original ResNet50 with the same input size
because the network structures of these two comparison items are different;

2. The total amount of trainable parameters for those two entire ResNet50s, with either
600 × 600 or 300 × 300 input sizes, is 25,557,032 and the total number of integer
floating-point calculations for the entire ResNet50 with 300 × 300 input size is about
23.2% of that with 600 × 600 input size because the input size is only 1/4 of the
original input. This brings compression of all feature map sizes.

Table 1. Network calculations under different backbones and inputs.

Methods Total Params Total Flops (GFlops) Total MAdd (GMAdd)

ResNet50_600 25,557,032 28.58 57.04
ResNetly2_600 1,444,928 12.39 24.7
ResNet50_300 25,557,032 6.63 13.23

By comparing to the benchmark, it can be observed that both Flops for each layer are
smaller than the original ResNet50. The total amount of computation for the two-layers
network’s backbones is only 66.55% of that of a single-level network, which significantly
reduces the amount of computation, effectively improves the running speed of the network,
and makes the network available in real-time.

Based on the networks mentioned above, a test is performed on a dataset of 10,000 images
with a batch size of 8. In Table 2, the actual consumption time and the network speed of each
network are shown. We can also observe the time consumptions of the different network
structures under the same input image size and the time consumptions of the same network
structure under different input sizes. Under the same input image size of 600 × 600, the
operating times of ResNet50 and ResNetly2 are 100.89 s and 63.66 s, respectively, indicating
that simplification of the network structure contributes significantly to operating time;
under different input image sizes of 600 × 600 and 300 × 300, the operating times of those
two ResNet50s are 100.89 s and 31.39 s, indicating that reduction in network input size
contributes significantly to operating time. Thus, network efficiency can be significantly
improved by simplifying the network structure and reducing network input size. The
RPSD network possesses both of the aforementioned advantages.

Table 2. Network time consumption under different backbones and inputs.

Methods Total Time (s) Speed (fps)

ResNet50_600 100.89 99.12
ResNetly2_600 63.66 157.08
ResNet50_300 31.39 318.57

Tables 1 and 2 explain the advantages of the two-layers network structure of RPSD:

1. This work decomposes a traditional single-layer network problem into two sub-
problems. There is no causal relationship between the calculations of the upper-layer
and the lower-layer, and these calculations can be processed in parallel; limited
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by the ResNetly2_600 branch, processing time is 64% of that of the single-layer
network (Table 2);

2. Usually, the cost of splitting a complex problem into two simpler independent prob-
lems indicates an increment in total processing cost, which is the general cost of
problem simplification. In contrast, the total amount of calculation of the two-layers
network structure is 66.55% of that of the traditional method (Table 1), which con-
tributes to a computationally efficient architecture.

From the above ablation studies, it can be observed that reducing the input size of the
same network and reducing the network parameters by reducing the network structure
can effectively improve calculation speed.

Due to the characteristics of the PSV dataset, learning annotation information is
much more complex than that of the general dataset as, in the general dataset, object
classifications are large-area labels; in contrast, the pixel points corresponding to the
parking slot classifications of the PSV dataset are much fewer. In the PSV parking slot
detection dataset, most background roads are marked as 0 and only a few parts of the image
are marked as road parking slots. Therefore, improving the pixel accuracy, i.e., accurate
recognition of limited information, is a challenge. In this paper, the channel attention
mechanism is used to establish the relationships among the channels more closely, thus
improving pixel accuracy and mIoU.

Deeper extraction of the correlation between channels can effectively improve the
network’s recognition ability, thus improving pixel accuracy and the mIoU. Therefore, we
extract the lower part of the network, remove the OFFM, and use only the remaining part
to verify the validity of the CAM module. We conducted an ablation study on the channel
attention module, and the results are shown in Table 3. In Table 3, w/o Att. and Channel-att.
represent the networks without the CAM module and with the CAM module, respectively.
Pixel Accu and mIoU represent the average pixel accuracy and the average intersection
ratio. The experiment takes the original dataset as input and the ResNetly2 backbone is
only a shallow network. As shown in Table 3, the CAM module plays a vital role in feature
extraction. We can see the improvements in Pixel Accu and mIoU, after using the CAM
module, from the experimental results. From the speed comparison in the last column of
the table, the processing times are almost the same. As a result, the processing time is not
affected by the CAM procedure.

Table 3. Influence of CAM on pixel accuracy and mIoU.

Methods Pixel_Accu mIoU Speed (ms)

w/o Att. 98.34% 47.06% 20
Channel-att. 98.41% 48.15% 21

The adaptive weighted loss function more effectively balances the uneven distribution
of the data in the dataset. By adjusting the loss of each classification, the final pixel
accuracy and mIoU are effectively guided. There is a considerable uneven distribution in
the categories collected in the PSV dataset. To verify the effect of adaptive weighted loss
on the final mIoU more clearly, we select IoU of Category 4 White Dashed and Category
5 Yellow Solid before and after using this method, as shown in Table 4. In the table, w/o
apt weight loss and apt weight loss are the unused adaptive weighted loss and the used
method, respectively. The results in the table show that these two relatively small categories
can effectively improve their IoU with the aid of weight adjustment, thus improving the
segmentation accuracy of the overall dataset. The data of these categories have a significant
impact on the final average data.

With the ablation study of adaptive weighted loss function, the mIoU of the two
smaller categories is improved, as shown in Table 4. The computational cost of the adaptive
weighted loss function is negligible compared to the improvement in mIoU. Since the
calculation part of adaptive weighted loss is only used in training, its implementation does
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not cause time consumption in the later inference step. This method has no calculation cost
in actual processing and improves the mIoU.

Table 4. Improvement of small proportion category by adaptive weighted cross-entropy.

Methods White Dashed Yellow Solid

w/o apt weight loss 25.38% 49.93%
apt weight loss 27.19% 51.25%

4.2. Results with the PSV Dataset

In the comprehensive experiment, we apply various well-known semantic segmenta-
tion networks to the PSV dataset and collect their performance for comparison with this
work. As shown in Table 5, FCN8 [28], U-Net [29], ENet [36], DeeplabV3+ [33], PSPNet [30],
VH-HFCN [10], and DFNet [27] are introduced and used for comparison to the RPSD
network of this study. The first line of Table 5 is the classification of the PSV dataset:
pixel accuracy, mIoU, and operating speed. The data under the classifications are the
corresponding IoUs. In summary, among all competitors, this work has the highest mIoU
(67.97). In the Speed column, only ENet and this work achieve the requirement of real-time
segmentation (24 fps). As a fast segmentation network, ENet’s speed advantage comes at
the cost of losing accuracy (39.03 in mIoU). From the results in Table 5, the RPSD network
achieves the best pixel accuracy and mIoU for the PSV dataset and the speed of the RPSD
network reaches 32.69 fps; this achieves the best balance between precision and speed in all
of the reference networks and meets the design requirements.

Table 5. Predicted mIoU and inference time for the PSV test set with the reference models.
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FCN8 [28] 98.05 49.59 49.13 27.75 50.43 52.15 98.07 54.52 20.24
U-Net [29] 98.91 62.30 61.28 11.01 25.87 49.24 98.87 51.44 13.28
ENet [36] 98.56 50.26 45.97 0.00 0.00 39.45 98.42 39.03 60.71

DeeplabV3+ [33] 98.82 60.51 60.72 32.00 70.29 55.20 98.84 62.93 19.31
PSPNet [30] 98.92 63.56 62.38 35.02 68.16 52.77 98.93 63.47 12.87

VH-HFCN [10] 96.22 36.16 39.56 21.46 47.64 38.03 96.25 46.51 <2.78 1

DFNet [27] 98.45 58.40 59.80 49.90 68.32 64.32 98.47 66.53 9.09 2

RPSD (this work) 99.00 65.36 64.95 36.37 71.59 70.57 99.01 67.97 32.69
1 The inference time or frame rate of VH-HFCN was not mentioned in [10]. VH-HFCN is based on HFCN and
divides the up-sampling operation on the feature maps into five steps. HFCN extends FCCN with a highly fused
network. Each image takes about 0.36 s to process when evaluated in FCCN. Therefore, as an extension of FCCN,
the parameters of VH-HFCN are much larger than FCCN, and the running time should also be longer than 0.36 s.
2 The inference time or frame rate of DFNet was not mentioned in [27]. According to the description in [27], we
implemented the network structure of DFNet and tested the inference time.

In the PSV dataset, the mIoU cannot be improved simply by increasing the scale
of network parameters. In Table 5, the classification accuracies of ENet and U-Net are
extremely uneven (more than a five-fold difference). As shown in Figure 5, these networks
have insufficient distinguishing abilities in some specific small-scale classifications with the
same input images. Increasing the scale of network parameters brings the limited incoming
recognition accuracy expectation on specific classifications for these networks. Therefore,
we cannot simply adjust the network parameters to achieve a balance between accuracy and
speed. None of the comparison networks can achieve a practical balance between accuracy
and speed, except for the RPSD which benefits from its two-layers network architecture.
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Figure 5. The final segmentation results of multiple algorithms. In the figure, (a) and (b) are the
input image and ground truth in the PSV dataset, respectively, followed by inference images of
FCN8 (c), U-Net (d), ENet (e), DeeplabV3+ (f), PSPNet (g), and our result (h) in the last column. In
order to more clearly show the inference ability of each network for the PSV dataset and facilitate
the observation for readers, we have marked the parts in the inference image that significantly differ
from the ground truth with a yellow dotted box. The figure shows that the network’s accuracy in the
front part is relatively low, and there is a mislabeling problem. The network in this paper has the
highest accuracy and mIoU which is closest to the ground truth.
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On the one hand, the RPSD engages two network structures with fewer operating
parameters than the standard network. The image features can be extracted through the
coarse segmentation of the upper-layer network with a reduced size image input and the
detailed image features can be extracted from the lower-layer network that is a part of
the standard network. Those two methods contribute to the real-time performance of the
overall network. On the other hand, fusion of the coarse and detailed features extracted
from the upper and lower layers, respectively, significantly improves the segmentation
accuracy of the whole network. In Table 3, the mIoU of the RPSD network without the
upper-layer network is 48.15% and, in Table 5, the mIoU of the whole RPSD is 67.97%, with
a significant increase in the accuracy of the whole network after the fusion. Therefore, the
entire RPSD network achieves real-time segmentation while maintaining high accuracy.

Figure 5 shows the inference results comparison of the PSV dataset after the above
network training. Columns (a) and (b) are input images and ground truth in the PSV dataset,
respectively. The following columns are the contrast networks, including FCN8 [28], U-
Net [29], ENet [36], DeeplabV3+ [33], and PSPNet [30], and the last column shows the
results of this work. The colors are labeled according to the six classification orders in the
PSV dataset. The sequence is black, maroon, green, light brown, navy blue, and purple.
Except for the background classification, the inferred image of RPSD is the only one without
misclassification, compared to the ground truth. The upper layer of the RPSD network
effectively guides the final segmentation result by coarse segmentation of the resized
image so that the network avoids misjudgments. Even for small-scale classifications, the
application of adaptive weighted loss enables the Yellow Solid classification signed in navy
blue to be effectively identified. Combined with the improvement in edge recognition by
the CAM, the inference images of the RPSD network are also closer to the ground truth. As
can be seen from the figure, the RPSD network’s output is the closest to the ground truth,
with correct classification and a precise edge which achieves the best accuracy and mIoU.

Figure 6 shows the relationship between the accuracy and the inference speed of the
experimental networks more intuitively. The horizontal axis is the inference speed and the
vertical axis is mIoU. The red dotted line in the figure is the real-time inference line, which
performs at the speed of 24 fps. We mark the previous experimental data: the red dot marks
the RPSD network result and the blue dots mark the others. From the figure, we can see
that only the RPSD network and ENet completed the real-time recognition of parking slots,
and the RPSD network is able to lead and achieve the best result in the mIoU ranking.

Finally, the mIoU of the RPSD network achieves 67.97% while guaranteeing real-time
performance, which is attributed to the simplification of the upper and lower branches. The
data in Table 3 show that the independent contribution of the lower network to accuracy is
48.15%, while the final performance of the entire RPSD network is 67.97% when the upper
network is added. This indicates that the fusion of coarse segmentation information from
the upper network plays a vital role in supporting the accuracy of the network. Combining
the information with Table 1, the RPSD network does not bring more computational load
due to the two-layers network branches. The frame rate of the RPSD network in Table 5 is
much higher than networks with similar accuracy, directly reflecting the computational
effort reduction. The experimental data show that the RPSD network extends the innovative
architecture with fast speed and high accuracy, achieving state-of-the-art performance with
the PSV dataset.
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Figure 6. The performance of each network’s Speed and mIoU. The x-axis is Speed, the y-axis is
mIoU, and the red dotted line is the real-time dividing line (when the network inferred frame rate is
24). The red dot in the image is the output result of our network. The network has reached the highest
mIoU for the PSV dataset and has real-time performance with an inferred frame rate of 32 frames.

5. Discussion

The experimental results show that the RPSD network proposed in this paper achieves
real-time semantic segmentation and effectively improves detection accuracy for the PSV
dataset. The cascade structure effectively reduces the operating parameters of the whole
network, realizing the real-time performance requirement. The fusion of the coarse and
detailed features extracted from the upper and lower layers significantly improves the
segmentation accuracy of the whole network. The channel attention mechanism is engaged
in establishing the relationships among the channels, thus improving the mIoU. With the
help of adaptive weighted cross-entropy loss, the imbalanced data distribution charac-
teristic of the PSV dataset can also be effectively addressed, thus improving the overall
detection accuracy of the network. Compared to the parking slot detection in [24,46], the
RPSD network does not need to know the primary parking slot data and has no mandatory
restrictions on the size and shape of the parking slot, which makes parking slot detection
in different environments more robust as this work is based on a semantic segmentation
network. Both the RPSD network and [23] are semantic segmentation methods and the
accuracy of the RPSD network in the test set is 67.97%, which is higher than the existing
network. The experimental result shows that the proposed network exhibits outstanding
accuracy when inferring new input images and possesses good reliability. Compared to the
existing methods, the upper-layer network determines the general content of the inferring
image through the small input image. At the same time, this model takes advantage of the
shallow network of the lower layer to extract the detailed features of the image, which en-
sures the overall detection accuracy of the network. On this basis, combined with the speed
advantages of the two parts of the network, the detection speed is ensured. While improv-
ing segmentation accuracy, the RPSD network effectively addresses the practical real-time
requirement by reaching 32.69 fps, which benefits from the presented cascade network.
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The backbone ResNet50 extracts image features efficiently but the scale of the network
parameters is still too large, which affects the network’s speed. Chopping backbone depth
and feature map size in the cascade network structure of the RPSD network improves
real-time performance. Reducing the network operating parameters by simple methods,
such as chopping the network structure, leads to a loss of accuracy. The fusion of the
coarse and detailed features extracted from the RPSD’s cascade network structure improves
segmentation accuracy. Based on the PSV parking slot detection dataset, more compact
backbones should further improve the frame rate while ensuring segmentation accuracy.
The method’s effectiveness on the PSV dataset has been demonstrated, opening up a
research idea that can be adapted to more application scenarios. For the extraction of
small-scale lines in the image, the improvement in accuracy should pay more attention
to the continuity of features. However, due to the particularity of the test object itself,
the upper limit can be found by analyzing the dataset and improving speed on this basis
holds more potential as a direction for development. The proposed network is based
on semantic segmentation and the processed images are bird’s-eye view images. The
acquisition of the bird’s-eye view image can not only come from the image stitching of the
AVM system, but also high-altitude images from aircraft. Although this paper is currently
used for extracting ground parking slot information, due to the robustness of the semantic
segmentation method, it is believed that this method can also accurately identify other
ground information when learning different datasets. The processing method of images
and the detection of ground information are highly similar to the identification methods
of high-definition remote sensing images in the professional remote sensing field. For
example, the target classification is a strip shape with only a few pixels in the background
and accounts for a small proportion of the image. Therefore, we believe that the problems
solved by this work have a specific value in professional remote sensing.

6. Conclusions

Real-time parking slot detection provides the possibility of AVP, while vision-based
panoramic image parking slot detection has better robustness in practical scenarios. This
paper proposes a semantic segmentation-based RPSD network to solve real-time parking
slot detection in various scenarios effectively. The RPSD network consists of a two-layers
cascade network in which the upper-layer network extracts coarse segmentation informa-
tion through a resized (1/4 of the original size) input image. A network-depth-reduced
ResNet50 is engaged in the lower network of the cascade network, and the OFFM fuses the
coarse segmentation information of the upper-layer network to achieve real-time parking
slot detection with panoramic images. The CAM and an adaptive weighted loss function
effectively improve the accuracy of edge detection and imbalanced classification. The
analysis and discussion of the experimental data prove that: by chopping backbone depth
and input image map size, the total computational load of the cascade network is less
than that of the traditional complete network, guaranteeing the real-time performance;
the fusion of the coarse and detailed features extracted from the upper and lower layers
of the cascade network respectively, improves segmentation accuracy. The final mIoU of
this work is 67.97% and the frame rate is up to 32.69 fps, which achieves state-of-the-art
performance with the PSV dataset.
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