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Abstract: The Yellow River basin (YRB) has played an important role in the forming of Chinese
civilization. Located in the upper reaches of the YRB and the southeastern edge of the Qinghai–Tibet
Plateau (QTP), the Gannan Plateau (GP), which consists of mainly alpine and mountain ecosystems,
is one of the most important water conservation areas for the Yellow River and recharges 6.59 billion
cubic meters of water to the Yellow River each year, accounting for 11.4% of the total runoff of the
Yellow River. In the past 30 years, due to climate change and intense human activities, the GP is
facing increasing challenges in maintaining its ecosystem integrity and security. Vegetation is a
central component of the terrestrial ecosystem and is also key to maintaining ecosystem functioning
and services. To form sound ecological restoration projects for the GP and the upper reaches of the
YRB in general, this study assesses the trend in FVC (Fractional Vegetation Cover) and its drivers
across the GP by integrating high-resolution satellite remote sensing images and meteorological data
from 2000 to 2020. Results showed that the mean value of FVC for the entire GP between 2000 and
2020 was 89.26%. Aridity was found to be the main factor that determined the spatial distribution
of FVC, while ecosystem type exhibited the secondary effect with forests having the highest FVC
within each aridity class. From 2000 to 2020, the FVC in 84.11% of the study area did not exhibit
significant change, though 10.32% of the study area still experienced a significant increase in FVC. A
multi-factor analysis revealed that precipitation surpassed temperature as the main driver for the
FVC trend in semi-arid and semi-humid areas, while this pattern was reversed in humid areas. A
further residual analysis indicated that human activities only played a minor role in determining the
FVC trend in most naturally vegetated areas of the study area, except for semi-arid crops where a
significant positive role of human influences on the FVC trend was observed. The findings highlight
the fact that aridity and vegetation types interact to explain the relative sensitivity of alpine and
mountain ecosystems to climate trends and human influences. Results from this study provide an
observational basis for better understanding and pattern prediction of ecosystem functioning and
services in the GP under future climate change, which is key to the success of the national strategy
that aims to preserve ecosystem integrity and promote high-quality development over the entire YRB.

Keywords: Gannan Plateau; Yellow River basin; water conservation region; ecological monitoring;
fractional vegetation cover

1. Introduction

The Yellow River basin (YRB) is a main cradle of Chinese civilization and an important
ecological barrier in northern China. The water conservation region in the upper reaches of
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the YRB plays a very important role in maintaining the ecological security of the Yellow
River, ensuring the high-quality economic and societal development of the whole basin
that supports a population of 420 million [1–4]. The Gannan Plateau (GP), located at the
southeast rim of the Qinghai–Tibetan Plateau (QTP), forms a critical part of the upper
reaches of the YRB and is an important water conservation region of the YRB. The GP
alone supplies 6.59 billion m3 of water to the Yellow River every year, accounting for 60%
of the runoff of the upper reaches and 11.4% of the runoff of the entire Yellow River [5,6].
Therefore, it is necessary to assess the changes in ecosystem status and function of the GP
as a requirement for ecological conservation and high-quality development planning in the
Yellow River basin of Gannan State, not only to develop reasonable ecological conservation
and sustainable socioeconomic strategies in the area, but also to maintain the ecological
security of the entire YRB. Vegetation is an important component of the terrestrial ecosystem
and plays the most fundamental role in supporting other ecosystem activities through
photosynthetic production. Impacts of climate change on vegetation growth depend on
ecosystem types and climate zones [7,8]. Global warming affects the growth period and
photosynthesis, which in turn affects vegetation growth [9–14]. In humid and semi-humid
regions, where vegetation growth is less limited by water, temperature and other factors
are expected to play a major role in controlling vegetation growth [15]. In arid and semi-
arid regions, precipitation can play a dominant role in regulating vegetation growth and
functioning [16–20].

Substantial challenges have been recognized in the detection and attribution of impacts
of climatic and non-climatic drivers on natural systems [21]. As an area sensitive to climate
change with great ecological vulnerability, the QTP is a suitable place for studying the
response of terrestrial ecosystems to climate change [22]. Using GIMMS NDVI datasets,
Fang et al. [23] reported that vegetation activity was increasing in most areas of the QTP
during 1982–1999. Zhou et al. [24] demonstrated a similar increasing trend for vegetation
dynamics in the QTP. Non-climatic drivers affecting vegetation change mainly include land
use, grazing, ecological programs, rodent damage, and tourism, which may have significant
impacts on grassland quality [25–28]. Overgrazing is considered to be the main cause of
grassland degradation. [28,29]. To tackle grassland degradation, the Chinese government
has implemented several restoration programs [28] which are recognized to effectively
mitigate grassland degradation [30–32].

Fractional Vegetation Cover (FVC), defined as the ratio of the vertical projected area of
green vegetation on the ground [33], is a commonly used remote sensing proxy for studying
vegetation change [34–36]. FVC represents a key attribute of ecosystem functioning and
plays an important role in regulating terrestrial biochemical cycles, such as energy exchange,
water balance, and carbon sequestration [37]. Factors affecting spatial and temporal FVC
changes include precipitation, temperature, solar radiation, soil nutrients, and human-
induced land cover changes. Evaluating the main controlling factors on the spatial and
temporal trends of FVC not only informs us about the current ecosystem conditions of a
particular region, but is also necessary to predict how vegetation and ecosystem will be
altered by future climate change and human activities [38–40].

Various statistical methods, such as the mixed-effects linear regression model [41,42]
and partial correlation analysis [43], have been used to identify the fundamental drivers
of grassland degradation based on remote sensing and modeling datasets. By comparing
actual and simulated FVC, there is also an FVC-based residual trend (RESTREND) analysis
method that quantifies the contribution of human influences [44–46]. Despite efforts in pre-
vious studies, the contribution of climatic and non-climatic drivers to the GP has not been
distinguished and quantified at high spatial resolution. Moreover, the relative importance
of ecosystem types and aridity (represents mean climate conditions) in co-determining the
direction and strength of FVC to climate change has not been well understood.

This study aims to assess the spatial patterns, temporal dynamics, and environmental
drivers of vegetation cover over the GP by integrating medium-term (2000–2020) high
resolution satellite remote sensing data and meteorological variables. Specifically, the
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objectives are to: (1) characterize the spatial patterns of FVC over the study area; (2) quantify
the temporal trend and variations of FVC over the past two decades; and (3) identify the
main environmental drivers in spatial–temporal FVC dynamics.

2. Data and Method
2.1. Study Area

The Gannan Plateau (GP) is located in the upper reaches of the Yellow River basin
(YRB), on the eastern rim of the Qinghai–Tibetan Plateau (QTP). The whole area is located
between 100.76◦E–104.03◦E, 33.11◦N–35.86◦N (Figure 1), with a total area of 32,987 km2,
and is an important water conservation region for the Yellow River [47]. Over the entire
study area, the annual average precipitation ranges between 370–930 mm and the annual
average temperature is between 0.6 and 2.3 ◦C.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 21 
 

 

This study aims to assess the spatial patterns, temporal dynamics, and environmental 
drivers of vegetation cover over the GP by integrating medium-term (2000–2020) high 
resolution satellite remote sensing data and meteorological variables. Specifically, the 
objectives are to: (1) characterize the spatial patterns of FVC over the study area; (2) 
quantify the temporal trend and variations of FVC over the past two decades; and (3) 
identify the main environmental drivers in spatial–temporal FVC dynamics. 

2. Data and Method 
2.1. Study Area 

The Gannan Plateau (GP) is located in the upper reaches of the Yellow River basin 
(YRB), on the eastern rim of the Qinghai–Tibetan Plateau (QTP). The whole area is located 
between 100.76°E–104.03°E, 33.11°N–35.86°N (Figure 1), with a total area of 32,987 km2, 
and is an important water conservation region for the Yellow River [47]. Over the entire 
study area, the annual average precipitation ranges between 370–930 mm and the annual 
average temperature is between 0.6 and 2.3 °C. 

 
Figure 1. The spatial extent of the GP. The background on the left panel shows the elevation and the 
lines indicate the major rivers, with Daxia and Tao rivers being the tributaries of the Yellow River. 
The top-right panel shows the location of the GP on the QTP and the bottom-right panel shows the 
location of the GP in the entire YRB. 

The GP includes 11 counties and cities of the Gannan Tibetan Autonomous Prefecture 
and Linxia Hui Autonomous Prefecture. The spatial extent of the study area is defined 
according to the “Ecological Protection and Construction Plan for the Gannan Yellow 
River Important Water Replenishment Ecological Function Area” from the National 
Development and Reform Commission of China (2007). The geographic and 
socioeconomic conditions of each county and city are shown in Table 1. 

Table 1. Overview of administrative regions in the study area. 

County/City Name Area (km2) 
Average Altitude 

(m) 
Annual Average 
Temperature (°C) 

Annual Average 
Precipitation (mm) 

Total Population 
(10,000 People) 
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Figure 1. The spatial extent of the GP. The background on the left panel shows the elevation and the
lines indicate the major rivers, with Daxia and Tao rivers being the tributaries of the Yellow River.
The top-right panel shows the location of the GP on the QTP and the bottom-right panel shows the
location of the GP in the entire YRB.

The GP includes 11 counties and cities of the Gannan Tibetan Autonomous Prefecture
and Linxia Hui Autonomous Prefecture. The spatial extent of the study area is defined
according to the “Ecological Protection and Construction Plan for the Gannan Yellow River
Important Water Replenishment Ecological Function Area” from the National Development
and Reform Commission of China (2007). The geographic and socioeconomic conditions of
each county and city are shown in Table 1.
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Table 1. Overview of administrative regions in the study area.

County/City Name Area (km2)
Average Altitude

(m)
Annual Average

Temperature (◦C)
Annual Average

Precipitation (mm)
Total Population
(10,000 People)

Maqu 10,190.00 3700 −0.23 611.9 5.49
Xiahe 6274.00 3500 1.31 516.0 8.63

Zhuoni 5419.68 3500 1.65 487.1 9.53
Luqu 5298.60 3500 1.00 633.0 3.80

Hezuo 2670.00 3000 1.48 545.0 11.21
Lintan 1557.68 2825 3.11 540.0 12.73

Linxiaxian 1212.40 2287 5.05 630.6 32.26
Kangle 1083.00 2000 4.85 550.0 25.59

Hezheng 960.00 3700 3.45 578.5 24.10
Jishishan 909.97 3000 4.76 660.2 23.93
Linxiashi 88.60 1917 6.46 484.0 35.59

Total 35,663.93 192.86

2.2. Data
2.2.1. Ecosystem Types

This study used global 30 m land-cover dynamic monitoring products with fine
classification system from 1985 to 2020 (GLC_FCS30-1985-2020) data (https://data.casearth.
cn/sdo/detail/6123651428a58f70c2a51e49 (accessed on 17 July 2022)). These data used
newly global 30-m land-cover products with fine classification system in 2020 (GLC_FCS30-
2020) as the benchmark reference dataset, and then proposed a novel and automatic land-
cover monitoring strategy by coupling continuous land-cover change detection models with
the dynamic updating algorithms. Additionally, this study uses a time series of Landsat
imagery and the corresponding spectral indices. Specifically, according to Zhang et al., a
metrics–composite method was employed to calculate the 25th, 50th, and 75th percentiles
using the time series of each index across the entire year. Global land-cover dynamic
monitoring products inherited the classification system of GLC_FCS30-2020, containing
29 land-cover types [48,49]. A summary of the area and fraction of each ecosystem type in
the study area is shown in Table 2, and the spatial distribution of ecosystem types in 2020 is
shown in Figure 2.

Table 2. Major ecosystem types in the study area.

Name Area (km2) Percentage (%)

Cropland 3901.07 12.06
Grassland 22,940.03 70.92

Broadleaf forest 1140.77 3.53
Needleleaf forest 4084.68 12.63

Shrubland 2.05 0.01
Sparse vegetation 4.69 0.01

Wetlands 6.79 0.02
Impervious surfaces 125.42 0.39

Bare areas 12.34 0.04
Water body 129.60 0.40

Permanent ice and snow 0.54 0.00

https://data.casearth.cn/sdo/detail/6123651428a58f70c2a51e49
https://data.casearth.cn/sdo/detail/6123651428a58f70c2a51e49
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2.2.2. Precipitation and Temperature Data

Precipitation and air temperature data were obtained from global monthly precipi-
tation data provided by TerraClimate (https://www.nature.com/articles/sdata2017191
(accessed on 17 July 2022)). Xiao et al. found that the TerraClimate dataset can accurately
reflect the dry and wet conditions and their variation characteristics in the Chinese region,
and the applicability of precipitation data is more prominent when evaluated in compari-
son to the results of studies using meteorological station observations [50]. TerraClimate
is a dataset of monthly climate and climatic water balance for global terrestrial surfaces.
It uses climatically aided interpolation, combining high-spatial resolution climatological
normals from the WorldClim dataset with coarser spatial resolution, but time-varying data
from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55). Conceptually, the procedure
applies interpolated time-varying anomalies from CRU Ts4.0/JRA55 to the climatology of
WorldClim to create a dataset that covers a broader temporal record [51]. These data are
stored in NetCDF format and processed through Matlab to obtain annual precipitation and
annual average air temperature with a spatial resolution of 4 km. The meteorological data
were resampled to 30 m using the bilinear interpolation method in order to be consistent
with the FVC data. Figure 3 shows the spatial distribution of annual average temperature
and annual average precipitation for 2000–2020 across the GP.

https://www.nature.com/articles/sdata2017191
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2.2.3. Aridity Index

To understand the dependence of vegetation response to meteorological variables on
the degree of mean climate condition (i.e., dryness or wetness), this study used the aridity
index (AI) obtained from the Global Aridity Index and Potential Evapo-Transpiration (ETo)
Climate Database v2 (https://cgiarcsi.community/2019/01/24/global-aridity-index-and-
potential-evapotranspiration-climate-database-v2/ (accessed on 17 July 2022)). The AI is
defined as:

AI =
P

ETo
(1)

where P is the annual average precipitation (mm) and ETo is the annual average potential
evapotranspiration (mm). Annual average precipitation was obtained from WorldClim2
Global Climate Data (https://www.worldclim.org/ (accessed on 17 July 2022)). ETo de-
rived from the monthly average data in the Global-ETo were aggregated to annual average
values (MA-ETo). The climatic classification of the study area based on the aridity index is
presented in Table 3. The AI thresholds were defined according to the United Nations Envi-
ronment Program (UNEP, 1992), and Figure 4 shows the climate classes of the study area.

Table 3. Climate classification of the study area based on aridity index.

AI Value Climate Class Area (km2) Percentage (%)

0.2–0.5 Semi-arid 3685.58 11.17
0.5–0.65 Semi-humid 11,462.53 34.75

>0.65 Humid 17,838.89 54.08

https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
https://www.worldclim.org/
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2.2.4. Fractional Vegetation Cover

In this study, the spatial resolution of the FVC data is 30 m. We estimated FVC using
the Landsat data based on the Dimidiate Pixel Model (DPM) [52,53].

The mathematical form of the DPM can be written as:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(2)

where NDVIsoil is the NDVI value of the area completely covered by bare soil or no
vegetation and NDVIveg represents the NDVI value of the pixel completely covered by
vegetation. The calculation formula is:

NDVIsoil =
FVCmax × NDVImin − FVCmin × NDVImax

FVCmax − FVCmin
(3)

NDVIveg =
(1 − FVCmin)× NDVImax − (1 − FVCmax)× NDVImin

FVCmax − FVCmin
(4)

where FVCmax and FVCmin are the hypothetical maximum and minimum FVC within the
scene and NDVImax and NDVImin are the corresponding maximum and minimum NDVI,
respectively. Based on the statistical distribution of NDVI values from all pixels within the
imagery, the upper and lower thresholds of NDVI intercepted at 5% and 95% confidence
levels are used as NDVIsoil and NDVIveg.
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2.3. Method
2.3.1. Aridity Index

The interannual changes in FVC in the study area from 2000 to 2020 were assessed
by trend analysis [53,54]. The change in FVC over 21 years is calculated using linear trend
analysis, with the slope of the linear trend being calculated as follows:

Slope =
n ∑n

i=1 iFVCi − ∑n
i=1 i ∑n

i=1 FVCi

n ∑n
i=1 i2 − (∑n

i=1 i)2 (5)

F test is used to further ensure the significance of the trend related to FVC changes
over time [55]. The calculation formulas are as follows:

F =
r2(n − 2)

1 − r2 (6)

r =
∑n

i=1
(
1 − i

)(
FVCi − FVC

)√
∑n

i=1
(
i − i

)2
∑n

i=1
(

FVCi − FVC
)2

(7)

In these formulas, n is the time series length that equals to 21; i is the serial number,
i.e., 1–21 from 2000 to 2020; i is the mean value of the serial number; FVCi is the value of
FVC in the year i; and FVC is the average FVC value in peak growing season (June–August)
from 2000 to 2020. When slope > 0%·year−1, FVC shows an increasing trend, while when
slope < 0%·year−1, FVC shows a decreasing trend.

The grading criteria for the trends related to FVC changes are shown in Table 4.

Table 4. FVC trend grading criteria. (Reprinted with permission from Ref. [6]. 2020, Liu, C.)

FVC Grading Criteria Grade

p-value < 0.05 AND slope > 0%·year−1 Significant increase
p-value > 0.05 AND slope > 0%·year−1 Slight increase
p-value > 0.05 AND slope < 0%·year−1 Slight decrease
p-value < 0.05 AND slope < 0%·year−1 Significant decrease

2.3.2. Partial Correlation Analysis

Partial correlation analysis is used to decompose the relationship between FVC change
and the changes in any given meteorological variable by excluding the potential co-linearity
of the third variable [56,57]. The partial correlation coefficient for variables x and y while
fixing z (rxy,z) is calculated as [58]:

rxy,z =
rxy − rxzryz√

(1 − rxz2) +
(
1 − ryz2

) (8)

T test is used to analyze the relationship between FVC and meteorological factors, calculated as:

t = rxy,z

√
n − 2
1 − r2 (9)

where rxy,z is the partial correlation coefficient between variable x and y after variable z
is fixed; r is the correlation coefficient between x and y; and n is the time series length. A
significance test at the p = 0.05 level was conducted on the correlation results.

2.3.3. Residual Analysis

In the GP, the factors affecting FVC include meteorological factors and human activities,
such as grazing and ecological protection efforts. It remains a great challenge to separate
the effect of human activities and meteorological factors. In this study, residual analysis was
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used to quantify the relative importance of human impacts on vegetation cover trends [59].
The method assumes that, without other indeterministic factors, the contribution of human
activities can be regarded as the residual between true FVC and the expected FVC predicted
using purely meteorological variables, in accordance with Evans et al. [60]. The calculation
formula is as follows:

FVCαi = FVCi − FVCβi (10)

The predicted value of FVC was obtained by regression analysis using precipitation
and temperature. FVCαi is the difference between the observed value (FVCi) and the model
predicted value (FVCβi) in the i-th year. When FVCαi > 0, it indicates that human activities
have a positive effect on FVC, and vice versa. When FVCαi = 0, human activities have no
effect on the FVC in that year.

3. Results
3.1. Significant Increase in Precipitation but Not Temperature from 2000 to 2020 over the
Study Area

From 2000 to 2020, the annual average precipitation of the GP showed an overall
increasing trend at the rate of 6.56 mm/year (Figure 5), and the annual average temperature
showed a non-significant increasing trend. The average temperature in the northern part
of the study area is high and remains essentially unchanged from 2000 to 2020 (Figure 6).
The average temperature in the Yellow River basin in the southwest is low, less than −3 ◦C,
and had a significant increasing trend from 2000 to 2020. Most of the central part of the
study area has less variation in temperature, remaining at −3 to 5 ◦C. The average annual
precipitation in the study area showed a high distribution trend in the southwest and low
trend in the northeast, with the highest average annual precipitation of 700–800 mm in the
Yellow River basin. From 2000 to 2020, the average annual precipitation in the western part
of the study area shows a significant increasing trend, while most of the northern part has
no significant change (Figure 6).

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 5. Trends of annual average temperature and precipitation across the GP from 2000 to 2020. 

  
Figure 6. Spatial distribution of change trends in annual average temperature (left) and 
precipitation (right) in the GP (2000–2020). The black dot indicates areas with a statistically 
significant (p < 0.05) trend. 

3.2. Aridity and Ecosystem Types Co-Determined the Spatial Pattern of FVC 
The average FVC (FVC) from 2000 to 2020 in the study area indicates that vegetation cover 

condition is highly heterogeneous and is not consistent with the climate pattern alone (Figure 
7). Overall, the FVC in the central part of the study area is higher than that in the north, and 
the areas with larger FVC mainly distribute in the Tao River basin. The FVC of broadleaf 
forest, needleleaf forest, grassland, and cropland (the main vegetation types) is 97.83%, 
95.67%, 90.79%, and 83.74%, respectively. According to the distribution of ecosystem types in 
the study area in 2020 (Figure 2), the areas with low FVC refer to impervious surfaces. 

Figure 5. Trends of annual average temperature and precipitation across the GP from 2000 to 2020.



Remote Sens. 2022, 14, 3849 10 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 5. Trends of annual average temperature and precipitation across the GP from 2000 to 2020. 

  
Figure 6. Spatial distribution of change trends in annual average temperature (left) and 
precipitation (right) in the GP (2000–2020). The black dot indicates areas with a statistically 
significant (p < 0.05) trend. 

3.2. Aridity and Ecosystem Types Co-Determined the Spatial Pattern of FVC 
The average FVC (FVC) from 2000 to 2020 in the study area indicates that vegetation cover 

condition is highly heterogeneous and is not consistent with the climate pattern alone (Figure 
7). Overall, the FVC in the central part of the study area is higher than that in the north, and 
the areas with larger FVC mainly distribute in the Tao River basin. The FVC of broadleaf 
forest, needleleaf forest, grassland, and cropland (the main vegetation types) is 97.83%, 
95.67%, 90.79%, and 83.74%, respectively. According to the distribution of ecosystem types in 
the study area in 2020 (Figure 2), the areas with low FVC refer to impervious surfaces. 
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tation (right) in the GP (2000–2020). The black dot indicates areas with a statistically significant
(p < 0.05) trend.

3.2. Aridity and Ecosystem Types Co-Determined the Spatial Pattern of FVC

The average FVC (FVC) from 2000 to 2020 in the study area indicates that vegetation
cover condition is highly heterogeneous and is not consistent with the climate pattern
alone (Figure 7). Overall, the FVC in the central part of the study area is higher than that
in the north, and the areas with larger FVC mainly distribute in the Tao River basin. The
FVC of broadleaf forest, needleleaf forest, grassland, and cropland (the main vegetation
types) is 97.83%, 95.67%, 90.79%, and 83.74%, respectively. According to the distribution
of ecosystem types in the study area in 2020 (Figure 2), the areas with low FVC refer to
impervious surfaces.
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The FVC varies widely among different vegetation types in the study area, and the
FVC of cropland is significantly lower than that of forest and grassland (Figure 7). The
vegetation type with the highest FVC in the study area is broadleaf forest and the FVC
is higher in both the semi-humid and humid zones, remaining around 95%. The FVC of
all four major vegetation types was lower in the semi-arid zone, at around 70%, and the
FVC increased with increases in the aridity index; however, all showed a decreasing trend
when the aridity index was greater than 0.8. It is interesting to note that, in humid and
semi-humid regions, cropland exhibited lower average FVC than natural vegetation types,
while this pattern was reversed in the semi-arid region, likely due to human influences
such as irrigation (Figure 8).
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3.3. FVC Did Not Show a Significant Trend over the Majority of the GP from 2000 to 2020

The FVC of forest and grassland in the study area did not change much during the
last 20 years, and both were higher than the average value of the study area (Figure 9).
The FVC of cropland changed more dramatically during the last 20 years and showed an
upward trend. The minimum value of regional average FVC was 89.23% in 2017 and the
maximum value was 93.06% in 2010. The greatest change occurred during 2017 and 2018,
when FVC increased by 2.91%.

It can be seen that FVC did not fluctuate much over the last 21 years in most of the
study area, and the areas showed a slight, but not significant, increasing and decreasing
trend (p-value > 0.05), about 23,071.88 km2, accounting for 85.01% of the total vegetated
area of the GP (Figure 10). In the northern part of the study area, FVC showed a significant
increase of about 2834.21 km2, accounting for 10.32% of the total vegetated area. A few
areas showed a decreasing trend that was scattered in the central and southern parts of the
study area, with a significant decrease of about 157.86 km2, accounting for 5.57% of the
total vegetation cover of the study area.
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The FVC of forests and grasslands in the study area from 2000 to 2020 did not change
significantly and showed small slope values, while FVC presented a slight increasing
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or decreasing trend in different climatic zones (Figure 11). The FVC of cropland in the
semi-arid zone showed a significant increasing trend and did not change obviously in the
semi-humid zone. Overall, the trend of FVC over the study area across the aridity gradient
showed a reverse trend from a mainly negative slope (decreasing trend) over the humid
regions to a positive slope (increasing trend) during the 2000–2020 period.
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Figure 11. The 2000–2020 slope of FVC change for the major vegetation types are summarized by
aridity index bins in the study area. Each pixel’s slope value of FVC change over the entire study
area is averaged by bin (every 0.1 increment) of the aridity index.

In order to study the changes in FVC of different ecosystem types from 2000 to 2020, the
proportion of areas with different trends of the five main ecosystem types were calculated
(Figure 12) and the results showed that the FVC of the main ecosystem types presented
slight increases and decreases. Additionally, the area with an increasing trend was larger
than that with a decreasing trend. It indicates that the vegetation condition in the study
area gradually improved.
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3.4. Response of FVC to Precipitation and Temperature Is Co-Determined by Aridity and
Vegetation Types

The results of the partial correlation analysis between FVC and precipitation while
controlling the effect of temperature (Figure 13, left) illustrated that FVC was positively
correlated with precipitation in the northern and western parts of the study area, while FVC
was negatively correlated with precipitation in the southern part of the Yellow River basin.
The FVC in the northern and western parts of the study area presents a significant positive
correlation with temperature, while the FVC in the central and southern Yellow River
basins of the study area shows a negative correlation with temperature (Figure 13, right).
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To further understand the dependency of vegetation climate response to the intrinsic
biological and geographic properties of any given area, the partial correlation between FVC
and precipitation or temperature was analyzed across the aridity gradient and decomposed
into vegetation types. The effect of temperature on FVC peaked in the semi-humid regions
and gradually decreased towards the wetter humid or the drier semi-arid zones (Figure 14).
The highest correlation between FVC and precipitation occurs in humid areas, and the
effect of precipitation on FVC is greater than that of temperature in areas where the aridity
index is less than 0.6. The effect of temperature on FVC is greater in areas where the aridity
index is greater than 0.6. In the semi-arid region, the partial correlation coefficients of both
air temperature and precipitation for FVC were low, indicating that air temperature and
precipitation were not the main causes of FVC variation in the semi-arid region, likely due
to more agricultural activity in the semi-arid area that will be further elucidated with the
residual trend analysis.

The partial correlation coefficients between FVC and temperature for the four main
vegetation types reach their highest at around 0.65 in the aridity index and show a decreas-
ing trend in all wet zones (Figure 15). This indicates that the influence of air temperature
on FVC is greatest in the border area between the semi-humid and humid zones and de-
creases gradually with increases in the aridity index in the humid zone. Among them, the
partial correlation coefficient between temperature and forest is higher, indicating higher
sensitivity of forests to warming trends.
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The partial correlation coefficients between FVC and precipitation of the four main
vegetation types reach their highest around 0.75 on the dryness index and precipitation had
a greater influence on FVC in the wet zone. Among them, temperature has the greatest effect
on FVC in coniferous forests. The partial correlation coefficient of FVC with precipitation
was greater than that with air temperature in grassland, indicating grassland had higher
sensitivity to precipitation than to temperature.

3.5. Impact of Human Activities on FVC Trends in the GP

Separation by residual analysis of the effects of anthropogenic and natural factors on
FVC over the growth period was attempted (Figure 16). As shown in Figure 16, 67.62%
of the study area showed non-significant residual trends over the last 20 years, indicating
that human activities had little effect on the vegetation changes in most of the study
area. Nonetheless, 27.51% of the regions showed a significant increase in FVC residuals,
mainly in the northern semi-arid part of the study area where cropland is the dominant
vegetation type, suggesting a positive influence from human activities on vegetation cover
in this region.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 16. Spatial distribution of the residual trends in the study area from 2000 to 2020. 

4. Discussions 
This study investigated the impacts of climate and human activities on trends in 

vegetation cover over the Gannan Plateau of the upper reaches of the YRB, encompassing 
a wide range of vegetation types and a climate gradient. Results showed a significant 
greening trend in semi-arid regions. With meteorological variables such as temperature 
and precipitation only explaining a fraction of this greening trend, the rest can likely be 
attributed to human activities. This study also found contrasting responses and 
sensitivities of vegetation to precipitation and temperature trends along the aridity 
gradient with flipped sensitivities between water-limited and energy-limited regions, and 
this pattern is further mediated by ecosystem types. These results demonstrate an urgent 
need for future studies to further understand the factors that govern ecosystem climate 
sensitivity and to develop generalized mechanisms that will guide predictions of alpine 
and mountain ecosystem behavior and function in a changing climate. 

Plant growth is closely related to temperature and moisture. Suitable temperatures 
promote plant physiological and biochemical reactions, while water is directly involved 
in photosynthesis and transpiration. Therefore, low temperatures and a lack of water can 
lead to slow growth of plants and thus low FVC. Combined with the meteorological data, 
it was found that the annual average temperature was highest in 2010 and the annual 
average precipitation showed an increasing trend during 2009 and 2011, hence the FVC 
in the study area reached the highest value in 2010. Although the annual average 
precipitation showed an increasing trend from 2015 to 2018, the precipitation in 2015 and 
2016 was much lower than the average precipitation over the 20-year period and the 
temperature also showed a decreasing trend. As a result, the lowest value of FVC 
appeared in 2017, which was also consistent with the findings of Li et al. [47]. 

Figure 16. Spatial distribution of the residual trends in the study area from 2000 to 2020.

4. Discussions

This study investigated the impacts of climate and human activities on trends in
vegetation cover over the Gannan Plateau of the upper reaches of the YRB, encompassing
a wide range of vegetation types and a climate gradient. Results showed a significant
greening trend in semi-arid regions. With meteorological variables such as temperature
and precipitation only explaining a fraction of this greening trend, the rest can likely be
attributed to human activities. This study also found contrasting responses and sensitivities
of vegetation to precipitation and temperature trends along the aridity gradient with flipped
sensitivities between water-limited and energy-limited regions, and this pattern is further
mediated by ecosystem types. These results demonstrate an urgent need for future studies
to further understand the factors that govern ecosystem climate sensitivity and to develop
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generalized mechanisms that will guide predictions of alpine and mountain ecosystem
behavior and function in a changing climate.

Plant growth is closely related to temperature and moisture. Suitable temperatures
promote plant physiological and biochemical reactions, while water is directly involved in
photosynthesis and transpiration. Therefore, low temperatures and a lack of water can lead
to slow growth of plants and thus low FVC. Combined with the meteorological data, it was
found that the annual average temperature was highest in 2010 and the annual average
precipitation showed an increasing trend during 2009 and 2011, hence the FVC in the study
area reached the highest value in 2010. Although the annual average precipitation showed
an increasing trend from 2015 to 2018, the precipitation in 2015 and 2016 was much lower
than the average precipitation over the 20-year period and the temperature also showed a
decreasing trend. As a result, the lowest value of FVC appeared in 2017, which was also
consistent with the findings of Li et al. [47].

From 2000 to 2020, FVC was positively correlated with aridity index in the northern
and western parts of the study area but was negatively correlated with aridity index in
the south-central area. The effect of temperature on vegetation was greatest in the semi-
humid areas and the effect of precipitation on FVC was greatest in the humid areas, as
expected from the classic water/energy limitation hypothesis [17,61,62]. In the humid areas
of the study area, frequent and heavy precipitation leads to a significant increase in soil
water storage and improves the buffering capacity of the soil against a dry climate due
to the high content of organic matter in the soil, which is very helpful for the growth of
vegetation [63,64]. Therefore, the FVC in wet areas is significantly higher than in semi-arid
and semi-humid areas. In the humid and semi-humid zones, the effect of temperature on
FVC was higher than that of precipitation on FVC but this situation was reversed in the
semi-arid zone, where water is the main limiting factor to plant metabolism [65,66].

It can also be found that, in the northern part of the study area, the effect of both
temperature and precipitation on FVC is not very pronounced. The northern part of the
study area is mainly a semi-arid agriculture region, where FVC still shows an increasing
trend in a state where precipitation and temperature conditions are not more favorable.
The main ecosystem type in this part of the area is cropland and human activities have a
greater impact on its FVC, mainly due to the change in local farming system, the selection
of drought-tolerant crops, the construction of water conservancy facilities, increasing irriga-
tion, scientific fertilization, and improvements in mechanical farming level. However, the
results of the study also pose the question of whether the semi-arid crops will be sustainable
when facing future warming trends, as already observed over the past two decades.

With the increase in population from the south to the north of the study area, hu-
mans exert non-neglectable impacts on FVC. With irrigation and the use of fertilizers,
agriculture regions in the northern part of the study area exhibited significant increasing
trends [32,56,67]. The study results show that the increasing trend in semi-arid cropland
cannot be solely explained by changes in precipitation and temperature. This was further
confirmed by the residual analysis indicating a positive influence from human activities on
FVC trends in the semi-arid croplands. On the other hand, the natural vegetation in the GP
appears to be less influenced by human activities, neither significant negative nor positive
residual trends were observed over the vast grassland in the GP.

Our results showed a varying degree of ecosystem sensitivity to precipitation and
temperature across the aridity gradient, which was further mediated by vegetation types.
Indeed, the sensitivity of FVC to climate variability peaked in the semi-humid region
and the lower end of the humid region (0.6 < AI < 0.8), with much lower sensitivity over
the more arid (AI < 0.6) and humid regions (AI > 0.8). Among vegetation types, forests
(including needleleaf and broadleaf) were found to be more sensitive than other vegetation
types. This suggests that, with future climate change, the semi-humid forest ecosystems
would be the most vulnerable and would endure the most significant changes. These
results have important implications for policymaking in the study area. Rigorous ecological
protection strategies should be implemented with a higher priority given to forests over
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the semi-humid and humid regions. In addition, the rapid rising trend in FVC due to crop
expansion over the northeastern part of the GP study area also deserves much attention.
This region is mainly a semi-arid region with limited access to water resources. It is urgently
important to assess if the undergoing crop expansion in this region is sustainable in the
future with the consideration of climate change and human population growth. All of the
measures mentioned above would be highly relevant to achieving ecological and societal
sustainable development and should thus be guided by sound scientific knowledge as
drawn from this study. Although this study attempted to partition the driving factors
related to the trends in FVC into climate and human influences, it must be admitted that
uncertainty remains high given the fact that human influences are often expressed as a
combination of socioeconomic activities that cannot be quantified in a spatially explicit
manner [68,69]. Future studies can further attempt to decompose the driving factors of
vegetation greening or browning trends into many environmental variables, with improved
representation of human activities onto spatial grid-type data enabling more rigorous
quantitative analyses.

5. Conclusions

This study investigated the changes in FVC for the Gannan Plateau and the driving
factors from 2000 to 2020. The results showed that FVC in the northern part of the study
area exhibited a significant upward trend, where cropland is the main vegetation type, but
little change occurred in vast alpine meadow or mountain forest areas. The results of the
study found that the sensitivity of vegetation to temperature was greater than sensitivity to
precipitation in the humid and semi-humid regions, and this pattern was reversed in the
semi-arid region. A secondary control of vegetation types on the response of FVC to climate
trends was also observed with broadleaf forest, in general, more sensitive to temperature
than other vegetation types across the entire aridity gradient. Human activities exerted a
non-significant effect on FVC over the majority of the study area, where natural grassland
and forests are the dominant vegetation types. However, in semi-arid cropland, human
activities exerted a significant positive influence on vegetation trend, likely due to the
improvement in water management facilities and the increased availability of fertilizers
and agricultural machinery. The results of this study highlighted the differential sensitivities
of vegetation to climate and the relative role of human activities over the GP, which should
be taken into account in designing sound ecological protection programs and forming
accurate predictions of ecosystem change under future climate change and intensified
anthropogonic activities.
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