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Abstract: Aerosols modify cloud properties and influence the regional climate. The impacts of
aerosols on clouds differ for various cloud types, but their long-term relationships have not been
fully characterized on a cloud regime basis. In this study, we quantified the cloud regime-dependent
relationship between aerosol optical depth (AOD) and cloud properties over China using Moderate-
Resolution Imaging Spectroradiometer (MODIS) data from 2002 to 2019. Daily clouds in each 1◦

by 1◦ grid were categorized into seven cloud regimes based on the “k-means” clustering algorithm.
Overall, the cloud height increased, the cloud thickness and liquid water path increased, and the total
cloud cover decreased for all cloud regimes during the study period. Linear correlations between
AOD and cloud properties were found within stratocumulus, deep convective, and high cloud
regimes, showing consistency with the classic aerosol–cloud interaction paradigms. Using stepwise
multivariable linear regression, we found that the meteorological factors dominated the variation of
cloud top pressure, while AOD dominated the variation of total cloud cover for most cloud regimes.
There are regional differences in the main meteorological factors affecting the cloud properties.

Keywords: aerosol–cloud interaction; cloud regimes; k-means clustering

1. Introduction

Aerosols can modify the microphysical, macrophysical, and optical characteristics
of clouds by acting as cloud condensation nuclei or ice nuclei. The estimation of aerosol-
mediated changes in cloud properties and radiative forcing is subject to great uncertainty
and has been the frontier in the field of global climate change research [1–3].

The aerosol–cloud interactions (ACIs) depend on the cloud type, the aerosol type,
and sometimes more importantly, the environmental conditions. A multitude of ACI
mechanisms has been proposed for specific cloud types [2,4–6]. As a result, the relationship
between aerosol loading and cloud properties shows various features. For low-level liquid
clouds, which include shallow cumuli and stratocumuli, aerosols reduce cloud droplet
sizes and increase cloud albedo (i.e., the Twomey effect, or the first indirect effect [7]) and
suppress warm rain, which leads to elongated cloud lifetimes and increased cloud cover
(i.e., the Albrecht effect, or the second indirect effect [8]). For mixed-phase stratiform
clouds, riming indirect effects (i.e., smaller cloud droplets decrease the riming efficiency [9])
and glaciation indirect effects (i.e., more ice nuclei increase precipitation efficiency and
reduce cloud cover and cloud optical depth [10,11]) have been identified. Studies on Arctic
mixed-phase clouds show that increased cloud condensation nuclei may lead to prolonged
cloud lifetimes [12–15]. For deep convective clouds (DCCs) with a deep warm cloud base
and weak wind shear, aerosols suppress warm rain and cloud water is conveyed to higher
levels, freezes into ice precipitation, and releases latent heat that invigorates convection
(i.e., the “aerosol invigoration effect”) [16–18].
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In the past 40 years, China has experienced sustained economic growth, which has
been accompanied by increasing emissions of anthropogenic aerosols. Accumulating
evidence has shown that aerosols can alter clouds and precipitation over China [19–25].
ACIs over China may show similar or different features to the classic ACI paradigms. Under
highly polluted conditions, the aerosol effective radius increases with aerosol loading from
satellite observations [26–28], which appears to be an “anti-Twomey” effect. The observed
“anti-Twomey” effect is probably due to the neglect of the overlap between aerosol and
cloud layers [29] or the aerosol hygroscopic growth [30]. Total cloud cover over eastern
China is observed to be strongly correlated with aerosol loading [28], which agrees with the
Albrecht effect. Multiple lines of evidence support the invigoration effect. Chen et al. [31]
observed elevated cloud top heights and mass centers for DCCs in polluted conditions in
eastern China. Based on field observations and model simulations over eastern China, Fan
et al. [18] found that aerosols influence DCCs with a lower cloud base and higher cloud top.
Long-term observations in northwestern China show ACI signals of the Twomey effect,
Albrecht effect, and semidirect effect [32].

Conclusively interpreting all observations by one or more ACI mechanisms is an
almost impossible task. However, based on cloud regime classification, it is possible to
distinguish the dominant mechanisms for specified cloud types, as advocated by Stevens
and Feingold [33]. Using cloud regime analysis, Gryspeerdt et al. [34,35] showed that the
occurrence of marine stratiform increased with increased aerosols. Recently, Oreopoulos
et al. [36] investigated the global apparent aerosol–cloud relationship signals using long-
term (12 years) observations from the Moderate-Resolution Imaging Spectroradiometer
(MODIS) based on cloud regime classification.

Observational investigations (e.g., Oreopoulos et al. [36]) are of great value because
global estimates of aerosol indirect effects mostly rely on global climate models, which can
only represent the Twomey effect and/or the Albrecht effect for the time being. Global
climate models are subject to large uncertainties in representing ACIs partly due to the
difficulties in applying global observational constraints. Moreover, the problem of the scale
dependence of the ACI is addressed, and substantial interregional variations are noticed
due to the different meteorological environments [36,37].

In this study, we carried out a regional investigation of the long-term (2002–2019)
relationship of aerosol and cloud properties over China (70◦~135◦E, 10◦~60◦N) based on
cloud regime classification. By focusing on the regional scale instead of the global scale,
we attempt to amplify the ACIs specific to the meteorological conditions in China. Cloud
regimes were objectively identified by the “k-means clustering” method with the observed
joint histograms of cloud top pressure (CTP) and cloud optical thickness (COT) by MODIS.
The cloud regime-dependent relationships between AOD and cloud properties were an-
alyzed and compared against the classic ACI paradigms. Finally, stepwise multivariable
linear regression was used to investigate the relative contributions of aerosols and meteoro-
logical variables to cloud properties. Section 2 describes the data and methods. The results
are presented in Section 3. The discussion and conclusions are provided in Section 4.

2. Data and Methods
2.1. Data

The cloud and aerosol data used in this study are the satellite retrieval products
from the MODIS-Aqua Collection 6 level 3 daily 1◦ × 1◦ dataset (MYD08_D3). We use
MODIS data from 1 May 2002 to 3 July 2019 in China (10◦~60◦N, 70~135◦E). For aerosol
products, we use gridded daily mean AOD at 550 nm retrieved by the combined Dark
Target and Deep Blue algorithm [38]. For the MODIS products, AODs are not retrieved over
cloudy areas. An assumption in this study is that the pixels in the surroundings of cloud
covered areas have similar AODs with the cloudy areas. This is a reasonable assumption
considering that the aerosols spread more homogeneously than the clouds. To avoid the
cloud contamination issue in the vicinity of clouds [39], only pixels with an AOD below 2.5
are used. For cloud products, we use the joint histograms of CTP and COT to derive the
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cloud regimes (hereafter CRs). In addition, the cloud data used here mainly include the
daily gridded mean CTP, COT, liquid water path (LWP), and total cloud cover (TCC).

The meteorological data are obtained from ERA5 reanalysis at the European Center
for Medium-Range Weather Forecasts (ECMWF). To match the overpass time at 13:30
(local time) of the Aqua satellite, we interpolate the variables at 5:00 and 6:00 UTC, which
are 13:00 and 14:00 local time over China. The meteorological variables that we select in
this study include temperature, relative humidity (RH), horizontal wind speed, vertical
velocity (w), geopotential height (GPH) at 5 levels (200 hPa, 500 hPa, 700 hPa, 850 hPa,
and 1000 hPa), low tropospheric stability (LTS) between 1000 and 700 hPa, and wind shear
below 7 km from the ground. The LTS is a physical quantity representing the thermal state
of the lower troposphere atmosphere and can be obtained by

LTS = θ700 − θ1000, (1)

θ = T
(

P0

P

) R
cP ≈ T

(
1000

P

)0.286
. (2)

where T represents the temperature, P represents the atmospheric pressure, P0 represents
the reference surface pressure (i.e., 1000 hPa), cp represents constant pressure specific heat
capacity, and R represents specific gas constant. A smaller LTS indicates a less stable
atmosphere. The method of wind shear calculation is from Fan et al. [40]:

Wind shear = max(u)−min(u), (3)

where max(u) and min(u) are the maximum and minimum wind speed within 7 km from
the ground, respectively.

2.2. Methods
2.2.1. Determination of the Cloud Regimes

We classify the clouds into seven regimes using the k-means clustering algorithm [41].
The algorithm is objective except for the setting of the number of clusters, k. We started at
four clusters. The initial cluster centroids are selected from the CTP-COT histograms of
some random grids on 1 May 2002. The Euclidean distances between the daily COT-CTP
histogram of each grid and the cluster centroids are calculated and each grid is assigned
to the nearest cluster. Once the cluster is allocated, a new centroid is recalculated by
averaging all the histograms within the cluster. The process of acquiring new centroids
repeats until all data are examined. Ten iterations are performed to ensure the resultant
centroids are converged.

Next, we increase the number of clusters and repeat the above analysis until the
optimal number of clusters is found. Following Rossow et al. [42], the criteria of an
optimal number of clusters are: (1) the resulting centroid histogram patterns must not
change significantly (as judged by the pattern correlations among the centroids) when the
random starting centroids are changed, (2) the resulting centroid patterns should differ
from each other significantly (pattern correlations should be low), (3) the spatiotemporal
correlations of the centroid histograms should also be low, and (4) the distance between
cluster centroids should be larger than the dispersions of the cluster member distances
from the centroid. According to Oreopoulos et al. [43], the pattern correlation coefficients
between the centroids of all regimes and subregimes should be less than 0.6, and the relative
frequency of occurrences (RFO) of geographic distribution of any cluster should be less
than 0.8. This creates seven cloud regimes, which includes two subregimes split from an
original regime that contains mixtures of mid- and high-clouds.

We then assign each pixel to the nearest regime by its mean values of CTP, COT,
and TCC following Williams and Webb [44]. Compared to assigning by daily CTP-COT
histograms, this is a more tolerant and simpler methodology and is beneficial in improving
the speed of the assignment [45].
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2.2.2. The Relationship between Cloud Properties and AOD

We applied anomaly values of AOD and cloud properties in the linear regression to
eliminate the effect of covariation with the annual cycle. The anomalies are calculated by
subtracting daily values from the multiyear averages of the daily values. In total, 16 years
of full annual cycles from 2003–2018 are used to calculate the multiyear averages. The
anomalies are defined as:

Anomaly(m,n) = Observation(m,n) −
∑16

n=1 Observatiion(m, n)
16

, (4)

where m represents the date, and n represents the year. Observation represents observa-
tional data of AOD and cloud properties.

We use Pearson linear regression coefficient (denoted as β) to quantify the relationship
between AOD and cloud properties. The linear correlation coefficient is defined as:

β =
∑(x−mx)

(
y− my

)√
∑ (x−mx)

2 ∑
(
y− my

)2
, (5)

where x represents AOD anomalies and mx is the mean of x. y represents cloud property
anomalies and my is the mean of y.

We follow the method of Feingold et al. [46] to calculate the sensitivities of cloud
properties to the perturbation of aerosol for each 1◦ grid. The sensitivities of CTP (bCTP)
and TCC (bTCC) to AOD are given by

bCTP =
d ln CTP
d ln AOD

(6)

and
bTCC =

d ln TCC
d ln AOD

(7)

where AOD represents AOD anomalies, CTP represents CTP anomalies and TCC represents
TCC anomalies. The sensitivities are defined in terms of a derivative involving logarithmic
quantities so that the variations are relative to the absolute values of AOD, TCC and CTP.
A larger value of b indicates more sensitive.

2.2.3. Stepwise Multivariable Linear Regression

We adopt the stepwise multivariable linear regression analysis to distinguish the
contributions of aerosols and meteorological factors to clouds. The anomalies of AOD,
cloud properties, and meteorological factors are calculated by Equation (4) and are used in
the regression. We introduce a forward selection approach that imports variables into the
regression equation one by one according to their influence on clouds, which is measured by
the square of their individual partial regression coefficients. The variables that are deemed
statistically significant are kept. The process is repeated until the results are optimal.
Since the units of each independent variable are different, we use the standardized partial
regression coefficient (βm) to quantify the contribution of each independent variable. βm
can reflect the importance of the corresponding independent variables. The multivariable
stepwise regression to quantify the contribution of aerosol and meteorology to cloud
properties is given by

Y = β1X1 + β2X2 + · · ·+ βkXk, (8)

where Y is the anomaly of cloud properties, Xm (m = 1, 2, 3 . . . k) are the anomalies of AOD,
temperature, horizontal wind, relative humidity, vertical velocity, geopotential height, wind
shear and LTS, and βm (m = −1, 2, 3, . . . , k) are their partial regression coefficients. All
significance tests satisfied p < 0.05.
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3. Results
3.1. Cloud Classification over China from 2002 to 2019

Figure 1 shows the centroids of CTP and COT (i.e., the average joint histograms) for
the seven clusters. We interpreted the clusters as different cloud regimes according to
ISCCP cloud type definition [47] based on the cluster average of CTP and COT (Table 1).
CR1 and CR2 were categorized as cirrostratus (CTP < 440 hPa, COT between 3.6 and 23).
CR3 and CR4 were two “subregimes” split from one regime. The clouds in CR3 had the
lowest average CTP (323.0 hPa), the largest COT (17.4), and the largest LWP (295.7 g/m2)
among all regimes. Moreover, CR3 was the prevailing cloud regime during summer over
most parts of China (see Figure S1 in the Supporting Materials) when DCCs occurred most
frequently [48]. We thus inferred that CR3 contained the largest amount of DCCs among
all cloud regimes. CR4 represented altostratus whose CTP spanned a wide range from
the surface to approximately 400 hPa, and the COT (13.9) and TCC (87.8%) were relatively
large. CR5 was categorized as stratocumulus (CTP < 680 hPa, COT between 3.6 and 23). It
appeared to contain many scattered cumuli. CR6 had similar COT and CTP as CR5 but a
larger TCC (91.1%). We inferred that CR6 was dominated by stratocumuli produced by
large-scale subsidence due to weather systems. CR7 had a centroid pattern similar to those
of CR5 and CR6 but developed higher and contained more liquid water. We inferred CR7
to be also dominated by stratocumuli. We should mention that an exception to the cloud
type interpretation existed over the Tibetan Plateau (TP) and Qinghai Province due to the
high surface elevation.Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22 
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thickness (COT)-cloud top pressure (CTP) histograms of the MODIS Aqua Level 3 daily gridded data.
Shading indicates the Probability Density Function (PDF) of joint histograms.
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Table 1. The mean cloud properties and description for each regime.

CR COT (/) CTP (hPa) TCC (%) LWP(g/m2) Description

1 5.0 438.6 50.0 85.8 Cirrostratus with low LWP and TCC
2 7.1 428.9 91.9 130.1 Cirrostratus with high LWP and TCC

3 17.4 323.0 98.3 295.7
Cirrostrats (ISCCP defination), but contains deep convection

cloud in the lower reach of YRD, and low-level
stratocumulus over TP

4 13.9 626.6 87.8 178.7 Altostratus (ISCCP definatiion), with CTP span a wide range
from surface to 400 hpa,

5 6.5 727.7 29.0 74.3 Stratocumulus (ISCCP defination)
6 3.9 885.3 91.1 50.8 Stratocumulus with high TCC
7 7.0 749.8 74.3 94.8 Stratocumulus with high LWP

Figure 2 shows the geographic distributions of the multiannual average RFO for
each regime. CR1 was dominated by optically thin and high-top clouds that seated over
northwestern China and the TP. CR2 had a geographic distribution similar to that of CR1.
The differences were that CR1 dominated the southwestern TP, while CR2 dominated the
eastern TP and western Sichuan Basin. CR3 was mainly distributed along the Yangtze
River Basin and southeastern China, with the highest RFO (22.1%) among all regimes. CR4
occurred most frequently in the Sichuan Basin and the Yunnan–Guizhou Plateau. The
wide range of CTP in CR4 could also result from the complex topography of the Yun-Gui-
Chuan region, whose altitude rises from 400 m in the southeast to 3500 m in the northwest.
The geographic distributions of CR5, CR6 and CR7 were in Yunnan, Inner Mongolia and
northeastern China. CR7 had the lowest RFO (3.9%) among all regimes.
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Figure 2. The spatial distribution of the relative frequency of occurrence (RFO) for CR1-CR7. The
RFO in each 1◦ × 1◦ grid for a cloud regime is calculated by dividing the pixel counts of successful
retrieval in the regime by the total pixel counts of all regimes. The total RFOs of the regimes are also
given in the subtitles of each panel, which are obtained by dividing the pixel counts of all grids over
China that belongs to the regime by the total pixel counts of all grids.
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Considering the similarities of the centroids and the collocation of the spatial distri-
bution among regimes, we determined that some cloud regimes were related probably
due to similar dynamic/thermodynamic environments and topography. CR1 and CR2
were high-level cirrostrati prevailing over the TP. CR3 and CR4 were high- and mid-level
convective and altostrati mostly related to DCCs and other convective clouds. CR5, CR6,
and CR7 were generally categorized as low-level stratocumuli.

3.2. Temporal and Spatial Variation of AOD and Cloud Properties

The AOD over China has experienced stages of changes during 2002–2019 (Figure 3).
During 2002–2006, the AOD increased significantly in most areas, especially in eastern
China (Figure 3a). The increasing trend of AOD may be related to the high energy con-
sumption in eastern China. The growth trends of the AOD in China slowed down after
2006 [49]. From 2007 to 2013, the AOD turned into a declining tendency in most areas
(Figure 3b). The AOD trend in the eastern China turned negative, indicating that pollutant
emissions from human activities have been effectively controlled through industrial and
energy restructuring.
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(c) 2014–2019, (d) 2002–2019. The dots indicate grids where that the linear trends are significant at the
level of 0.05.

From 2014 to 2019, AOD showed a significant downward trend in most regions
(Figure 3c). The reduction rate of AOD in the middle and lower reaches of the Yangtze
River Delta and the Pearl River Delta was greater than 0.6 per 18 years. This could be
caused by the action plan on the prevention and control of air pollution implemented
in 2013. Instead, AOD increased in most parts of western China, especially in southern
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Xinjiang and the border between the Qinghai–Tibet Plateau and northwestern Qinghai,
with an increase rate greater than 0.6 per 18 years. Overall AOD decreased in eastern China
and increased in western China from 2002 to 2019 (Figure 3d).

Due to the obvious east–west differences in the AOD trends, we used the “Heihe–
Tengchong Line” as the divide to examine the trends of cloud properties in eastern and
western China (Figure 4). Most CTP shows a negative trend during 2002−2019 in both
eastern and western China, i.e., clouds were higher (Figure 4a). The trend of higher clouds
in the west was more obvious than in the east. The CTP of CR5 (stratocumulus) in the
west declined by 51.68 hPa per 18 years. The variations in COT and LWP are in good
consistency (Figure 4b,c). This may be related to the fact that MODIS obtained LWP data by
the inversion of COT [50]. The COT and LWP increased significantly after 2007, indicating
that clouds became thicker and cloud liquid water content became more abundant. For CR4
in the eastern region, the COT increased by 5.32 hPa per 18 years, and the LWP increased
by 88.16 g/m2 per 18 years. Figure 4d shows a general decreasing trend of TCC in recent
years, which is consistent with previous studies that a fluctuating decreasing trend of TCC
were found over China in the last fifty years [51,52]. The decrease in TCC in eastern China
coincided with the decrease in aerosol content from 2007 to 2019. Generally, CTPs decrease
(i.e., higher clouds), COT and LWP increase (thicker cloud), and TCC decreases (fewer
clouds) for the majority of the cloud regimes over China.
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Figure 4. The trend of cloud properties for each regime in western and eastern China. (a) CTP, unit:
hPa/18 years, (b) COT, unit:/18 years, (c) LWP, unit: g/(m2·18 years), and (d) TCC, unit: %/18 years.
Asterisks indicate that the linear regression coefficient has passed the significance level of 0.05 and
dots indicate that the linear regression coefficient has passed the significance level of 0.10. The insert
map colors the eastern China in blue and western China in yellow with “Heihe–Tengchong Line” as
the divide.
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3.3. Apparent Relationship between AOD and Cloud Properties

There were significant negative correlations between AOD and CTP over most parts
of China (Figure 5). This correlation has also been observed globally with many different
cloud regimes [34,53,54]. For high clouds (CR1 and CR2), the significant negative corre-
lation between AOD and CTP occurred in the arid and semiarid regions of northwestern
China. Dust aerosols are the main components of aerosols in these regions. They heat the
aerosol layer by absorbing solar radiation, leading to increased atmospheric instability
and enhanced vertical motion [55]. Enhanced uplift flow leads to further development of
cloud tops. For CR3, which is dominated by DCCs in the lower reach of the Yangtze River
Basin and northwestern China, the strong negative correlation between AOD and CTP
complies with the aerosol invigoration effect. However, there was no significant correlation
over the middle and upper reaches of the Yangtze River Basin where DCCs prevail. For
low-level clouds (CR5, CR6, and CR7), the negative relationship between the AOD and
CTP agreed with the Albrecht effect, which indicates that aerosols suppress precipitation
and promote the vertical development of clouds [56]. In some part of eastern China CTPs
showed positive correlations with AOD, which contradicted the Albrecht effect or the
invigoration effect. Similar relationships were also found on warm clouds over the Yangtze
River Delta. However, most of the positive correlation did not pass the significant test.
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Figure 5. The correlation coefficients between MODIS CTP and AOD for each cloud regime. The dots
indicate that the linear regression coefficient has passed the significance level of 0.05. Blank grids are
due to missing AOD retrievals.

Figure 6 indicates a positive correlation between AOD and COT over most parts of
China for all cloud regimes. Under the influence of environmental humidity, the correlation
was more significant near Bohai Bay. The positive correlations of high clouds (CR1 and CR2)
were obvious over southern Xinjiang and the western Qinghai–Tibet Plateau. Some areas
showed negative correlations, but the correlation coefficients did not pass the significance
test at the 0.05 level.
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Figure 6. Same as Figure 5 but for correlation coefficient between COT and AOD.

Figure 7 shows the positive correlation between AOD and LWP, which is similar
to the spatial distribution of the correlation between AOD and COT. The correlation
coefficient was significantly positive in the vicinity of Bohai Bay but negative in some
areas of northwestern China. This may be influenced by the type of aerosol and the
RH [57]. It should be noted that the positive correlation may not reflect the non–linear
relationship between AOD and LWP. Toll et al. [58] found that LWP showed both increases
and decreases in all types of pollution track, which indicated that the responses of the LWP
to aerosol−induced perturbations were more complex than the increase assumed from the
suppression of rain. For CR1 and CR2, the negative correlation was significant in western
Xinjiang. This result was consistent with previous findings that increased the evaporation
of cloud water due to absorption of solar shortwave radiation by dust aerosols, resulting in
reduced LWPs [55].

It is interesting to note that a clear positive correlation existed between AOD and TCC
(Figure 8), which agreed with the Albrecht effect for low-level clouds (CR5, CR6, and CR7)
and the invigoration effects for convective clouds (CR3). A positive correlation between the
satellite–derived cloud fraction and aerosol loading have been noticed by many previous
studies [59–61]. However, factors other than aerosol effects may also lead to a positive AOD–
TCC relationship. These include AOD retrieval errors (e.g., cloud contamination [62]), 3-D
light scattering by inhomogeneous clouds [63], covariation with meteorological variables
(e.g., relative humidity, wind speed), and many others (see Grandey et al. [60] for a brief
summary). An evaluation of the aerosol indirect effect on TCC needs to be carefully
considered as given by examples in Grandey et al. [60]. We further discussed the covariation
with meteorological variables in Section 3.4.
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Due to the obvious relationships for AOD–CTP and AOD–TCC, we calculated the
mean CTP and TCC for three equal sampling sized AOD subsets. The CTPs in the west
(Figure 9a) and in the east (Figure 9b) decreased with the AOD for most cloud regimes.
The TCC increased with AOD for all cloud regimes for both regions, especially in the east
(Figure 9c,d). As Figure 9d shows, an increase in the TCC with AOD was evident in the
east, especially for CR1 and CR5, for which the TCC was small (the mean TCC was 50% for
CR1 and 29% for CR5). This obvious positive correlation between AOD and TCC has been
seen in previous satellite retrievals [9]. Some studies have indicated that most of this strong
correlation can be explained by aerosol humidification increasing the AOD in regions of
high RH [64].
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Figure 9. Variations of (a) CTP in the western China, (b) CTP in the eastern China, (c) TCC in the west
China, and (d) TCC in the east China with AOD. The vertical bars represent ± one standard error.

Table 2 shows the sensitivities of CTP and TCC to AOD for different regimes. The
results presented are the means of all grid points that passed the significance test in the
eastern and western region. The sensitivity of CTP to AOD (bCTP) was negative for all
cloud regimes in both regions. The mean bCTP was −0.057 in the east and −0.074 in the
west, indicating that the CTP of clouds in the west was more sensitive to the change in
AOD. The calculated sensitivities were consistent with the variation of CTP with AOD
(Figure 9a,b). The sensitivity of TCC to AOD (bTCC) was positive for all cloud regimes in
the two regions. The mean bTCC was 0.77 in the east and 0.60 in the west, indicating that
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the TCC of clouds in the east was more sensitive to the change of AOD. The larger bTCC in
the east may be affected by the larger relative humidity than that in the west.

Table 2. The sensitivities of TCC/CTP to AOD for different cloud regimes and regions.

Sensitivity CR1 CR2 CR3 CR4 CR5 CR6 CR7

bTCC
West 0.591 0.515 0.559 0.506 0.649 0.818 0.591
East 0.817 0.750 0.717 0.685 0.770 0.925 0.734

bCTP West −0.077 −0.086 −0.074 −0.086 −0.077 −0.027 −0.089
East −0.048 −0.080 −0.066 −0.054 −0.040 −0.012 −0.101

3.4. The Relative Contributions of Aerosol and Meteorological Variables to Cloud Variation

The apparent relationship between AOD and cloud properties may be the result of
their covariation with meteorology [54,60,61]. We established a stepwise multivariable
regression equation to explain the contribution of AOD and meteorological factors to
the variation of cloud properties. The key meteorological factors that were investigated
include temperature, RH, horizontal wind, vertical velocity, GPH, wind shear, and LTS. All
meteorological factors were given at five pressure levels except for wind shear and LTS.

The contribution of AOD to CTP in the western region decreased after considering the
meteorological factors compared with the linear regression coefficient (Table 3). The GPH
and vertical velocity show remarkably high correlations with CTP for most cloud regimes in
the west (Table 3 and Figure 10a). GPH at 850 hPa was positively correlated with CTPs and
GPH at 1000 hPa showed negative correlation with CTP for mid− and low−level clouds
(CR4-CR7, see discussion in Section 4). In the east, although the coefficient of AOD slightly
increased compared with the linear regression coefficients, the meteorological factors are
the major contributor. RH at 200 hPa showed a significant negative correlation with CTP in
the east, which was consistent with previous studies [54]. In general, meteorological factors
yielded a higher contribution to CTP than AOD in both regions.

The coefficient of AOD to TCC decreased after considering the meteorological fac-
tors (Table 3). The AOD was still among the main factors affecting TCC in both regions
(Figure 10b). The influence of AOD on TCC was particularly significant in high− and
mid−level clouds (CR1, CR2, and CR3). The standardized partial regression coefficient
of AOD against TCC for CR1 for eastern China was 0.347. Among the meteorological
variables, RH correlated well with TCC in the east. The standardized partial regression
coefficients of RH (1000 hPa) against TCC for CR7 was 0.215. In western China, the GPH
(700 hPa) and GPH (850 hPa) yielded the highest correlations with TCC for low−level
clouds (CR6 and CR7).

The standardized partial regression of GPH at 1000 hPa and 850 hPa to CTPs showed
opposite signs for mid- and low-level clouds (CR4−CR7) in the west (Figure 10a). The
mechanism for GPH to affect CTPs can be understood by investigating the variation of
vertical velocity with GPH at the corresponding pressure level.
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Table 3. The linear regression coefficient (β) for the AOD–CTP/TCC relationship, standardized
partial regression coefficient (βm) when considering meteorological factors for the AOD−CTP/TCC
relationship, and the major factors affecting CTP/TCC.

West East

CR

Linear
Regression
Coefficient

β

Standardized
Partial

Regression
Coefficient

βm

Change
Major

Meteor.
Factors

Linear
Regression
Coefficient

β

Standardized
Partial

Regression
Coefficient

βm

Change Major
Factors

CTP

1 −0.086 * −0.022 ↓ W1000
RH500

0.027 * 0.048 ↑ RH200
RH500

2 −0.095 * −0.015 ↓ GPH500
W1000

−0.006 * 0.041 ↔ RH200
RH500

3 −0.071 * −0.020 ↓ GPH700
GH500

0.017 * 0.036 ↑ RH200
W1000

4 −0.098 * - - GPH850
GPH1000

0.022 * 0.028 ↑ W1000
RH200

5 −0.144 * - - GPH850
GPH1000

−0.017 * 0.032 ↑ RH200
GPH700

6 −0.117 * - - GPH850
GPH1000

−0.085 0.049 ↔ GPH700
GPH500

7 −0.113 * - - GPH850
GPH700

0.002 0.027 ↑ RH200
RH500

TCC
West East

1 0.321 * 0.276 ↓ T850
AOD 0.527 * 0.347 ↓ AOD

GH700

2 0.301 * 0.248 ↓ W1000
AOD 0.503 * 0.339 ↓ AOD

GPH850

3 0.348 * 0.276 ↓ AOD
W1000

0.477 * 0.322 ↓ AOD
GPH850

4 0.343 * 0.246 ↓ GPH700
GPH500

0.479 * 0.318 ↓ GPH700
GH850

5 0.276 * 0.251 ↓ GPH700
GPH500

0.503 * 0.340 ↓ AOD
GPH500

6 0.307 * 0.254 ↓ GPH1000
GPH850

0.508 * 0.364 ↓ GPH700
GPH850

7 0.290 * 0.228 ↓ GPH1000
GPH850

0.466 * 0.314 ↓ GPH700
GPH850

* Note: “↑” means the magnitude of the regression coefficient increases from β to βm, and “↓” means vice versa.
“↔” means change of sign. “-” means not significant at 0.05 level. The standardized linear regression coefficients
have all passed the significance level of 0.05. Asterisk indicates that the linear regression coefficient has passed the
significance level of 0.05.
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Figure 10. The multivariable linear regression between (a) CTP, (b) TCC and AOD and meteorological
variables. In the order from top to bottom are results for seven cloud regimes (CR1–CR7). Black
triangles represent results in eastern China while red circles represent results in western China. The
missing data are variables that did not pass the significance test at the level of 0.05. The abscissa
values are 1 for AOD, 2–6 for temperature, 7–11 for horizontal wind, 12–16 for relative humidity, 17–21
for vertical velocity, 22–26 for geopotential height at 200, 500, 700, 850, and 1000 hPa, respectively, 27
for wind shear, and 28 for LTS.

The vertical velocity is an important dynamic condition to measure the vertical devel-
opment of clouds. Here, the ERA5 values are averages over the 1◦ × 1◦ grid. A positive
value indicates the grid is dominated by a downdraft and vice versa. Figure 11 shows the
variation of GPH with w and their joint probability distribution functions (PDF). The verti-
cal velocity is mostly positive since downdrafts occur over a wider area than updrafts. At
850 hPa, when w > 0 GPH increased with the strengthening of the downdraft that leads to
the inhibition of the cloud top height. The result is that GPH was positively correlated with
CTP at 850 hPa. In contrast, increased GPH at 1000 hPa is accompanied by strengthened
updraft (or equivalently weakened downdraft) in the range of 0 < w < 0.6 near the surface,
allowing cloud water to be transported to higher altitudes (i.e., lower CTP). Therefore, GPH
is negatively correlated with CTP at 1000 hPa.



Remote Sens. 2022, 14, 3844 16 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 22 
 

 

4. Conclusions 
The standardized partial regression of GPH at 1000 hPa and 850 hPa to CTPs showed 

opposite signs for mid- and low-level clouds (CR4−CR7) in the west (Figure 10a). The 
mechanism for GPH to affect CTPs can be understood by investigating the variation of 
vertical velocity with GPH at the corresponding pressure level. 

The vertical velocity is an important dynamic condition to measure the vertical de-
velopment of clouds. Here, the ERA5 values are averages over the 1° × 1° grid. A positive 
value indicates the grid is dominated by a downdraft and vice versa. Figure 11 shows the 
variation of GPH with w and their joint probability distribution functions (PDF). The ver-
tical velocity is mostly positive since downdrafts occur over a wider area than updrafts. 
At 850 hPa, when w > 0 GPH increased with the strengthening of the downdraft that leads 
to the inhibition of the cloud top height. The result is that GPH was positively correlated 
with CTP at 850 hPa. In contrast, increased GPH at 1000 hPa is accompanied by strength-
ened updraft (or equivalently weakened downdraft) in the range of 0 < w < 0.6 near the 
surface, allowing cloud water to be transported to higher altitudes (i.e., lower CTP). There-
fore, GPH is negatively correlated with CTP at 1000 hPa. 

 
Figure 11. The joint probability density distribution of (a) GPH850 and w850 and (b) GPH1000 

and w1000 for mid− and low−level clouds (CR4, CR5, CR6, and CR7) in western China. The 
dots lines are the relationships between GPH and w. The vertical bars represent ± one 
standard error. 

This study demonstrates the relationship between aerosol and clouds based on cloud 
regimes. Using the k-means clustering algorithm on satellite−retrieved CTP−COT histo-
grams, we grouped 18 years (2002−2019) of MODIS Aqua cloud data over China into 
seven cloud regimes. The cloud regimes showed distinguished cloud properties (CTP, 
COT, TCC, and LWP) and spatial distributions. We attributed them to two high cloud 
regimes (mainly cirrostratus), two high and mid−level cloud regimes (mainly DCCs and 
altostratus), and three low cloud regimes (mainly stratocumulus) according to the ISCCP 
cloud type definition. Cirrostratus (CR1 and CR2) prevailed over the Tibetan Plateau and 
northern China. DCCs and altostratus (CR3 and CR4) occurred most frequently over the 
Yangtze River Basin, Sichuan Basin, Yungui Plateau, and eastern Tibetan Plateau. Strato-
cumulus (CR5, CR6 and CR7) prevailed in Inner Mongolia, northeastern and northwest-
ern China. 

Figure 11. The joint probability density distribution of (a) GPH850 and w850 and (b) GPH1000 and
w1000 for mid− and low−level clouds (CR4, CR5, CR6, and CR7) in western China. The dots lines
are the relationships between GPH and w. The vertical bars represent ± one standard error.

4. Conclusions

This study demonstrates the relationship between aerosol and clouds based on cloud
regimes. Using the k-means clustering algorithm on satellite−retrieved CTP−COT his-
tograms, we grouped 18 years (2002−2019) of MODIS Aqua cloud data over China into
seven cloud regimes. The cloud regimes showed distinguished cloud properties (CTP, COT,
TCC, and LWP) and spatial distributions. We attributed them to two high cloud regimes
(mainly cirrostratus), two high and mid−level cloud regimes (mainly DCCs and altostra-
tus), and three low cloud regimes (mainly stratocumulus) according to the ISCCP cloud
type definition. Cirrostratus (CR1 and CR2) prevailed over the Tibetan Plateau and north-
ern China. DCCs and altostratus (CR3 and CR4) occurred most frequently over the Yangtze
River Basin, Sichuan Basin, Yungui Plateau, and eastern Tibetan Plateau. Stratocumulus
(CR5, CR6 and CR7) prevailed in Inner Mongolia, northeastern and northwestern China.

Generally, MODIS-retrieved AOD showed decreasing trend in eastern China and
increasing trend in western China from 2002 to 2019. During this period, the CTP decreased
(higher clouds), the COT and LWP increased (thicker clouds), and the TCC decreased
(fewer clouds) for the majority of the cloud regimes over China. However, diverse features
of the cloud property trends were found for various cloud regimes, time periods, and
geographical regions, manifesting the complexity of cloud evolution with time and space.

The apparent relationships between AOD and the cloud properties provide implica-
tions for the plausible aerosol−cloud interaction mechanisms in various cloud regimes.
The high clouds (CR1 and CR2) showed negative relationships between AOD and CTP in
arid and semiarid regions of northwestern China, which may be related to the instability
due to atmospheric heating by dust aerosols. For DCCs and altostratus (CR3 and CR4),
the positive correlation between AOD and COT, LWP and TCC comply with the aerosol
invigoration effect. Boundary layer liquid clouds (CR5, CR6, and CR7) showed negative
correlations between AOD and CTP and positive correlations between AOD and TCC,
which were consistent with the Albrecht effect.

If meteorological variables were taken into account, the contribution of AOD to CTP
decreased in the west and increased in the east compared with considering the impact of
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AOD alone. However, differences in the major factors that affected CTP variation existed
in eastern and western China. Relative humidity was the main factor affecting CTP in
eastern China, while dynamic factors (i.e., geopotential height and vertical velocity) were
the key variables in the west. AOD was the key variable that affected TCC most, and its
contribution tended to increase after adding meteorological conditions. Dynamic factors
had a collaborative influence on TCC. The influence of near-surface relative humidity
(1000 hPa) on TCC in the eastern China was not negligible.

This research highlights the discernable long-term impacts of aerosols on various cloud
regimes over China. The results can be used as observational constraints for assessing the
performance of global and regional climate models. It should be noted that passive remote
sensing had difficulties to distinguish multilayer clouds from single layer clouds [65]. In
addition, MODIS lacks nighttime cloud information and its temporal and spatial resolutions
are relatively low. Satellite data with higher spatial and temporal resolutions should be
used for similar analysis in the future. We did not analyze the correlation between cloud
effective radius and AOD in this research because the Twomey effect has been widely
studied over this region. As suggested by previous studies [30], the satellite−derived
Twomey effect is contrary to that from surface retrievals and may be subject to uncertainties
due to some inherent limitations.
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Nomenclature

Acronym Full name
ACIs Aerosol cloud interactions
AOD Aerosol optical depth
COT Cloud optical thickness
CRs Cloud regimes
CTP Cloud top pressure
DCCs Deep convective clouds
ECMWF European Center for Medium-Range Weather Forecasts
GPH Geopotentical height
ISCCP International Satellite Cloud Climatology Project
LTS Low tropospheric stability
LWP Liquid water path
MODIS Moderate-Resolution Imaging Spectroradiometer
RFO Relative frequency of occurrences
RH Relative humidity
TCC Total cloud cover
W Vertical velocity
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