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Abstract: The timely and accurate estimation of grassland aboveground biomass (AGB) is impor-
tant. Machine learning (ML) has been widely used in the past few decades to deal with complex
relationships. In this study, based on an 11-year period (2005–2015) of AGB data (1620 valid AGB
measurements) on the Three-River Headwaters Region (TRHR), combined with remote sensing data,
weather data, terrain data, and soil data, we compared the predictive performance of a linear statisti-
cal method, machine learning (ML) methods, and evaluated their temporal and spatial scalability.
The results show that machine learning can predict grassland biomass well, and the existence of an
independent validation set can help us better understand the prediction performance of the model.
Our findings show the following: (1) The random forest (RF) based on variables obtained through
stepwise regression analysis (SRA) was the best model (R2

vad = 0.60, RMSEvad = 1245.85 kg DW (dry
matter weight)/ha, AIC = 5583.51, and BIC = 5631.10). It also had the best predictive capability of
years with unknown areas (R2

indep = 0.50, RMSEindep = 1332.59 kg DW/ha). (2) Variable screening
improved the accuracy of all of the models. (3) All models’ predictive accuracy varied between 0.45
and 0.60, and the RMSE values were lower than 1457.26 kg DW/ha, indicating that the results were
reliably accurate.

Keywords: MODIS; Google Earth Engine; biomass inversion; spatio-temporal scalability; model building

1. Introduction

Grassland is one of the most widespread types of vegetation in the world, and it
accounts for about 20% of the global land area. It plays an important role in ecological
balance and human livelihood [1]. The aboveground biomass (AGB) of grassland is one
of the most direct manifestations of grassland quality and grassland ecosystems [2,3].
Therefore, accurate estimation of the grassland AGB is particularly important for grassland
grazing management and regional grassland sustainable development.

The aboveground biomass (AGB) can be predicted by direct methods (by harvesting
the biomass) and by indirect methods (including the use of remote sensing tools). The direct
harvest method has high estimation accuracy, but it is time-consuming, labor-intensive,
costly, and inefficient, and will cause a certain degree of damage to grassland ecology [4].
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Therefore, it is only suitable for short-term, small-scale detection. In contrast, Satellite
remote sensing has low cost and high efficiency, providing an effective means for regional
and global production detection [5]. Enhanced vegetation index (EVI) [6], soil adjusted
vegetation index (SAVI) [7,8], modified soil adjustment vegetation index (MSAVI) [9], and
ratio vegetation index (RVI) [10] have been used for monitoring and estimation. Further-
more, other environmental factors that affect biomass (such as climate variables and soil
properties) contain non-biological information [11–13].

The use of remote sensing images and environmental factors to construct non-parametric
models is a common method for estimating grassland biomass. The construction of a
non-parametric model requires a “learning process” based on training data that can au-
tomatically optimize the weight of each calculation until error has been minimized [14].
Non-parametric models can be divided into linear and non-linear models. Classical linear
models include partial least squares (PLS) and principal component regression (PCR).
Common non-linear models include machine learning (ML) models, such as convolutional
neural networks (CNNs), support vector machines (SVMs), and random forests (RFs).

Grassland growth can be influenced by multiple environmental factors, and previous
studies have suggested that estimating AGB use with only a single type of factor could
introduce errors and uncertainties [15]. Although ML-based simulations of grasslands
using different algorithms yield different accuracies [3], in general, machine learning still
outperforms traditional algorithms in terms of simulating grasslands due to its strong
interpretability and high efficiency [16]. ML methods, such as random forest (RF) regres-
sion, can integrate multiple factors and learn highly complex nonlinear mappings for
estimating AGB. Xie et al. used Landsat data to establish artificial neural network (ANN)
and multiple linear regression (MLR) models to estimate the grassland AGB in Inner Mon-
golia (n = 461) [16]. The results show that compared to MLR (RMSEr = 49.51% for the
training, and RMSEr = 53.20% for the testing), ANN (RMSEr = 39.88% for the training, and
RMSEr = 42.36% for the testing) can provide more accurate results. Tang et al. established a RF
algorithm suitable for the Headwater of the Yellow River (R2

val = 0.56, RMSEval = 51.3 g/m2) [15].
Many studies have been conducted on grasslands, however, the small number of avail-
able samples and the lack of support from long-term observational data persist as chal-
lenges [17].

In recent decades, many vegetation indices have been used to estimate AGB, such
as the NDVI [18–21]. However, the variation in the AGB is not influenced by a single
factor, but by a variety of factors, such as the soil, climate, and topography. Some simple
vegetation indices can help in understanding the effect of explanatory variables on biomass
availability but may not be able to describe the biological processes that occur in nature.
Therefore, this study hopes to combine soil, climate, topography, remote sensing, and other
factors with machine learning to better predict grassland biomass.

The main objectives of this research are to (1) compare the ability of linear regression
models and machine learning algorithms to evaluate grassland biomass using years of
continuous observations and (2) evaluate spatio-temporal scalability between the tradi-
tional methods and machine learning-based methods. This paper is organized as follows.
Section 2 describes the data sources and methods. Section 3 compares the model accuracy
and spatio-temporal scalability, and inverts the aboveground biomass of grassland in the
Three-River Headwaters Region (TRHR) based on the optimal results. In Section 4, the
distribution pattern of grassland biomass, the spatio-temporal scalability of the model, the
input variables that affect grassland biomass, and the factors that affect the accuracy of the
model are discussed. Conclusions are summarized in Section 5.

2. Data Sources and Methods
2.1. Data Sources
2.1.1. Study Area

The study area (31◦39′~36◦12′N, 89◦45′~102◦23′E) is located in the southern part of
Qinghai Province in China. It is the ecological barrier between the roofs of the world (the
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Qinghai Tibet Plateau) and is the headwater source of the three largest rivers in China: the
Yellow River, the Yangtze River, and the Lancang River. The TRHR is known as the China
Water Tower and provides a barrier for environmental protection and sustainable develop-
ment for the middle and lower reaches of rivers in China and Southeast Asian countries.
The study area has a total area of 36,561,502 ha, accounting for about 43% of the total area
of Qinghai Province. The average altitude is 4000 m, the annual mean temperature (AMT)
is 3 ◦C, the annual mean precipitation (AMP) is 377 mm, and its range of growing degree
days (GDDs) is 0–5001 ◦C. The grassland in the TRHR is dominated by alpine meadows
and alpine grasslands, accounting for 54% and 16% of the area, respectively (Figure 1b).
The soil distribution in the area has prominent vertical zoning rules, mainly alpine meadow
soil and swamp meadow soil, and the frozen soil layer is well developed [22]. Details of
research sites are supplemented in the Table S1.
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Figure 1. Digital elevation model (DEM) (a) and spatial distribution patterns of grassland type (b) in
the pastoral area of Southern Qinghai Province, China.

2.1.2. AGB Dataset

We collected field survey AGB data during the peak growing season (July to Septem-
ber) from 2005 to 2015, for a total of 1620 valid data items (Table S2). Guide, Guinan, Jianzha,
and Tongren were newly added in 2015, and each county has only 2 to 5 sample points.
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The largest number of samples was of those drawn from Banma county, with 120 sample
points collected, followed by Tongde county, with 115 sample points collected.

The general spatial distribution of AGB measurements during 2005–2015 provides
an overall picture of the AGB values of the study area (Figure 2). As shown in the figure,
the value of AGB was in the range from 200 to 10,000 kg DW (dry matter weight)/ha (the
average value was 3090 kg DW/ha). The figure shows an overall downward trend from
southeast to northwest, with some exceptions.
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from the China Meteorological Data Network (http://data.cma.cn, accessed on 3 February 

Figure 2. Grassland AGB measured from 2005 to 2015 (n = 1620) (all AGB values measured at each
observation sample station are averaged for that observation station).

We now outline the methodological steps undertaken to collect the grassland AGB of
the study (Figure S1).

a) The latitude and longitude of the TRHR were determined by a handheld GPS device.
b) We established a grassland sample plot (500 m × 500 m) based on typical grassland

vegetation communities that had a relatively flat terrain and uniform growth and that
were spatially representative. We used five 1 m × 1 m grassland observation plots in
the sample plot using the five point method.

c) The aboveground part of the vegetation in each observation plot was mowed up to
the ground. All litter and other non-plant materials were removed from the grass
samples, bagged, and brought back to the laboratory for further processing.

d) We weighed samples from each plot in the laboratory. They were then oven-dried at
65 ◦C for 48 h, and their dry weights were recorded.

All AGB values (dry weight) in a MODIS pixel (500 × 500 m) were averaged to
represent the average AGB of the MODIS pixels, and the center latitude and longitude of
the pixel were used for modeling.
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2.1.3. Meteorological Data

Climatic data as an environmental factor are the basis of research fields such as agri-
culture and forestry. We collected the daily maximum temperature, minimum temperature,
and precipitation data from 15 meteorological stations in the TRHR from 2005 to 2015
from the China Meteorological Data Network (http://data.cma.cn, accessed on 3 February
2021). AMT and AMP were interpolated by ANUSPLIN, an interpolation package specially
designed for meteorological data [23].

2.1.4. Soil Data and Topographic Data

The soil data were from the global gridded soil information (https://soilgrids.org/,
accessed on 3 February 2021) and included the organic carbon stock of soil (OC) on the
surface (0–5 cm), organic carbon density (OR) on the surface (0–5 cm), bulk density (BL) of
the soil surface (0–5 cm), (CL) of the soil surface (0–5 cm), coarse fragments (CR) (0–5 cm),
silt size (SL) of the soil surface (0–5 cm), sand (SN) on the soil surface (0–5 cm), cation
exchange capacity (at pH = 7) (CE) of the soil surface (0–5 cm), and pH water (pH) in the
soil surface (0–5 cm). We then resampled the data to 500 m.

The digital elevation model (DEM) data were obtained from Shuttle Radar Topography
Mission (SRTM) images (version 004) (http://srtm.csi.cgiar.org, accessed on 3 February
2021). To match the available data, the digital elevation data were resampled to 500 m,
and the projection type was defined as a WGS_1984 map projection. In addition, ArcGIS
software was used to generate the aspect and slope with a resolution of 90 m; the data were
then resampled to 500 m. Finally, we extracted the corresponding data and analyzed them.

2.1.5. MODIS Data and Its Processing

All MODIS data in this paper were obtained from the Google Earth Engine (GEE)
platform (https://code.earthengine.google.com/, accessed on 7 February 2021) (version
006) (Tables 1 and S3). The processing flowchart is shown in Figure S2.

Table 1. MODIS products.

MODIS Time Resolution (d) Spatial Resolution (m) Bands

MOD09A1 8 500 B1–B7
MOD13A1 16 500 NDVI, EVI
MOD11A2 8 1000 D-LST, N-LST

MOD15A2H 8 500 LAI, Fpar
Note: B1–B7: reflectance of MODIS bands 1–7; NDVI: normalized difference vegetative index; EVI: enhanced
vegetation index; the unit of the day land surface temperature (D-LST) and night land surface temperature (N-LST)
is K; LAI: leaf area index; Fpar: fraction of photosynthetically active radiation.

2.2. Method and Modeling
2.2.1. Variable Selection

Three variable selection methods, stepwise regression analysis (SRA), ridge regression
(RR), and the least absolute shrinkage and selection operator (LASSO), were used in this
study. As a filter of variable indicators, SRA can quickly select the most important variable
indicators related to the research object from a large number of indicator libraries [24]. RR
is a variable screening method and has the ability to handle multicollinearity data [25].
LASSO can automatically select the most important independent variables and narrow
down the less important predictor variables to zero [26].

2.2.2. Summary of Modeling Methods

The PLS, SVM, RF, Gradient Boosting Decision Trees (GBDT), and Multilayer BP
Neural Network (BP) modeling methods were used. The PLS is a mathematical regression
model that determines the correlation between variables [27]. The two most important
parameters in the RF algorithm are the number of regression trees and the number of
predictors at each node. When the number of regression trees is set larger, the accuracy

http://data.cma.cn
https://soilgrids.org/
http://srtm.csi.cgiar.org
https://code.earthengine.google.com/
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of the model will also be improved, but the model operation time will be prolonged.
The default value of the number of predictors at each node is 1/3 of the total number
of independent variables [28]. The SVM is a type of machine learning theory based on
statistical learning theory [29]. In this paper, the radial basis function was used as the kernel
function, and the genetic algorithm was used to optimize two key parameters (gamma
and cost). These three algorithms use functions from the R packages “PLSR”, “random
forest”, and “e1071.” GBDT is an integrated model based on a decision tree that contains
flexible and efficient machine learning algorithms [30]. We continuously optimized the
three hyperparameters of the learning rate, the number of iterations, and the subsample.
The GBDT method was implemented based on the gradient boosting regressor in the
sklearn package. BP is a multi-layer forward neural network, and its theoretical basis is
the error direction propagation algorithm [31]. The most important parameters in the BP
model are the number of neurons and hidden layers, which need to be repeatedly tested
and continuously tuned. The BP model is built based on the torch deep learning framework.
The rationale for machine learning algorithms was added to the Supplementary Materials
(Text S1).

2.2.3. Assessing Model Accuracy

The square of the correlation coefficient between the measured value on the ground
and the predicted value of the model (R2) and root mean square error (RMSE) values were
used as the standards of accuracy evaluation. Higher R2 and lower RMSE indicate better
model performance. Equations (1) and (2) express R2 and RMSE respectively:

R2 = 1− ∑n
i = 1

(
Yi − Ŷi

)2

∑n
i = 1

(
Yi − Yi

)2 (1)

RMSE =

√
∑n

i = 1
(
Yi − Ŷi

)2

n
(2)

where Yi represents the measured value of the aboveground biomass of grassland, Ŷi is the
predicted value of Yi, and Yi is its average value.

The model selection process took into account its fitting performance and simplicity.
In this study, AIC and BIC were used as the evaluation criteria. Among the models with
the same fitting ability, the model with the smaller BIC was preferred.

Equations (3) and (4) express AIC and BIC respectively:

AIC = k ln(n) + n ln

(
∑n

i = 1
(
Yi − Ŷi

)2

n

)
(3)

BIC = 2k + n ln

(
∑n

i = 1
(
Yi − Ŷi

)2

n

)
(4)

where Yi represents the measured value of the aboveground biomass of grassland, Ŷi is the
predicted value of Yi, k represents the number of variables in the model, and n represents
the number of samples. The larger the R2, the higher the credibility of the model prediction,
the smaller the RMSE, AIC, and BIC, the better the model fitting effect.

3. Results
3.1. Correlation between Grassland AGB and Variables

This study used the correlation analysis method to test the correlation between AGB
and MODIS data, topographical factors, soil factors, and meteorological factors (Table S4).
As shown in the table, there was a significant correlation between the AGB and most MODIS
vegetation indices. Among them, grassland AGB had the highest positive correlation
coefficient with the NDVI, MSAVI, optimized soil-adjusted vegetation index (OSAVI),
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and SAVI (R = 0.51). The correlation coefficient between AGB and the reflectance of the
MODIS bands (B1–B7) was between−0.44 and 0.39. The correlation with B7 was the largest
(R = −0.44). There was a strong correlation between the aboveground biomass of grassland
and the five band indices (C–G). Among them, AGB had the largest correlation with E.

The AGB was significantly correlated with most variables, and only had a weak
relationship with topographical factors and SL among soil factors (R < 0.1). AGB and slope
had the highest correlation coefficient (R = 0.29), followed by the DEM, and the weakest
relationship was with the aspect. The BLD, SN, and pH were negatively correlated with
the AGB, but the AGB had a positive correlation with the other soil factors, among which,
the relationship with CL was the strongest (R = 0.26). Among the meteorological factors,
AGB had a significant relationship with AMT, GDD, and AMP, but only showed a negative
correlation with GDD.

3.2. Variable Screening and Model Evaluation

We divided the variables into the All set (45 variables), SRA subset (12 variables), RR
subset (11 variables), and LASSO subset (17 variables) (Table 2). We used these variable
sets as input variables and respectively constructed the PLS, RF, SVM, GBDT, BP models,
for a total of 20 models. The accuracy of the predicted aboveground biomass of each model
in the TRHR was assessed (Table 3). The results show the following:

(1) Overall, the R2 of the training set (R2
train) of the 20 models was between 0.35 and 0.94,

with an average of 0.67, and the RMSE of the training set (RMSEtrain) was between
460.09 and 1499.63 kg DW/ha, with an average of 1045.87 kg DW/ha. The R2 of the
validation set (R2

vad) was between 0.45 and 0.6, with an average of 0.53, and the RMSE
of the validation set (RMSEvad) was between 1239.59 and 1457.26 kg DW/ha, with an
average of 1341.46 kg DW/ha. The R2 of the independent verification set (R2

indep) was
between 0.26 and 0.50, with an average of 0.38, and the RMSE of the independent veri-
fication set (RMSEindep) was between 1332.59 and 1663.55 kg DW/ha, and the average
was 1475.05 kg DW/ha. The AIC of the independent verification set was between
5583.51 and 5757.92, and the BIC of the independent verification set was between
5631.1 and 5936.4. The SRA-RF model had the largest R2

vad and R2
indep, the smallest

RMSEvad, RMSEindep, AIC, and BIC, and the best predictions (RF-R2
vad = 0.60, RF-

RMSEvad = 1245.85 kgDW/ha, RF-R2
indep = 0.50, RF-RMSEindep = 1332.59 kg DW/ha,

RF-AIC = 5583.51, RF-BIC = 5631.1). The RF model based on SRA achieved more
accurate prediction results with a small number of variables, so the RF-SRA (RF-
R2

vad = 0.60 (Figure 3a); RF-R2
indep = 0.50 (Figure 3b)) was the best model.

(2) During the selection of variables, the DEM among terrain-related factors, the pH
among soil-related factors, the B6 among remote sensing-related factors, and the GDD
among meteorological factors were selected. These four variables had significant
effects on the grassland biomass.

(3) Although the overall fitting performance of the estimation model based on the RF
method (the average of RF-R2

train was 0.91) was much higher than that based on
the PLS method (the average of PLS-R2

train was 0.36)), its predictive performance
(RF-R2

vad was between 0.58 and 0.6, and the average was 0.59) was not (RF-R2
vad was

between 0.45 and 0.50, and the average was 0.48).
(4) Judging from the prediction results of the model, among the results based on different

variables, the results of the RF algorithm were superior to the other algorithms; the
model had a higher R2 and a lower RMSE (RF-All-R2

vad = 0.59, RF-SRA-R2
vad = 0.60,

RF-RR-R2
vad = 0.58, and RF-LASSO-R2

vad = 0.58).
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(5) Overall, the R2
vad (between 0.45 and 0.6 and the average value of 0.53) and RMSEvad

(the average value was 1341.46 kg DW/ha) of the 20 models’ test sets were superior to
R2

indep (between 0.26 and 0.5, the average value was 0.38) and RMSEindep (the average
value was 1475.05 kg DW/ha). Of the 20 models, 12 AGB models had values of R2

vad
greater than or equal to the average R2

vad (R2 = 0.53) of all models. This shows that
at least 60% of the 20 models had a high accuracy and that these models can reflect
53–60% of the changes in the grassland AGB. Of the 20 models, 11 AGB models had
an R2

indep greater than or equal to the average R2
indep (0.38) of all models, which

shows that, when these models were expanded in time and space, their predictive
ability declined. Of the 20 models, at least 56% reflected 38–50% of the changes in
AGB in the next two years and over more space in the TRHR.

(6) We found that the model was optimal for the following combinations: (1) RF, SVM,
BP, and SRA; (2) PLS, GBDT, and RR; and the model’s spatio-temporal scalability
was optimal for the following combinations: (3) PLS, RF, and SRA, (4) SVM, BP, and
RR, (5) GBDT and LASSO. The All set had the worst performance of the models
for grassland aboveground bio-mass, and variable selection helped improve model
accuracy.

Table 2. Results of variables screening by different screening methods.

Methods Variable Set Filter Number

ALL

DEM Slope Aspect BLD CEC CL SN SL pH OR OC CR
B1-B7 C D E F G BI DVI EVI Fpar LAI MSAVI NDSI

NDVGI NDVI NDWI OSAVI RVI SATVI SAVI SCI TVI
D-LST N-LST AMT GDD AMP

45

SRA DEM CL pH OR OC B1 B5 B6 OSAVI D-LST N-LST GDD 12
RR DEM SN SL pH OC B3 B5 B6 BI D-LST GDD 11

LASSO DEM Slope CL SN pH B2 B6 C E EVI LAI MSAVI NDVGI
OSAVI AMT GDD AMP 17

Note: DEM: digital elevation model; BLD: bulk density; CEC: cation exchange capacity (at pH = 7); CL: clay
content; SN: sand; SL: silt size; OR: organic carbon density; OC: soil organic carbon stock; CR: coarse fragments;
B1–B7: the reflectance of the MODIS bands 1–7; C–G: five band indices (Band 2–7 (C), Band 5/Band 2 (D), (Band 5
− Band 7)/(Band 5 + Band 7) (E), Band 7/Band 2 (F), and Band 7/Band 5 (G)); BI: brightness index; DVI: difference
vegetation index; EVI: enhanced vegetation index; Fpar: fraction of photosynthetically active radiation; LAI: leaf
area index; MSAVI: modified soil-adjusted vegetation index; NDSI: normalized difference soil index; NDVGI:
normalized difference vegetation green index; NDVI: normalized difference vegetative index; NDWI: normalized
difference water index; OSAVI: optimized soil-adjusted vegetation index; RVI: ratio vegetation index; SATVI:
soil-adjusted total vegetation index; SAVI: soil-adjusted vegetation index; SCI: soil color index; TVI: transformed
vegetation index; D-LST: day land surface temperature; N-LST: night land surface temperature; AMT: annual
mean temperature; GDD: growing degree days; AMP: annual mean precipitation.
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Table 3. Assessment of accuracy of the multi-factor grassland AGB estimation model.

Training Dataset Testing Dataset Independent Testing
Dataset

AIC BIC
Variable Set Model R2 RMSE R2 RMSE R2 RMSE

ALL

PLS 0.38 1459.00 0.45 1431.62 0.34 1487.92 5757.92 5936.40
RF 0.92 620.99 0.59 1253.24 0.43 1396.90 5654.12 5832.59

SVM 0.73 1037.59 0.55 1342.84 0.41 1492.87 5707.99 5886.46
GBDT 0.85 766.67 0.59 1239.59 0.38 1460.16 5645.58 5824.06

BP 0.94 460.09 0.50 1427.26 0.34 1614.86 5755.54 5934.01

SRA

PLS 0.36 1484.46 0.49 1385.01 0.36 1474.83 5666.10 5713.70
RF 0.91 664.34 0.60 1245.85 0.50 1332.59 5583.51 5631.10

SVM 0.51 1336.17 0.54 1365.37 0.39 1490.64 5654.96 5702.56
GBDT 0.77 931.60 0.56 1288.12 0.38 1447.90 5609.53 5657.13

BP 0.69 1054.13 0.53 1359.04 0.30 1612.39 5651.34 5698.93

RR

PLS 0.35 1493.14 0.50 1382.86 0.35 1477.88 5662.89 5706.52
RF 0.90 682.57 0.58 1271.56 0.46 1363.59 5597.44 5641.07

SVM 0.48 1362.57 0.50 1399.81 0.41 1479.49 5672.39 5716.02
GBDT 0.77 929.48 0.57 1275.69 0.41 1418.99 5599.97 5643.60

BP 0.58 1204.95 0.49 1407.71 0.34 1515.10 5676.78 5720.41

LASSO

PLS 0.35 1499.63 0.48 1406.04 0.36 1480.31 5687.86 5755.28
RF 0.91 657.03 0.58 1263.89 0.45 1378.47 5604.72 5672.15

SVM 0.58 1258.28 0.55 1354.10 0.36 1503.76 5658.50 5725.92
GBDT 0.70 1050.85 0.57 1272.33 0.41 1408.85 5609.91 5677.33

BP 0.74 963.93 0.46 1457.26 0.26 1663.55 5715.77 5783.19

Note: SRA: stepwise regression analysis; RR: ridge regression; LASSO: least absolute shrinkage and selection
operator; PLS: partial least squares; RF: random forest; SVM: support vector machine; GBDT: gradient boosting
decision tree; BP: multi-layer back-propagation neural network.

The relationship between the number of sampling points and the accuracy of the
model is shown in Figure 4. In general, the RF algorithm delivered the best performance,
with a value of R2 that was higher than the other algorithms. The simulation accuracy of
the model changed drastically with the number of samples. We take the RF-SRA model as
an example. The R2

vad of the RF-SRA model was between 0.52 and 0.74, with a difference
of 0.22. The slope of the trend line about the RF-SRA model was −0.0231. The R2

indep of
the RF-SRA model was between 0.4 and 0.5, with a difference of 0.1.

In Figure 4 the ordinate represents R2, and the abscissa represents the sample size (30%
(390 data items) meaning that 30% of all samples in 2005–2013 were randomly selected for
three to seven points and were then modeled and verified); 40% means that 517 data items
were used, 50% means 650 items, 60% means 794 items, 70% means 921 items, 80% means
1042 items, 90% means 1178 items, and 100% means 1311 items.
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3.3. Assessing Spatial and Temporal Sample Distributions

When the five models were expanded in space and time, their accuracy decreased
(the average R2 of the 20 models decreased by 0.15 (Table 3). We bring the results (R2

indep,
RMSEindep) of the independent testing dataset in Table 3 into Figure 4 for further exploration.
In Figure 4, the red dots represent the AGB of the newly added locations from 2014 to
2015, the blue dots represent those of no newly added locations from 2014 to 2015, that is,
“re”. Comparing the R2

indep, RMSEindep (the model with the independent validation set
as the test set) and R2

indep (re), RMSEindep (re) (the model with data that only scales in the
temporal direction as the test set), the results show that the accuracy of adding new points
(R2

indep) was lower than that of not adding new points (R2
indep (re)), which indicates that

adding new points reduced accuracy. That is, when the model was extended in space, its
accuracy decreased (models calibrated at small scales, when transferred to large scales,
incur errors).
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3.4. Spatial Distribution and Trend of Grassland Biomass Based on the RF-SRA Model

The RF-SRA model (the best model in this study) was used to simulate the annual
maximum grassland aboveground biomass (the maximum aboveground biomass from
July to September) in the study area for 11 years (2005 to 2015). Figure 5 illustrates the
average results of the annual maximum grassland AGB in these 11 years (the average
maximum AGB in the TRHR from 2005 to 2015 was 3267.41 ± 651.34 kg DW/ha). The
results show that the higher grassland AGB was mainly concentrated in the eastern part
of the study area and some of its western parts. For instance, Zaduo, Zhiduo, Qumalai,
Maduo, and Northern Xinghai had lower distributions of grassland AGB. However, areas
such as Xinghai, Guinan, and Guide also had lower altitudes and less AGB.
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4. Discussion
4.1. AGB Mapping

In general, based on the inversion of the optimal model (RF-SRA), the annual spatial
distribution of the largest grassland AGB showed an increasing trend from west to east
and from north to south (Figure 5). This may be because the eastern region is a major
pastoral area, with a higher temperature, a higher altitude, and a colder climate in the
west of the TRHR (Figure 1). However, areas such as Xinghai, Guinan, and Guide have
lower altitudes and less AGB, possibly due to a higher population density and more
frequent human activities [32]. The generalized spatial distribution of AGB measurements
during 2005–2015 provides an overall picture of the AGB values of the study area: an
overall downward trend from southeast to northwest on the whole (Figure 2). This is
consistent with the spatial variation of annual precipitation in the aboveground biomass
of grassland [32]. At the same time, the annual average temperature gradually increased
from west to east and was related to the trend of change in the longitude [33]. Precipitation
and the annual mean temperature were positively correlated with grassland coverage in
the Three-River Headwaters (Table S4). The spatial variation in grassland cover in this
region may be influenced by both precipitation and annual temperature. The estimated
spatial distribution map of AGB based on the RF models showed a reasonable spatial
distribution, similar to that reflected in on-site measurements. A digital map can provide
more details and cover a larger space than a limited field measurement (even though more
than 1000 samples were collected).

4.2. Factors Affecting the Accuracy of the Remote Sensing Grassland AGB Estimation Model

Although the RF-SRA model attained accurate predictions, we think that its accuracy
can be further improved. We analyze factors that affected the accuracy of the model:

(1) There were inevitable temporal differences between the biophysical parameters mea-
sured in the field and the satellite data during the peak growth period of the grass-
lands [34]. The field sampling time cannot be exactly the same as the time correspond-
ing to the maximum vegetation index obtained from satellite data. In addition, the
time period of this study was from 2005 to 2015. The first Sentinel-1 satellite was
launched in 2014, so the Sentinel data of our study time are not available. TRHR is
located in the hinterland of the Qinghai-Tibet Plateau. The high altitude and variable
climate mean that it is often covered by clouds, which in turn leads to unusable Land-
sat data, that is, a lack of long-term continuous Landsat observation data. To obtain
more variables and consider such practical difficulties as data availability within the
study period, we selected MODIS data with a resolution of 500 × 500 m. However, in
practice, the field sampling points are relatively small in number, and each pixel in the
MODIS data covers an area of 500× 500 m. Therefore, some differences were obtained
in the spatial representation. In future work, more accurate and higher-resolution
remote sensing data can be used, such as those obtained using unmanned aerial
vehicles, to improve accuracy.

(2) Areas with complex terrain and slopes impacted reflectivity, which in turn affected
the accuracy of the model. In addition, generally sparse grasslands (bare soil points)
also affected some vegetation indices (such as the NDVI), which ultimately affected
the model [35]. The grassland biomass measurements in this study were mainly
distributed in the central and eastern regions of the TRHR. Grasslands in the western
part of the TRHR are very sparse; many areas are deserts (Figure 1b). In addition, the
western region has a higher altitude, a colder climate, and more complex terrain, which
also introduced difficulties in sampling. We thus collected few and very concentrated
samples in the western part of TRHR (only AGB data in the northeast of Geermu).
This further affected the accuracy of the model.

(3) Uncertainty in field measurements also affected the model. For example, in-field
measurements, the data collected are often affected by surface heterogeneity, human
factors, and even traffic conditions. The data in this study cover a large span of time,
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and there is a large amount of it. A time span that is too long and an amount of data
that is too high can also lead to more errors in data measurement during the sorting
process, which will inevitably affect the construction of the model.

4.3. Influence of the Number of Field Samples on the Model and the Model’s Spatio-Temporal
Scalability

The precision of AGB inversion models is highly dependent on the number of field
samples. However, most studies have used fewer than 1000 field samples [17]. We mea-
sured continuous values of the grassland biomass in the TRHR for 11 years (1620 field
samples) to explore the relationship between the field samples and the model. When con-
structing the AGB model, large differences were obtained in the structure and parameters
of the model with the number of the field samples, and the accuracy of the simulation
changed as well. Therefore, to better represent grasslands, more data points should be
collected when sampling.

Previous studies have demonstrated that validation is key in this context. Without
proper validation or a mechanistic understanding of the model, it is difficult to assess the
quality of the results. Few studies have sought to estimate the validation error in AGB using
ML [17]. AGB has traditionally been measured by destructive methods, which are limited
to small areas due to their nature, time, expense, and the labor involved [36]. Therefore,
evaluating the usefulness of the algorithm is important [37]. We used four criteria to
evaluate the model. Figure 4 shows the results detailed in Table 3. Combining the graph
and table comparison, it was found that model accuracy decreased when it was applied to
the years without training data. When the model expands to an area with field sampling
points that have not been incorporated into the model training, the model’s accuracy will
further decrease (Figure 4).

4.4. Input Variables to the Model

Environmental factors are important factors in determining the types, characteristics,
and distribution of grasslands. Cui et al. (2015) found that the biomass of alpine grassland
decreases with the increase of altitude. In this study, AGB showed a negative correlation
with DEM (Table S4), which was the same as their findings [38]. However, the relationship
between AGB and DEM in this paper is weak, which may be because the study did not set
a certain altitude gradient when collecting points in the field. Moreover, when the samples
were set, the research was mostly carried out on relatively flat grassland, which may also
be the reason for the weak relationship between AGB and Aspect and Slope.

Soil is mainly composed of mineral particles, which can be divided into CL, SL, and
SN according to their thickness. AGB was positively correlated with CL and negatively
correlated with SN. Su et al. found that soils with higher CL usually have higher soil organic
carbon, nutrient content and higher cation exchange capacity, and higher nutrient retention
capacity and water holding effect to promote the growth of grassland vegetation [39]. The
soil with higher SN has poor water holding effect, which is not conducive to the growth of
vegetation. This is consistent with our results. AGB is negatively correlated with pH. The
possible reason is that the pH of the study area is between 5.4 and 7.7. In the acidic soil, the
species of microorganisms are limited and the decomposition of organic matter is slowed
down, and the microbial activity is high in the neutral or alkaline environment [40], which
is conducive to vegetation growth.

Among climatic factors, both AMP and AMT were positively correlated with AGB
(Tables S4 and S5 and Figure S3, which may be because the increase of AMP and AMT
promoted the growth of grassland vegetation. In the random forest importance ranking,
GDD ranks second (Figure S4, and there is a negative correlation between GDD and AGB,
which may be because the increase in GDD leads to faster plant development, but the actual
growth season is shortened, resulting in a decrease in grassland AGB.

Satellite remote sensing is currently the most common and widely used regional-scale
surface detection method. Satellite data can directly and timely capture biological growth
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status through various spectral bands, and the products of various satellites have the
same or complementary biological information, which is beneficial to grassland biomass
prediction [5]. Different vegetation indices can reflect different biological characteristics
of crops. For example, SAVI can indirectly reflect the canopy temperature of crops and
reduce the influence of soil background on canopy reflectance [41]. In this study, OSAVI
was the most important for the model (Figure S4. The OSAVI vegetation index is a modified
SAVI, which differs from SAVI in that OSAVI takes into account the standard value of the
canopy background adjustment factor (0.16). Therefore, when the canopy cover is low, this
adjustment allows greater soil variation for OSAVI compared to SAVI. Therefore, higher
predictability can be obtained.

5. Conclusions

Our study integrated 1620 measurement data on aboveground grassland biomass
(AGB) with corresponding, continuously monitored remote sensing data from the GEE
platform, meteorological data, topographic data, and soil characteristic data collected
over 11 years in the TRHR of China. We then used the linear statistical method (PLS),
ML methods (RF, SVM, and GBDT), and DL methods (BP) to establish grassland AGB
estimation models. We then compared the models in terms of the accuracy of biomass
predictions and simplicity. We also explored the spatio-temporal scalability of the linear
regression model and the machine learning models. Overall, the ML models performed
well. The RF models, based on the DEM, CL, pH, OR, OC, B1, B5, B6, OSAVI, D-LST, N-LST,
and GDD, delivered the best performance. The estimated spatial distribution map of AGB
based on the RF models was reasonably similar to the distribution of on-site measurements.
It also provided more detail and covered a larger space than the limited field measurements
do (even though more than 1000 samples were collected). This shows that when models
are expanded in space and time, their accuracy decreases (as an example, the accuracy of
the SRA-RF model decreased from 0.6 to 0.5). In future research, a process-based model
that is derived from grassland AGB to train models could potentially be used to extend the
spatio-temporal scalability of machine learning models. In addition, we also believe that
ecosystem carbon sequestration is an interesting topic. In future work, we intend to explore
whether the optimal model has the potential to be used in the development of emission
factors for grassland areas from the perspective of addressing global climate change and
combining the results of this study.
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Table S2: Distribution of collection points in each county in the TRHR from 2005 to 2015,
Table S3: Calculation of various indices of MODIS, Table S4: Correlation between grassland AGB and
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Learning algorithms.
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