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Abstract: A new algorithm is developed to accurately compute the electromagnetic (EM) fields in
the layered biaxial anisotropic media. We enclose the computational region in an infinitely long
rectangular region by four vertical truncation planes and establish the corresponding algorithm
to approximate the EM fields in the entire space. The EM fields in this region are expanded as a
two-dimensional (2-D) Fourier series of the transverse variables. By using the spectral state variable
method, the generalized reflection coefficient matrices and transmission matrices are then derived to
determine the Fourier coefficients per layer. Therefore, we can obtain the spatial-domain EM fields
by summing the 2-D Fourier series. To enhance the accuracy and efficiency of this algorithm, we
apply the method of images to estimate the influence of the artificial boundaries on the EM fields
at the observer. We then further develop a quantitative principle to choose the proper size of the
region according to the desired error tolerance. With the proper choice, the summation of the series
can achieve satisfactory accuracy. This algorithm is finally applied to simulate the responses of the
triaxial logging tool in transversely isotropic and biaxial anisotropic media and is verified through
comparisons to the other method.

Keywords: biaxial anisotropy; layered structures; Fourier series; induction well-logging

1. Introduction

Electrical engineering and geophysical exploration applications involve electromag-
netic (EM) fields in the layered (horizontally or cylindrically) media, including the de-
sign of microstrip circuits and antennas, airborne electromagnetic surveys, well logging,
and so on [1–7]. In addition to the numerical methods such as the finite-difference and finite-
volume method [8,9], the traditional integral-based analytic methods can also deal with the
layered structures. For the horizontally layered media, one can express the spatial-domain
EM fields as a two-dimensional (2-D) Fourier integral involving mixed spectral-domain
EM fields (i.e., these fields are functions of one spatial variable and two spectral variables).
When the medium is isotropic or transversely isotropic (TI), the spectral-domain EM field
can be decomposed into TE and TM waves and can be further solved by introducing the
scalar generalized reflection coefficients [10–12]. Then, one can obtain the spatial-domain
EM fields by evaluating the so-called Sommerfeld integrals [13], which are derived from
the 2-D Fourier integrals due to the cylindrical symmetry. However, when the media are
biaxial anisotropic (BA), this decomposition will be invalid because the TE and TM waves
are coupled to each other at interfaces.

The spectral state variable method has been developed to deal with the BA cases [14–16].
By defining a spectral state variable vector (which can be chosen differently as in [17,18]), one
can derive a first-order differential system with a 4× 4 system matrix. This system governs
the spectral-domain EM fields, and its solutions for the homogeneous media can be solved
easily. The solution for the layered media can be obtained by combining each homogeneous
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layer’s solution with the generalized reflection coefficient matrices. Furthermore, one can
also apply the 3-D Fourier transform to express the spatial EM fields as 3-D Fourier integrals
involving the spectral-domain EM fields with a dependence of full spectral variables [19].
No matter which representation is used, the 2-D Fourier integrals always arise when one
implements the spectral-to-spatial transformation. Unlike the integral for the TI cases,
which for the BA cases cannot degrade into 1-D integral, its efficient evaluation is more
challenging because of its high dimensionality. Sainath et al. [20] applied a complex-plane
Gauss–Laguerre quadrature to evaluate this integral. To make the integrand decay fast, the
singularity subtraction was introduced by Hu et al. [21], and a variation of this technique
was provided by Hong et al. [18].

In recent decades, the problem of exploration and development of the anisotropic
reservoirs, which are typical lossy media, has attracted a lot of attention in geophysical
EM well logging [22–26] and the inversion of logging data [27,28]. To simplify the EM
modeling in such media, the approximate solution of the EM fields is assumed to be a 2-D
Fourier series of transverse variables x and y. This expression requires the entire space to
be truncated by four vertical planes for the Fourier series and is only applicable to a finite
interval. Therefore, the computational region is an infinitely long (along z-axis) rectangular
region with a finite cross-section. In our previous work [29], we developed this finite-region
approximation (FRA) technique to model the EM fields in the simple homogeneous media.
In this paper, FRA are applied to deal with the layered BA media by combining it with
the spectral state variable method. Furthermore, a quantitative principle for choosing the
proper size of the region is introduced.

First, both the EM fields in this region and the source quantity are expanded as 2-D
Fourier series about transverse variables x and y. The Fourier coefficients can be regarded
as the discrete spectral-domain EM fields. Second, the mentioned spectral state variable
method is then employed to determine the spectral-domain EM fields per layer. Finally,
we can obtain the spatial-domain EM fields by summing the 2-D Fourier series. The error
of the proposed FRA relative to the exact solution of the original problem in the entire
space is the reflections from the four artificial truncation planes. Since the amplitude of EM
waves in lossy media will decay rapidly as it propagates, the reflections will be negligible
as long as the region is large enough. However, an oversized region may lead to the slow
convergence of the series. To enhance the efficiency of FRA, we apply the method of images
to quantitively estimate the error of the EM field at the observer for the homogeneous
isotropic case and further develop a quantitative principle to determine the proper size
of the region according to the desired error tolerance. Once the region’s size is chosen,
the proper truncation order of the summation of series can be determined by using a
simple criterion in the process of summation. With the proper choice of the region’s size,
the summation of the series can achieve a satisfactory accuracy with a relatively small
truncation order. Note that the spectral-to-spatial transformation in our new method is
implemented by the simple summation of the 2-D Fourier series, without resorting to the
additional numerical quadrature algorithms as in these integral-based methods.

In the numerical results section, the proposed FRA is applied to simulate the responses
of the triaxial logging tool in the layered TI and BA media. The singularity subtraction
similar to [13,21] is used to address the challenge of slow convergence for the highly
deviated well. The agreements between results obtained by our method and those by the
transmission line method (TLM) [30] validate our algorithm.

2. Theory
2.1. Spectral State Equation and Its Solution in Homogeneous Media

As shown in Figure 1, an infinitely long region Ω = [−L, L]× [−L, L]× (−∞, ∞) is
occupied by a J-layer anisotropic medium with interfaces zj(j = 1, . . . , J + 1). Region
Ω has a finite square cross-section with length 2L in the xy-plane. The permittivity ε,
permeability µ of the medium are assumed to have the value for vacuum, and the medium
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can be characterized by the conductivity tensors
¯
σ1,

¯
σ2, . . . ,

¯
σJ . The tensor

¯
σ for an

arbitrary layer is assumed to be symmetric:

¯
σ =

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

. (1)
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Figure 1. The infinitely long rectangular region with a square cross-section and a layered
anisotropic medium.

Given a magnetic dipole source M = Mx
^
x + My

^
y + Mz

^
z (

^
x,

^
y,

^
z are the unit vectors

in the three coordinate directions, and the time dependence is assumed to be e−iωt) located
at r’ = (0, 0, z′) ∈ Ω, the EM fields generated by this source satisfy Maxwell’s equations:

∇× E(r) = iωµ[H(r) + Mδ(r− r’)]

∇×H(r) = (
¯
σ− iωε)E(r)

(2)

where r = (x, y, z) ∈ Ω represents the position of the observer.
To find the solution of (2), we first expand E(r) and H(r) in terms of 2-D Fourier series

about variables x, y:

E(r) =
∞

∑
n=−∞

∞

∑
m=−∞

~
Enm(z)ei(knx+kmy), H(r) =

∞

∑
n=−∞

∞

∑
m=−∞

~
Hnm(z)ei(knx+kmy) (3)

where kn = nπ/L and km = mπ/L, m, n ∈ Z (Z is the set of integer number). In analogy

to those integral-based methods, the unknown Fourier coefficients
~
Enm and

~
Hnm can be

regarded as the EM fields in the (discrete) spectral domain, and the integer pair nm is the
spectral index. The delta function can also be expressed as a 2-D Fourier series [29], i.e.,

δ(r− r’) =
∞

∑
n=−∞

∞

∑
m=−∞

δ(z− z′)
4L2 ei(knx+kmy) (4)

By substituting (3), (4) into (2), we can derive the equations about
~
Enm and

~
Hnm for

each spectral index, i.e.,

∇×
~
Enmei(knx+kmy) = iωµ0[

~
Hnm + Mδ(z−z′)

4L2 ]ei(knx+kmy)

∇×
~
Hnmei(knx+kmy) = (

¯
σ− iωε)

~
Enmei(knx+kmy)

(5)
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By defining the state vector bnm = [Ẽx,nm, Ẽy,nm, −H̃y,nm, H̃x,nm]
T

and applying
the proper manipulations [15,20], Equation (5) can be decomposed into the following
state equation:

(d/dz + iω
¯
Anm)bnm = Snmδ(z− z′) (6)

and

Ẽz,nm =
ikn H̃y,nm − ikmH̃x,nm − σzx Ẽx,nm − σzyẼy,nm

σzz − iωε
(7)

H̃z,nm =
1

ωµ
(−kmẼx,nm + knẼy,nm) (8)

where Snm = [iωµMy, −iωµMx, ikm Mz, −ikn Mz]
T/4L2 is the source vector;

¯
Anm is the

4× 4 system matrix that can be partitioned into
¯
Anm =

 ¯
AI

¯
AII

¯
AIII

¯
A

T

I

. These submatrices are

¯
AI =

[
kmσxz/ωσ∗zz kmσyz/ωσ∗zz
knσxz/ωσ∗zz knσyz/ωσ∗zz

]
,

¯
AII =

[
µ + (ik2

m/ωσ∗zz) iknkm/ωσ∗zz
iknkm/ωσ∗zz µ + (ik2

n/ωσ∗zz)

]
¯
AIII =

[
ε− (iσ2

xz/ωσ∗zz) −iσxzσyz/ωσ∗zz
−iσxzσyz/ωσ∗zz ε− (iσ2

yz/ωσ∗zz)

]
+ i

ω

[
σxx σxy
σxy σyy

]
+ 1

µω2

[
−k2

n knkm
knkm −k2

m

]

where σ∗zz = σzz − iωε. The system matrix
¯
Anm has the factorization

¯
Anm =

¯
Lnm

¯
Λnm[

¯
Lnm]

−1

=
¯
Lnm

 ¯
Λ

u

nm
¯
Λ

d

nm

[¯Lnm]
−1 (9)

with eigenvalues in diagonal matrix
¯
Λnm and eigenvectors in columns of matrix

¯
Lnm. The

2× 2 diagonal submatrices
¯
Λ

u

nm and
¯
Λ

d

nm consist of eigenvalues with positive and negative

imaginary parts, respectively. The matrices
¯
Lnm and

¯
Λnm can be obtained by using linear

algebra libraries or by analytically solving the eigenequation of
¯
Anm [15]; therefore, they

can be regarded as the known quantities. Substituting (9) into (6) yields

(d/dz + iω
¯
Λnm)wnm = Σnmδ(z− z′). (10)

where

wnm = [
¯
Lnm]

−1

bnm, Σnm = [
¯
Lnm]

−1

Snm (11)

represents the mode-wave vector and the new source term, respectively. In order to facilitate

the derivation, we can divide Σnm into sub-vectors Σnm =

[
Σu

nm
Σd

nm

]
. For the homogeneous

media, the solution of (10) can be expressed as

wnm =



[
−e−iω

¯
Λ

u

nm(z−z′)Σu
nm

0

]
, for z < z′ 0

e−iω
¯
Λ

d

nm(z−z′)Σd
nm

, for z > z′
(12)
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The upper sub-vector of wnm represents the upward mode-wave since
¯
Λ

u

nm consists of
eigenvalues with positive imaginary part. Similarly, the lower sub-vector represents the
downward mode-wave.

2.2. Solution of Mode-Waves in the Layered Media

Based on the solutions of mode-waves in the homogeneous media and the superposi-
tion principle, we can further find the solutions in the layered media. The subscript nm
signifying the spectral index will be omitted for the sake of brevity, and the layer index j
and s are used to signify an arbitrary layer and the source layer, respectively. To facilitate
the derivation, we introduce the following notations:

¯
Qj = e−iω

¯
Λ

u

j (zj−zj+1),
¯
Pj = e−iω

¯
Λ

d

j (zj+1−zj) (13)

2.2.1. Formal Solution of Mode-Waves in the Source Layer

We first consider the source layer. To simplify the analysis, we assume that the source
is located in one of the middle layers, i.e., zs < z′ < zs+1, 1 < s < J. These horizontal
interfaces will reflect the mode-waves produced directly by the source, which is the mode-
waves in the homogeneous medium. Thus, the incident mode-waves in this layer has the
same form as (12), i.e.,

winc
s =



[
−e−iω

¯
Λ

u

s (z−z′)Σu

0

]
, for z < z′ 0

e−iω
¯
Λ

d

s (z−z′)Σd

, for z > z′
(14)

The reflected mode-waves can be expressed as

wref
s =

e−iω
¯
Λ

u

s (z−zs+1)Us

e−iω
¯
Λ

d

s (z−zs)Ds

 (15)

where Us and Ds represent the amplitudes of reflected upward wave at z = zs+1 and re-
flected downward wave at z = zs, respectively. Conversely, by introducing the generalized

reflection coefficient matrices
~
Rj,j+1 and

~
Rj,j−1 [14], we can express Us and Ds in terms of

each other, i.e.,

Us =
~
Rs,s+1[e−iω

¯
Λ

d

s (zs+1−z′)Σd +
¯
PsDs], Ds =

~
Rs,s−1[−e−iω

¯
Λ

u

s (zs−z′)Σu +
¯
QsUs]. (16)

Solving for Us and Ds from (16) yields

Us = [
¯
I −

~
Rs,s+1

¯
Ps

~
Rs,s−1

¯
Qs]
−1 ~

Rs,s+1

[
e−iω

¯
Λ

d

s (zs+1−z′)Σd −
¯
Ps

~
Rs,s−1e−iω

¯
Λ

u

s (zs−z′)Σu],

Ds = [
¯
I −

~
Rs,s−1

¯
Qs

~
Rs,s+1

¯
Ps]
−1 ~

Rs,s−1[
¯
Qs

~
Rs,s+1e−iω

¯
Λ

d

s (zs+1−z′)Σd − e−iω
¯
Λ

u

s (zs−z′)Σu].

(17)

Combining (17) with (15), we can obtain the reflected part wref
s . Thus, for the source

layer, we may calculate the incident wave and the reflected wave separately and then
add these two parts to obtain the total mode-waves. For the convenient derivation of the



Remote Sens. 2022, 14, 3836 6 of 20

mode-waves in the source-free layers, we should express ws in terms of the amplitudes of
the total upward and downward mode-waves, as follows:

ws =



 e−iω
¯
Λ

u

s (z−zs)

e−iω
¯
Λ

d

s (z−zs)
~
Rs,s−1

A−s , for zs < z < z′

 e−iω
¯
Λ

u

s (z−zs+1)
~
Rs,s+1

e−iω
¯
Λ

d

s (z−zs+1)

A+
s , for z′ < z < zs+1

(18)

Here, A−s is the amplitude for the total upward mode-waves at z = zs, A+
s is the ampli-

tudes for the total downward mode-waves at z = zs+1. They have the following expressions:

A−s = [
¯
I −

¯
Qs

~
Rs,s+1

¯
Ps

~
Rs,s−1]

−1

× [
¯
Qs

~
Rs,s+1e−iω

¯
Λ

d

s (zs+1−z′)Σd − e−iω
¯
Λ

u

s (zs−z′)Σu],

A+
s = [

¯
I −

¯
Ps

~
Rs,s−1

¯
Qs

~
Rs,s+1]

−1

×
[

e−iω
¯
Λ

d

s (zs+1−z′)Σd −
¯
Ps

~
Rs,s−1e−iω

¯
Λ

u

s (zs−z′)Σu

]
.

(19)

2.2.2. Formal Solution of Mode-Waves in the Source-Free Layers

For the rest of the source-free layers, by using the generalized reflection coefficients [14,25],
we can express the mode-waves as

wj =

 e−iω
¯
Λ

u

j (z−zj)

e−iω
¯
Λ

d

j (z−zj)
~
Rj,j−1

A−j , for j < s (20)

wj =

e−iω
¯
Λ

u

j (z−zj+1)
~
Rj,j+1

e−iω
¯
Λ

d

j (z−zj+1)

A+
j , for j > s. (21)

Here, expression (20) applies for layers above the source, and A−j is the amplitude for
the total upward mode-waves at z = zj, whereas expression (21) applies for layers below
the source, and A+

j is the amplitudes for the total downward mode-waves at z = zj+1.
As in (18), (20) and (21), we have expressed the mode-waves in all layers in terms of the
reflection coefficients and the amplitudes of the total upward and downward mode-waves.
These unknown coefficients and amplitudes can be determined by matching boundary
conditions at interfaces.

Suppose that the transmission coefficients
¯
Tj,j+1,

¯
Tj−1,j and the local reflection co-

efficients
¯
Rj,j+1,

¯
Rj−1,j are obtained in advance (see Appendix A). According to the field

continuity conditions across interfaces zj below z′, and we can derive the following equations:

¯
P
−1

j A+
j =

¯
Rj,j−1

¯
Qj

~
Rj,j+1A+

j+1 +
¯
Tj−1,jA+

j−1,
~
Rj−1,jA+

j−1 =
¯
Rj−1,jA+

j−1 +
¯
Tj,j−1

¯
Qj

~
Rj,j+1A+

j .
(22)

Solving for A+
j and

~
Rj−1,j from (22) yields the following recurrence formulas

A+
j = [

¯
I −

¯
Pj

¯
Rj,j−1

¯
Qj

~
Rj,j+1]

−1¯
Pj

¯
Tj−1,jA+

j−1,
~
Rj−1,j =

¯
Rj−1,j +

¯
Tj,j−1

¯
Qj

~
Rj,j+1[

¯
I −

¯
Pj

¯
Rj,j−1

¯
Qj

~
Rj,j+1]

−1¯
Pj

¯
Tj−1,j.

(23)
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Similarly, for these interfaces zj above z′(j = 1, 2, . . . , s), we can derive the corre-
sponding recurrence formulas

A−j−1 = [
¯
I −

¯
Qj−1

¯
Rj−1,j

¯
Pj−1

~
Rj−1,j−2]

−1 ¯
Qj−1

¯
Tj,j−1A−j

~
Rj,j−1 =

¯
Rj,j−1 +

¯
Tj−1,j

¯
Pj−1

~
Rj−1,j−2[

¯
I −

¯
Qj−1

¯
Rj−1,j

¯
Pj−1

~
Rj−1,j−2]

−1 ¯
Qj−1

¯
Tj,j−1.

(24)

Furthermore, we can allow

~
R1,0 =

~
RJ,J+1 = 0 (25)

because there is no reflected downward mode-wave in the top layer and no reflected
upward mode-wave in the bottom layer. These recurrence Formulas (23), (24), together
with (19), (25) give the generalized reflection coefficients per interface and the amplitudes
of mode-waves per layer. Then, the solution of mode-waves wnm for an arbitrary layer can
be determined by using (18), (20) and (21).

2.2.3. Spatial-Domain EM Fields

Using the solution of wnm and the relation bnm =
¯
Lnmwnm, we can obtain the four

horizontal EM field components and further obtain the rest of the vertical components by
using (7) and (8). In summary, the spectral-domain EM fields can be expressed as

~
Enm = [Ẽx,nm, Ẽy,nm, Ẽz,nm]

T
=

¯
F

E

nm
¯
Lnmwnm,

~
Hnm = [H̃x,nm, H̃y,nm, H̃z,nm]

T
=

¯
F

H

nm
¯
Lnmwnm,

(26)

where
¯
F

E

nm and
¯
F

H

nm are 3× 4 matrices, as expressed below

¯
F

E

nm =

 1 0 0 0
0 1 0 0

−σzx/σ∗zz −σzy/σ∗zz −ikn/σ∗zz −ikm/σ∗zz


¯
F

H

nm =

 0 0 0 1
0 0 −1 0

−km/ωµ −kn/ωµ 0 0

.

(27)

Substituting (26) into (3) yields the spatial-domain EM fields, i.e.,

E(r) =
∞

∑
n=−∞

∞

∑
m=−∞

¯
F

E

nm
¯
Lnmwnmei(knx+kmy), H(r) =

∞

∑
n=−∞

∞

∑
m=−∞

¯
F

H

nm
¯
Lnmwnmei(knx+kmy). (28)

It can be easily verified by direct substitution that solution (28) satisfies the following
boundary conditions:

E, H(−L, y, z) = E, H(L, y, z),
E, H(x,−L, z) = E, H(x, L, z),

E, H(x, y,+∞) = 0, E, H(x, y,−∞) = 0.
(29)

Hence, the FRA solution can be regarded as the solution to the Maxwell’s equations in
the region Ω subject to the boundary conditions in (29).

2.2.4. Tensor Green’s Function and the Choice of Region’s Size and Truncation Order

In the previous subsections, we derived the spatial-domain EM fields E(r), H(r)

produced by a single magnetic dipole source Mδ(r− r’). Allowing M =
^
x,

^
y,

^
z successively,

we can compute the corresponding magnetic fields Hx, Hy, Hz due to the three mutually
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orthogonal unit sources. Their combination produces the spatial-domain magnetic Green’s
function, i.e.,

¯
G(r, r’) =

[
Hx, Hy, Hz

]
=

Hxx Hxy Hxz
Hyx Hyy Hyz
Hzx Hzy Hzz

 (30)

where Hpq denotes the p-component of the magnetic field due to the unit source in the
q-axis direction. Using (28), we can also write the Green’s function as a Fourier series,

¯
G(r, r’) =

∞

∑
n=−∞

∞

∑
m=−∞

¯
F

H

nm
¯
Lnm

¯
Wnmei(knx+kmy) (31)

where the 4× 3 matrix
¯
Wnm =

[
wnm,x, wnm,y, wnm,z

]
represents the combination of the

mode-waves corresponding to the three sources.
In practice, we can calculate the finite series in (31) by taking its partial sum, i.e.,

¯
G(r, r’) ≈

¯
G

L,N

(r, r’) =
N

∑
n=−N

N

∑
m=−N

¯
F

H

nm
¯
Lnm

¯
Wnmei(knx+kmy) (32)

where the superscripts L and N are used to signify the region’s size and the truncation
order, respectively. Using the notation of partial sum, the FRA solution in (31) can be
expressed as a limit when N → ∞ , i.e.,

¯
G(r, r’) = lim

N→∞

¯
G

L,N

(r, r’) =
¯
G

L,∞

(r, r’) (33)

When L→ ∞ , the FRA solution further becomes the exact solution of the original
problem in the entire space,

¯
G

exact

(r, r’) = lim
L→∞

¯
G

L,∞

(r, r’) =
¯
G

∞,∞

(r, r’) (34)

Therefore, we will use the unified notation with double superscripts to express the

three solutions: the FRA solution
¯
G

L,∞

, the approximate solution
¯
G

L,N

, and the exact

solution
¯
G

∞,∞

. The total error of the approximate solution
¯
G

L,N

can then be divided into
two parts,

¯
∆

L,N

total =
¯
G

L,N

−
¯
G

∞,∞

= [
¯
G

L,N

−
¯
G

L,∞

] + [
¯
G

L,∞

−
¯
G

∞,∞

]

=
¯
∆spectral +

¯
∆spatial.

(35)

Here,
¯
∆spatial =

¯
G

L,∞

−
¯
G

∞,∞

represents the reflections from the four truncation
planes, which is caused by the finite L, which we call the spatial truncation error, whereas
¯
∆spectral =

¯
G

L,N

−
¯
G

L,∞

is the spectral truncation error caused by the finite N. We first
study the spatial truncation error.

For simplicity, we assume that the source is located at r’
0 = (0, 0, 0) in an unbounded

medium. As shown in Figure 2a,b,
¯
G

∞,∞

is the solution to a free-space problem, whereas
¯
G

L,∞

can be regarded as the solution to a boundary-value problem in Ω subject to the
boundary conditions (29). Using the method of images, we can construct an equivalent
free-space problem to the problem in Figure 2b by introducing an infinite number of
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image sources with the same magnitude and direction as the original source. As shown in
Figure 2c, these sources are located at

r’
pq = r’

0 + (2pL, 2qL, 0), p, q ∈ Z (36)
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value problem of the proposed FRA. (c) Equivalent free-space problem to the problem in (b).

The one located at r′0,0 = r′0 ∈ Ω represents the original source (shown in red dot) and
the rest located at r′pq /∈ Ω represent the image sources (shown in green dots). It is easy to
verify that the sum of the contributions due to the original source and its image sources
satisfies the conditions in (29). By the uniqueness theorem, we conclude that the problem

in Figure 2c is equivalent to the problem in Figure 2b. Thus, the FRA solution
¯
G

L,∞

can be
expressed as

¯
G

L,∞

(r, r′0) =
+∞
∑

q=−∞

+∞
∑

p=−∞

¯
G

∞,∞

(r, r′pq)

=
¯
G

∞,∞

(r, r′0) + ∑
r’ pq /∈Ω

¯
G

∞,∞

(r, r′pq), r ∈ Ω
(37)

From (37), we obtain the following expression for the spatial truncation error:

¯
∆spatial =

¯
G

L,∞

(r, r′0)−
¯
G

∞,∞

(r, r′0)

= ∑
r′pq /∈Ω

¯
G

∞,∞

(r, r′pq), r ∈ Ω.
(38)

To measure the magnitude of a tensor, we introduce the following Frobenius norm for

an arbitrary 3× 3 tensor
¯
A with entries aij, i, j = 1, 2, 3:

‖
¯
A‖F =

√√√√ 3

∑
j=1

3

∑
i=1

∣∣aij
∣∣2 (39)

Taking the norm of (38) and using the triangle inequality, we have

‖
¯
∆spatial‖F ≤ ∑

r′pq /∈Ω
‖

¯
G

∞,∞

(r, r′pq)‖F
, r ∈ Ω (40)
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The right-hand side of (40) gives an upper bound for the spatial truncation error. When
the medium is isotropic, each term of can be calculated by using the exact formula of the
magnetic Green’s function in the free space [31]:

¯
G

∞,∞

iso (r, r’) =
k2eikR

4πR

[
1 +

i
kR
− 1

k2R2

]
¯
I − k2eikR

4πR

[
1 +

3i
kR
− 3

k2R2

]
(

r− r’

R
)(

r− r’

R
) (41)

where k =
√

iωµ(σ− iωε), R =
∣∣r− r’

∣∣, ¯
I =

^
x

^
x +

^
y

^
y +

^
z

^
z is the identity dyad. We use (41)

to estimate the influence the computational region’s size L on the EM fields and further
develop a principle to choose the proper L even for the anisotropic media.

Consider a specific case as an example: the observer is located at
r = 1.016× (1/2, 0,

√
3/2) m, and the frequency of the source is 20 kHz. The right-side of

(40) only depends on the variables σ and L; thus, we can define it as the following function:

f (σ, L) = ∑
r′pq /∈Ω

‖
¯
G

∞,∞

iso (r, r′pq)‖F
(42)

Its P-th (P = 1, 2, . . . , ∞) order approximation can be defined as

fP(σ, L) = ∑
r′pq /∈Ω,

max{|p|,|q|}≤P

‖
¯
G

∞,∞

iso (r, r′pq)‖F
(43)

which represents the contributions of the (2P + 1)2− 1 image sources nearest to the original
source. Figure 3 shows the graph of fP(σ, L) when P is equal to four different values 1, 2, 3
and 1000 in the case of σ = 1 S/m. From the results, we can observe that fP(σ, L) converges
quickly with the increase in P and the values of f3(σ, L) becoming almost consistent with
that of f1000(σ, L). Thus, we choose f3(σ, L) to approximate f (σ, L) to investigate the
influence of region size L. The whole graph of f3(σ, L) in Figure 4 demonstrates that
f3(σ, L) decreases monotonically with the decrease in σ and L. If the conductivity σ is
known and some error tolerance denoted by etol is given, we can find a unique proper
value of L, denoted by Lp, such that

f3(σ, Lp) = etol (44)
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Theoretically, the above principle of choosing Lp can ensure that the spatial truncation
error does not exceed etol. Considering a medium of σ = 1 S/m, Figure 4 illustrates the
corresponding choices Lp = 7.408, 10.646, 14.134 m for meeting the three different error
tolerances etol = 10−4, 10−5, 10−6. Figure 5 further shows the changes in the total error of

the approximate solution
¯
G

Lp,N

with the truncation order N ranging from 1 to 200 for the
three different values of Lp. The error is defined by

‖
¯
∆

Lp,N

total ‖F = ‖
¯
G

Lp,N

(r, r′0)−
¯
G

∞,∞

iso (r, r′0)‖F (45)
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We can observe that there exists a proper truncation order Np for each case of Lp, and

the total error of
¯
G

Lp,N

no longer decreases after N is up to Np. This observation indicates
the following results:

¯
G

Lp,Np

=
¯
G

Lp,N

=
¯
G

Lp,∞

, N ≥ Np (46)
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That is,
¯
G

Lp,Np

has arrived at the value of
¯
G

Lp,∞

, and the spectral truncation error
¯
∆spectral =

¯
G

Lp,Np

−
¯
G

Lp,∞

can be ignored. Consequently, the total error of
¯
G

Lp,Np

is equal
to the spatial truncation error, which will not exceed the present error tolerance etol, i.e.,

‖
¯
∆

Lp,Np

total ‖F = ‖
¯
∆spatial‖F ≤ f3(σ, Lp) = etol (47)

The numerical results in Figure 5 confirm this conjecture. In a practical calculation, we
can determine Np as the smallest N that meets the following stopping criterion:

‖
¯
G

Lp,N

−
¯
G

Lp,N−2

‖F

‖
¯
G

Lp,N

‖F

< 0.01× etol (48)

and take
¯
G

Lp,Np

as the final result.
For the case of the anisotropic medium (including TI and BA cases) with tensor

conductivity
¯
σ, we can take σ̃ = min

{
σ

p
x , σ

p
y , σ

p
z

}
as the approximate isotropic conductivity,

where σ
p
x , σ

p
y , σ

p
z are the three principal components of tensor

¯
σ. The previous principles

for determining Lp and Np, which is based on the isotropic model, can then be generalized

to the anisotropic case as well. Considering a TI medium of
¯
σ = diag(10 , 10, 1) S/m,

Figure 6 presents the total error of
¯
G

Lp,N

as the truncation order N increases for the three
Lp determined by etol = 10−4, 10−5, 10−6. The total error is calculated by

‖
¯
∆

Lp,N

total ‖F = ‖
¯
G

Lp,N

(r, r′0)−
¯
G

∞,∞

TI (r, r′0)‖F (49)

where
¯
G

∞,∞

TI is the exact solution of the magnetic Green’s function in an unbounded TI
medium, and its formula can be found in [32]. For this medium, although we cannot

guarantee that the error of approximate solution
¯
G

Lp,Np

is less than the present etol, the
results in Figure 6 demonstrate that the error is close to the present etol. Thus, we still
apply previous principles to determine Lp and Np for the anisotropic media. For a J-layer
anisotropic medium, we may take min

{
σ̃1, . . . , σ̃j, . . . , σ̃J

}
as the approximate isotropic

conductivity, where σ̃j is the minimum of the three principal components of the conductivity
in layer j. In the following section, the error tolerance will be fixed at etol = 10−5.
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3. Results

In this section, we apply the proposed FRA to simulate the responses of the triaxial
logging tool in the layered TI and BA formations. As shown in Figure 7a, the tool is
equipped with three mutually orthogonal transmitters Tx, Ty, Tz and three mutually
orthogonal receivers Rx, Ry, Rz. Figure 7b illustrates the orientation of the tool coordinates
xtytzt with respect to the formation coordinates xyz: the yt-axis is assumed to be parallel to
the xy-plane and the zt-axis points to the direction from the transmitters to receivers. The
rotation matrix from xyz to xtytzt can be expressed as

¯
R =

cos α − sin α 0
sin α cos α 0

0 0 1

×
 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 (50)

where α and θ represent the azimuthal and dip angles of the tool. To simulate the responses
of the triaxial logging tool, the magnetic Green’s function in (30) should be converted into
the tool coordinates by

¯
G

t

=

Ht
xx Ht

xy Ht
xz

Ht
yx Ht

yy Ht
yz

Ht
zx Ht

zy Ht
zz

 =
¯
R

T ¯
G

¯
R (51)

where Ht
pq(p, q = x, y, z) denotes the response of the receiver Rp due to the transmitter

Tq. In the following results, the offset-spacing, the operating frequency and the azimuthal
angle of the triaxial logging tool will be fixed at 1.016 m, 20 kHz and 0◦, respectively. The
superscript “t” of response Ht

pq will be omitted for brevity.
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Figure 7. Triaxial logging tool and its orientation. (a) Structure of the tool in the tool coordinates
xtytzt. (b) Orientation of the tool coordinates xtytzt with respect to the formation coordinates xyz,
where α and θ are the tool azimuthal and dip angles, respectively.

As shown in Figure 8, a five-layer anisotropic model is assumed, where the thick-
nesses of the three middle layers are 2, 2 and 4 m, respectively. The layers 1, 3 and 5 are
assumed to be isotropic, and the conductivities are 0.1, 0.1 and 0.05 S/m, respectively. The

conductivities in layers 2 and 4 share the identical tensor conductivity
¯
σ, which is assumed

to be TI or BA.
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3.1. Triaxial Logging Responses in Layered TI Media

To validate this new algorithm, we compare the results by the present FRA with those
of the TLM [30] in a TI formation. The five-layer model in Figure 8 is considered, where

the conductivity
¯
σ of layers 2 and 4 is assumed to be TI and is equal to diag(1, 1, 0.1) S/m.

Two different tool dip angles θ = 60◦ and θ = 89◦ are considered. We will only provide the
results of the components ImHxx, ImHyy, ImHzz, ImHxz, ImHzx because the remaining
ImHxy, ImHyx, ImHyz, ImHzy are all zeros. Figures 9 and 10 show the comparison with
the TLM for the cases of θ = 60◦ and θ = 89◦, respectively. The corresponding relative
errors are displayed in Figures 9f and 10f. The relative error of each component is less
than 2% except for a few sampling points (where the absolute value of response is close
to zero). The excellent agreements validate our algorithm. The direct summation of the
Fourier series for the case of θ = 89◦ exhibits a weakly convergent behavior, and the
required summation order will be extremely large. This difficulty is solved by using the
singularity subtraction [13,21]. Furthermore, from Figures 9 and 10, we can find that the
local extremums of the cross components ImHxz and ImHzx can clearly indicate the location
of the interfaces for both cases.
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To further validate the present algorithm in formation with a high conductivity, we

assume the conductivity of layers 2 and 4 to be
¯
σ = diag(20, 20, 2) S/m and the tool dip

angle to be θ = 60◦. Figure 11 shows the comparison with the TLM. The agreement
validates our algorithm again.
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3.2. Triaxial Logging Responses in Layered BA Media

Here, we further investigate the response of the triaxial logging tool in the BA for-

mations. The five-layer model in Figure 8 is still considered, where the conductivity
¯
σ of

layers 2 and 4 is assumed to be BA. The three specific BA conductivities shown in Figure 11
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are considered. All of them share the same principal conductivity diag(4, 1, 0.5) S/m.
The orientations of their principal coordinates xpypzp with respect to the formation co-
ordinates xyz are also illustrated in Figure 12: the principal coordinates xpypzp of the
simple BA case are consistent with xyz; those of the dipping BA case have an anisotropic
dip angle γ = 15◦; those of the Full-tensor BA case have an anisotropic azimuthal angle
β = 15◦ and an anisotropic dip angle γ = 15◦. The tool dip angle is fixed at θ = 60◦. For
the simple BA and dipping BA cases, Figure 13 only displays the results of components
ImHxx, ImHyy, ImHzz, ImHxz, ImHzx, because the rest are all zeros. Note that in these two
cases, the tool dip angle and the anisotropic dip angle are in the same xz-plane. However,
in the cases of full-tensor BA conductivity, this condition no longer holds because of the
anisotropic azimuthal angle. The results in Figure 14 show that none of the nine responses
are zero. Furthermore, comparing the results of the dipping BA (γ = 15◦) case with those of
the simple BA (γ = 0◦) case, we can observe that the three main components ImHxx, ImHyy,
and ImHzz are sensitive to the change in the anisotropic dip angle γ. These differences
among the results of the three cases indicate that the orientation of BA conductivity has a
significant influence on the responses of the triaxial logging tool. To obtain a more reliable
interpretation of logging data, this effect should be considered.
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Using the method of images, we also developed a quantitative principle to choose the 
proper size of the region according to the desired error tolerance. Our algorithm was ap-
plied to simulate responses of the triaxial well logging tool in layered TI and BA for-
mations, and the numerical results are compared with those by the other method. The 

Figure 14. Responses of the tool in the layered full-tensor BA formation. (a) Im(Hxx). (b) Im(Hxy).
(c) Im(Hxz). (d) Im(Hyx). (e) Im(Hyy). (f) Im(Hyz). (g) Im(Hzx). (h) Im(Hzy). (i) Im(Hzz).

4. Conclusions

This paper presents a new algorithm of the EM fields in the layered BA media. We
solved Maxwell’s equations in a rectangular region with a finite cross-section. Since the
solution was expressed as a 2-D Fourier series, its evaluation can be implemented by a
simple summation without resorting to the additional numerical quadrature algorithms.
Using the method of images, we also developed a quantitative principle to choose the
proper size of the region according to the desired error tolerance. Our algorithm was applied
to simulate responses of the triaxial well logging tool in layered TI and BA formations,
and the numerical results are compared with those by the other method. The excellent
agreements demonstrate that this algorithm can effectively and accurately simulate the
responses of the triaxial logging tool in normally or highly deviated wells.
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Appendix A

By the proper normalization, the eigenvector matrix for layer j and its inverse matrix

can be expressed in terms of the four 2× 2 matrices
¯
Lj,I,

¯
Lj,II,

¯
Lj,III,

¯
Lj,VI (the detailed

expressions can be found in [15]) and they transpose the matrices as follows:

¯
Lj =

1√
2

 ¯
Lj,I

¯
Lj,II

¯
Lj,III −

¯
Lj,VI

,
¯
L
−1

j =
1√
2

¯
L

T

j,III
¯
L

T

j,I
¯
L

T

j,VI −
¯
L

T

j,II

 (A1)

Consider a two-layer model and assume an incident downward wave with amplitude
A+ hitting the interface z2 from upper layer 1 into lower layer 2. The mode-waves in these
two layers are

w1 =

e−iω
¯
Λ

u

1 (z−z2)
¯
R1,2

e−iω
¯
Λ

d

1 (z−z2)

A+ (A2)

w2 =

 0

e−iω
¯
Λ

d

2 (z−z2)
¯
T1,2

A+ (A3)

where
¯
R1,2 and

¯
T1,2 are the unknown local reflection and transmission coefficients, respec-

tively. To determine these coefficients, we apply continuity conditions across the interface
z2, i.e.,

b(z−2 ) = b(z+2 ) (A4)

where z−2 (z+2 ) represent the left (right) limit of z2. Using the relation b =
¯
Lw and expres-

sions in (A2) and (A3), the condition can be written as

¯
L1

¯
R1,2
¯
I

 =
¯
L2

[
0

¯
T1,2

]
(A5)

Substituting (A1) into (A5) and solving this equation for
¯
R1,2 and

¯
T1,2, we have

¯
T1,2 = 2[

¯
L

T

VI,1
¯
LII,2 +

¯
L

T

II,1
¯
LVI,2

]−1

¯
R1,2 = [

¯
L

T

III,1
¯
LII,2 −

¯
L

T

I,1
¯
LVI,2]× [

¯
L

T

VI,1
¯
LII,2 +

¯
L

T

II,1
¯
LVI,2]

−1
(A6)

Similarly, assuming that an incident upward wave hits interface z2 from the lower
layer 2, and after a similar derivation, we obtain

¯
T2,1 = 2[

¯
L

T

III,2
¯
LI,1 +

¯
L

T

I,2
¯
LIII,1

]−1

¯
R2,1 = [

¯
L

T

VI,2
¯
LI,1 −

¯
L

T

II,2
¯
LIII,1]× [

¯
L

T

III,2
¯
LI,1 +

¯
L

T

I,2
¯
LIII,1]

−1
(A7)
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