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Abstract: Fractional vegetation cover (FVC) is an important indicator of ecosystem changes. Both
satellite remote sensing and ground measurements are common methods for estimating FVC. How-
ever, desert vegetation grows sparsely and scantly and spreads widely in desert regions, making it
challenging to accurately estimate its vegetation cover using satellite data. In this study, we used
RGB images from two periods: images from 2006 captured with a small, light manned aircraft with
a resolution of 0.1 m and images from 2019 captured with an unmanned aerial vehicle (UAV) with
a resolution of 0.02 m. Three pixel-based machine learning algorithms, namely gradient enhancement
decision tree (GBDT), k-nearest neighbor (KNN) and random forest (RF), were used to classify the
main vegetation (woody and grass species) and calculate the coverage. An independent data set
was used to evaluate the accuracy of the algorithms. Overall accuracies of GBDT, KNN and RF for
2006 image classification were 0.9140, 0.9190 and 0.9478, respectively, with RF achieving the best
classification results. Overall accuracies of GBDT, KNN and RF for 2019 images were 0.8466, 0.8627
and 0.8569, respectively, with the KNN algorithm achieving the best results for vegetation cover
classification. The vegetation coverage in the study area changed significantly from 2006 to 2019,
with an increase in grass coverage from 15.47 ± 1.49% to 27.90 ± 2.79%. The results show that RGB
images are suitable for mapping FVC. Determining the best spatial resolution for different vegetation
features may make estimation of desert vegetation coverage more accurate. Vegetation cover changes
are also important in terms of understanding the evolution of desert ecosystems.

Keywords: fractional vegetation cover; pixel-based machine learning; vegetation classification;
desert ecosystem

1. Introduction

Fractional vegetation cover (FVC) usually refers to the percentage of ground area
covered by the vertical projection area of vegetation (including leaves, stems, branches and
roots). It is a comprehensive ecological index used to express the surface conditions of plant
communities [1,2]. Information on FVC is required for assessment of land degradation,
salinization and desertification, as well as environmental monitoring [3]. Deserts are
characterized by perennial shrubs forming simple plant communities. Sparse plant species
exhibit unique adaptation strategies to the harsh conditions of desert ecosystems, which
play an important role in their stabilization [4]. Therefore, it is of considerable significance
to study FVC and its changes over the years.

Traditional desert vegetation surveys require periodic frequent ground surveys in-
volving the collection of a large numbers of samples, which may require considerable
resources [5]. Alternatively, remote-sensing-based data, which are the most prevalent in
recent years, may be considered for estimation of FVC [6]. Characteristics of such data
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include multiresolution, flexible acquisition time and coverage of a large area, provid-
ing rich spatiotemporal information on FVC [7]. Based on the radiative transfer model
and machine learning algorithms, Landsat data can be used for quantitative mapping
of vegetation coverage in space and time to estimate FVC with satisfactory accuracy [8].
The random forest regression method in combination with FengYun-3 reflectance data
generated an FVC estimate with a reliable spatiotemporal continuity and high accuracy [9].
Although satellite data are suitable for estimating vegetation cover on large scales, it is
generally difficult to generate coverage estimates for different species, especially in areas
with sparse vegetation, e.g., deserts. The spatial resolution of satellite images of deserts
make it difficult to obtain individual information about different species, especially plants
growing in deserts, which are small in size and sparsely and widely distributed [10–12].
Given these limitations, higher-resolution images are needed to estimate the coverage of
different species in desert regions.

Unmanned aerial vehicles (UAVs), which are light, low-cost, low-altitude and ground-
operated flight platforms capable of carrying a variety of equipment and performing
a variety of missions, are becoming increasingly popular in the scientific field [13]. UAVs
provide a remarkable opportunity for scientists to adapt to the scale of a variety of ecological
variables and are used to monitor environments at both high spatial and temporal reso-
lutions for responsiveness. UAV-based vegetation classification is also cost-effective [14].
High-resolution UAV images are used to extract the structural and functional attributes of
vegetation and explore the mechanisms of biodiversity [15,16]. UAVs serve as an effective
tool to measure the leaf angle of hardwood tree species [17]. If the flight path is low or the
resolution of the sensor is high enough, previously undetected object details can be spatially
identified, which is the main advantage of using UAVs to study vegetation dynamics [18].
UAVs provide a large amount of data that can be used to study spatial ecology and monitor
environmental phenomena. UAVs also represent an important step toward more effective
and efficient monitoring and management of natural resources [14,19].

The quality of sensors is gradually improving, and a variety of sensors is widely
used [20–22]. RGB images may become an important form of data for investigating FVC
in desert regions [10–12,23]. There have been few studies on such applications. Guo et al.
used UAV RGB images to obtain FVC with the remote sensing indices in Mu Us sandy
land [24]. Li et al. proposed a mean-based spectral decomposition method to estimate FVC
from RGB photos taken by a UAV [25]. These studies confirmed the high accuracy of FVC
estimates using RGB data.

Recently, machine learning methods have been applied for FVC estimation and es-
timation of other vegetation parameters due to their robust performance and nonlinear
fitting capability [8,26,27]. For example, some researchers have used machine learning
methods, such as backpropagation neural network (BPNN) and random forest (RF), to esti-
mate FVC [26–28]. The processing of image patterns generally includes four steps: image
acquisition, image preprocessing, image feature extraction and classification [29]. Image
pattern recognition can be used to study phenology [30], plant phenotype analysis [31],
crop yield estimation [32] and biodiversity assessment [18]. However, only a few studies on
FVC estimation have combined a machine learning method with image pattern recognition,
especially for estimation of sparse vegetation in desert regions.

The desert ecosystem in northwest China is fragile and unstable, mainly character-
ized by an arid climate, sparse precipitation, high evaporation rates, sparse vegetation
and barren land. Affected by human land use, global climate change and geographic
environmental elements, these areas have become some of the fastest desertifying areas
in China. Desertification not only affects regional drought conditions but also results in
the release of large amounts of carbon into the atmosphere due to the degradation of
vegetation and soil, which may lead to regional or global climate change. Prevention
and control of desertification has become an important part of China’s ecological civiliza-
tion construction policy, and monitoring sparse vegetation cover is integral to managing
desert ecosystems [25]. FVC derived from high-spatial-resolution UAV imagery could
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be exceptionally effective in mapping desert vegetation cover and assessing degradation,
salinization and desertification [23].

In this study, we used high-resolution RGB data and pixel-based machine learning
classification methods to estimate vegetation coverage of major species in the study area.
The objective of this study was to explore the reliability of vegetation coverage extraction
using high-resolution RGB data and pixel-based machine learning classification methods.
The methods and results of this study will provide insights into identification techniques
for extraction of vegetation coverage information of different desert species from RGB data.

2. Materials and Methods
2.1. Study Area
2.1.1. Overview

In this study, we investigated a 1 km × 1 km area in Ulan Buh desert in western
Inner Mongolia, with the central coordinates of 40◦15′37.8′′N, 106◦56′28′′E (Figure 1).
The area has little topographic fluctuation, mainly comprising conical dunes or crescent-
shaped dunes with a height of less than 10 m and an average elevation of 1050 m. The
area has a typical semiarid, continental, temperate climate, which is characterized by
little precipitation, strong wind and dry conditions. The area receives an annual rainfall of
138.8 mm, with average annual evaporation of 2258.8 mm, an average temperature of 6.8 ◦C,
temperature difference between day and night and annual sunshine time of 3229.9 h. The
sandstorm season falls between November and May of the following year. The prevailing
winds are westerly and northwesterly. The annual average wind speed is 4.1 m s−1, and
hazards of sand storms are considered as the main natural disaster in the study area [33].

Figure 1. UAV survey study area in the desert region of Ulan Buh in western Inner Mongolia. The
size of study area is 1 km × 1 km. (a) Aerial images of the study area in 2006. (b) Aerial images of the
study area in 2019.
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2.1.2. Vegetation Profile

The plant communities of the Ulan Buh desert are generally xerophytic vegetation, and
dominant species in the community have morphological characteristics and physiological
functions to adapt to drought. They are usually composed of small trees, shrubs and herbs,
which are highly adaptable and resistant to local habitats. The main plant species in the
study area are Elaeagnus angustifolia L. (Figure 2a), Artemisia desertorum Spreng. Syst. Veg.
(Figure 2b), Haloxylon ammodendron (C. A. Mey.) Bunge (Figure 2c) and various herbaceous
plants. The plants play an important role in desert ecosystem functioning.

Figure 2. The main vegetation types in the study area: (a) Elaeagnus angustifolia L., (b) Artemisia
desertorum Spreng. Syst. Veg. and (c) Haloxylon ammodendron (C. A. Mey.) Bunge.

2.2. Data Sources
2.2.1. Image Data

The Institute of Forest Resource Information Techniques (IFRIT), Chinese Academy
of Forestry (CAF) adopted an ultralight aircraft low-altitude digital remote sensing sys-
tem (Lars-1) for aerial photography in July 2006. The system used an MF-11 ultralight
aircraft and carried a TOPDC45 measuring aerial digital camera to collect 130 photographs
with 67~77% course overlap and 30~55% lateral overlap. Furthermore, 9 ground control
points were deployed and measured (Figure 3a). The spatial resolution of the resulting
orthomosaic imagery is 0.1 m (Figure 1a).

Figure 3. Ground control points used in the study. The red circle showed the control points we placed.
(a) 2006. (b) 2019.

The IFRIT applied UAV technology to take aerial photographs of the study area
in August 2019 and obtained more than 2000 digital aerial photographs and ultra-high-
resolution aerial photography images of the study area. The UAV used in this survey was
a Phantom 4 Pro, and the camera was an Canon EOS 5DS RGB camera. The flying speed
was 5 m/s, and the flying height above the ground was 70 m. The course overlap rate was
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80%, and the lateral overlap rate was 60%. In addition, 100 ground control points were
deployed to verify the accuracy of the generated image (Figure 3b). The spatial resolution
of the resulting orthomosaic imagery is 0.02 m (Figure 1b).

2.2.2. Ground Measurement Data

Ground-based measurements were collected by the members of IFRIT in July through
August 2006 following the grid-based sampling framework. Within the 1 km × 1 km
study area, 100 sample plots were allocated across in rows with a range of 100 m × 100 m
(Figure 4a). In each 100 m × 100 m sample plot, 100 small quadrats with an area of
10 m × 10 m were further subdivided according to the row crossing (Figure 4b). We took
a full survey of the study area based on each plot. The crown width in different directions,
plant height, diameter at breast height of each tree and basal diameter of each shrub were
measured manually, taking each small quadrat (10 m × 10 m) as a unit. Species, as well
as the number of trees, shrubs and herbs, were recorded. More importantly, in order to
make accurate training samples, validate samples and visually interpret results in the
follow-up, we measured and recorded the location information of the species in of interest
the investigation process.

Figure 4. Sample plot number setting. (a) The 1 km × 1 km study area was divided into 100 sample
plots (100 m × 100 m). (b) Each 100 m × 100 m sample plot was divided into 100 small quadrats
(10 m × 10 m).

In August and September 2019, ground measurements were collected using the same
methods as in 2006.

2.3. Methods

The whole process of using high-resolution RGB data and pixel-based machine learn-
ing classification methods to estimate vegetation coverage of major species includes
five steps (Figure 5): (1) preparation of orthophoto mosaics; (2) acquisition of training
and validation data; (3) training of models and image classification; (4) evaluation of model
accuracy; and (5) calculation of area and FVC.
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Figure 5. Diagram showing the workflow of vegetation classification and FVC estimation using
machine learning algorithms: RF (random forest); KNN (K-nearest neighbor); GBDT (gradient boost
decision tree).

2.3.1. Image Processing

Aerial photographs were imported into Agisoft Photoscan for mosaic and orthographic
correction. Photoscan software is based on structure from motion, which can generate
mosaicked and ortho-corrected images [34]. The general processing steps in Photoscan
include camera alignment, building a point cloud, building a 3D grid, building textures,
building a digital elevation model and generating the orthomosaic images. After the images
are mosaicked, the precise coordinates of the ground control points are used to perform
geometric correction on the generated images. A digital orthophoto map (DOM) of the
study area was produced with the geometric corrections, satisfying the requirements of
subsequent research.

2.3.2. Acquiring Training and Validation Data

We combined the location-specific information on trees, shrubs and herbaceous plants
in the ground surveys, as well as representative regions of interest of Elaeagnus angustifolia
L., Artemisia desertorum Spreng. Syst. Veg., Haloxylon ammodendron (C. A. Mey.) Bunge, grass
and sand, using ArcGIS software with DOM through visual recognition. The representative
data sets of different categories are shown in Figure 6. Then, the pixel values for each
category were obtained in PyCharm, and the tagged data set was randomly divided into
training and validation sets in a 9:1 ratio. The pixel numbers for each category are shown in
Table 1. In addition, during the ground survey, we found that crops (14.31%) existed in the
study area in 2019 but not in 2006. We determined the scope of crops with control points
and did not treat them as objects for machine classification [35,36]. The control points in the
fixed locations were measured by Zenith15Pro, so crops were manually mapped to reduce
the complexity of vegetation classification.
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Figure 6. Representative regions of interest of different categories.

Table 1. Pixels for each category.

Category
Pixels

2006 2019

Training Validation Training Validation

Elaeagnus angustifolia L. 18,725 2081 827,856 91,984
Artemisia desertorum Spreng. Syst. Veg. 22,262 2473 179,817 19,980
Haloxylon ammodendron (C. A. Mey.)

Bunge 2184 242 201,730 22,414

Grass 22,370 2486 804,230 89,359
Sand 159,663 17,741 1,222,659 135,851

2.3.3. Training the Models and Classifying Images

The machine learning algorithms used in this study include random forest (RF) [28,37],
k-nearest neighbor (KNN) [37,38] and gradient boost decision tree (GBDT) [39], which are
available in the ‘Sklearn’ package of Python. In the process of machine learning, cross
validation was carried out on the training set, and the obtained accuracy was above 0.60,
which ensured that the model could not be overfit.

Below is a brief description of each algorithm chosen for our study and the reasons for
choosing them.

RF is a decision tree classification algorithm that generates a large number of decision
trees; in each tree, features are selected on a random basis [40]. Classification results are
obtained by voting using the base classifier. The final classification results are obtained by
synthesizing the decision results of each decision tree using the majority voting method.
The result can be expressed as:

H(x) = arg max
γ

k

∑
i=1

I(hi(x) = Y) (1)

where H(x) is the final classification result of RF, hi(x) is the classification result of classifi-
cation and regression tree (CART), Y is the output variable and I(·) is the indicator function.

The KNN algorithm finds k objectives in a provided training data set that are closest
to the test point; the class is based on a majority vote among the k objects, and the distance
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is based on the ordinary Euclidean metric; the classification output is determined based
on this distance [41]. For each test instance, the distances or similarities among all the
labeled instances in the training set are calculated using the traditional KNN algorithm.
Then, k nearest instances are selected to derive the resulting class with maximum number.
Normally, Euclidean distance is used for distance measurement of KNN. The Euclidean
distance is expressed as:

d2(xi, xj) = (xi − xj)
2
= (xi − xj)

T
I(xi − xj) (2)

where I = diag(1, . . . , 1) is an identity matrix.
The GBDT algorithm generates predictive models in the form of weak learners and

iteratively combines weak learners into a stronger learner. Each decision tree is iteratively
tuned to reduce the residuals of the preceding tree in the direction of the gradient [42].
Specifically, in order to minimize the loss (or error) between the output and true values,
a CART model is suitable for the residuals of a preceding model. The final predictive model
of the specific iteration is obtained by summing the outputs of all models from the previous
iteration. The model can be represented by:

FM(x) =
M

∑
m=1

T(x, Φm) (3)

where T(x, Φm) is the decision tree, Φm represents the parameters of the next decision tree
and M is the number of decision trees. The loss function of the decision tree in GBDT can
be represented by the square error function. The parameters of the next decision tree are
determined by minimizing the loss function, which can be expressed as:

Φm = arg min
Φm

N

∑
i=1

L[yi, Fm−1(xi) + T(x, Φm)] (4)

where Fm−1(xi) is the current decision tree, and L(·) is the loss function of the decision tree.
Based on the training data set obtained in the previous step, RGB characteristics are

applied to RF, KNN and GBDT algorithms to generate corresponding models. The models
are then applied to the DOM images of the whole study area. The study areas can be
divided into five categories: Elaeagnus angustifolia L., Artemisia desertorum Spreng. Syst.
Veg., Haloxylon ammodendron (C. A. Mey.) Bunge, grass and sand. Classification images are
obtained based on the applied algorithms.

2.3.4. Accuracy Assessment of the Algorithms

The accuracy of the algorithms was assessed based on the confusion matrix. Each
row represents a prediction category, and the total number of rows corresponds to the
number of data points predicted for a given category. Each column of the confusion matrix
represents the actual category to which the data belong, and the total number of columns
represents the number of data instances in a given class.

Four commonly used evaluation measures—overall accuracy (OA), Kappa coefficient,
producer accuracy (PA) and user accuracy (UA)—were used to evaluate the accuracy of the
algorithms employed for vegetation classification.

Overall accuracy (OA) represents the accuracy of all categories and can be calculated
with the following formula:

OA =
∑n

i=1 CPi

T
× 100% (5)

where n is the total number of all categories, CPi is the number of sample pixels that are
predicted to be correct in class i and T is the total number of pixels in the validation samples.



Remote Sens. 2022, 14, 3833 9 of 19

Kappa coefficient is a measure of classification accuracy and can be calculated with the
following formula:

Kappa =
N ∑r

i=1 xii −∑r
i=1(xi+ × x+i)

N2 −∑r
i=1(xi+ × x+i)

(6)

Producer accuracy (PA) can be calculated with the following formula:

PA =
xii

xi++
(7)

User accuracy (UA) can be calculated with the following formula:

UA =
xii
x+i

(8)

where r is the number of rows in the confusion matrix, xii is the number of pixels along the
diagonal, xi+ is the total number of pixels in the ith row, x+i is the total number of pixels in
column i and N is the total number of pixels.

2.3.5. Estimating Area and FVC in Different Species

After determining the accuracy of the algorithms, the best classification results in
the two periods of data were used to estimate the complete study area. The results of
classification accuracy for the study area were evaluated using a stratified random sampling
design [43], whereby the random points are distributed according to the proportion of
the area occupied by each category in the classification results. For rare categories, it is
necessary to ensure that the number of randomly assigned points is greater than their
proportional area [44]. The total number of sample units in the verification process is
calculated as follows:

n =
(∑ WiSi)

2[
S
(
Ô
)]2

+ (1/N)∑ WiS2
i

≈
(

∑ WiSi

S
(
Ô
) )2

(9)

where N = number of units in the ROI, and S
(
Ô
)

is the desired standard error of the esti-
mated overall accuracy. Here, we adopted a slighter higher value than that recommended
in [43], i.e., 0.015. Wi is the mapped proportion of the area of class i, Si is the standard
deviation of class i, Si =

√
Ui(1−Ui), where Ui is the priori expected user accuracy. In

this study, we used the obtained user accuracy values to validate the data set (Table 2).
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Table 2. The producer accuracy (PA), user accuracy (UA), overall accuracy (OA) and Kappa coefficient
of each algorithm of vegetation classification results.

Artemisia desertorum
Spreng. Syst. Veg.

Haloxylon ammodendron
(C. A. Mey.) Bunge

Elaeagnus
angustifolia L. Grass Sand

2006

GBDT

Producer accuracy 0.7121 0.0289 0.8063 0.7237 0.9936
User accuracy 0.7657 0.5000 0.8703 0.7000 0.9679

OA 0.9140
Kappa 0.8124

KNN

Producer accuracy 0.7283 0.0165 0.8174 0.7490 0.9936
User accuracy 0.7690 1.0000 0.8859 0.7123 0.9716

OA 0.9190
Kappa 0.8238

RF

Producer accuracy 0.8467 0.3058 0.8885 0.8443 0.9921
User accuracy 0.8671 0.5827 0.8963 0.8376 0.9826

OA 0.9478
Kappa 0.8880

2019

GBDT

Producer accuracy 0.7038 0.1806 0.9201 0.7757 0.9744
User accuracy 0.8284 0.6920 0.9203 0.7578 0.8634

OA 0.8466
Kappa 0.7830

KNN

Producer accuracy 0.7477 0.2916 0.9211 0.8109 0.9684
User accuracy 0.8205 0.6131 0.9313 0.7758 0.8990

OA 0.8627
Kappa 0.8073

RF

Producer accuracy 0.7247 0.2793 0.9146 0.8021 0.9686
User accuracy 0.7969 0.5611 0.9242 0.7723 0.8987

OA 0.8569
Kappa 0.7992

The Openforis accuracy assessment tool was used to estimate the unbiased area and
its 95% confidence interval. These estimates are based on the confusion matrix generated by
the accuracy assessment process and the proportion of the area occupied by each category
according to Equations (10) and (11).

S( p̂.k) =

√√√√
∑i W2

i

nik
ni.

(
1− nik

ni.

)
ni. − 1

=

√
∑i

Wi p̂ik − p̂ik
2

ni. − 1
(10)

95% CI Âk =

(
A ∑i Wi

nik
ni.

)
± 1.96(A S( p̂.k)) (11)

where S( p̂.k) is the standard error of the estimated area proportion for class k, Wi is the area
proportion of map class i, nik is the sample count at cell (i, k) in the error matrix and ni.
is the row sum for class i. Furthermore, 95% CI is the 95% confidence interval, Âk is the
estimated area of class k and A is the total map area.

Finally, according to the estimated area, the FVC of different species in this study
could be estimated and the change of FVC could also be obtained.

3. Results
3.1. Vegetation Classification

The digital orthophoto map of the study area (2006) obtained by the ultralight aircraft
low altitude digital remote sensing system (LARs-1) and the classification results obtained
with the investigated machine learning algorithms are shown in Figure 7. Other image
data (2019) obtained by UAV and results of classification by different machine learning
algorithms are shown in Figure 8.
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Figure 7. Orthomosaics derived from ultralight aircraft and different machine learning algorithms.
(a) Digital orthophoto map (DOM). (b) Vegetation classification by gradient boost decision tree (GBDT)
algorithm. (c) Vegetation classification by K-nearest neighbor (KNN) algorithm. (d) Vegetation
classification by random forest (RF) algorithm.
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Figure 8. Orthomosaics derived from UAV and different machine learning classification algorithms.
(a) Digital orthophoto map (DOM) of super large sample plot, which was obtained from UAV aerial
images. DOM images have a spatial resolution of 0.02 m/pixel.(b) Vegetation classification by
gradient boost decision tree (GBDT) algorithm. (c) Vegetation classification by K-nearest neighbor
(KNN) algorithm. (d) Vegetation classification by random forest (RF) algorithm.

Although the resolution of differed between the two images (from 2006 and 2019),
Figures 7a and 8a show the distribution of vegetation in the two years. The images
generated with other classification results (Figures 7b–d and 8b–d) show the effect of the
investigated algorithms on the classification of main land cover with the two types of data.
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3.2. Algorithm Comparison

Figure 9 shows the confusion matrices obtained using the three investigated algorithms
for classification of the two types of data. According to the confusion matrices, the producer
accuracy (PA), user accuracy (UA), overall accuracy (OA) and Kappa coefficient of the
algorithms can be calculated using Equations (1) and (2) (Table 2). These indices are used
to evaluate the classification results of the machine learning algorithms.

Figure 9. Confusion matrices for algorithm classification results. (a1) Confusion matrix for the GBDT
algorithm based on the 2006 image data. (b1) Confusion matrix for the KNN algorithm based on
the 2006 image data. (c1) Confusion matrix for the RF algorithm based on the 2006 image data.
(a2) Confusion matrix for the GBDT algorithm based on the 2019 image data. (b2) Confusion matrix
for the KNN algorithm based on the 2019 image data. (c2) Confusion matrix for the RF algorithm
based on the 2019 image data.
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The overall accuracy and Kappa coefficients of the random forest (RF) algorithm for
the 2006 image were 0.9478 and 0.8880 (Table 2). Compared with the K-nearest neighbor
(KNN) algorithm and the gradient boost decision tree (GBDT) algorithm, RF obtained
better classification results. However, KNN achieved slightly better classification results
than RF and GBDT, and their OA and Kappa coefficient in 2019 were 0.8627 and 0.8073,
respectively. The user accuracy and producer accuracy also proved that most pixels were
correctly classified, with the exception of Haloxylon ammodendron (C. A. Mey.) Bunge, the
user accuracy of which was low in both the 2006 and 2019 results (0.3058 and 0.2916,
respectively). In addition, when classifying the 2006 image with a resolution of 0.1 m,
the overall accuracies of the GBDT, KNN and RF algorithms were 0.9140, 0.9190 and
0.9478, respectively. When classifying the 2019 image with a resolution of 0.02 m, the
overall accuracies of the GBDT, KNN and RF algorithms were 0.8466, 0.8627 and 0.8569,
respectively, all of which were lower than the accuracies obtained using the low-resolution
image (0.1 m).

3.3. Estimating FVC and Accuracy Assessment

Table 3 shows the random points assigned to each category of the classification results
of the two periods. The total sample sizes for 2006 and 2019 were 794 and 400, respectively,
calculated according to Equation (9). For the rarest classes (classes covering less than 5% of
the map), a fixed number is assigned directly. For the most abundant classes, validation
points are allocated from the remaining points based on proportion. The validation process
is performed by a combination of visual interpretation and ground survey results.

Table 3. The random points assigned to each category of the classification results of the two periods.
The information includes the mapped area proportions (Wi), conjectured values of user accuracies (Ui ),
standard deviations (Si ) of the strata and the allocation results (Alloc). A, Artemisia desertorum Spreng.
Syst. Veg.; H, Haloxylon ammodendron (C. A. Mey.) Bunge; E, Elaeagnus angustifolia L.; G, grass; S, sand.

2006 2019

Wi Ui Si Alloc Wi Ui Si Alloc

A 0.1295 0.8671 0.3395 100 0.0837 0.8205 0.3838 38
H 0.0313 0.5827 0.4931 50 0.0418 0.6131 0.4870 25
E 0.0916 0.8963 0.3049 70 0.1059 0.9313 0.2529 49
G 0.1565 0.8376 0.3291 120 0.2785 0.7758 0.4171 128
S 0.5911 0.3291 0.4699 454 0.3471 0.8990 0.3013 160

The accuracy assessment of the complete study area classification showed an overall
accuracy of 0.90 in 2006 (Table 4) and 0.85 in 2019 (Table 5). With the exception of Haloxylon
ammodendron (C. A. Mey.) Bunge, the user accuracy and producer accuracy of other
categories are relatively high.

Table 4. Confusion matrix resulting from the accuracy assessment procedure of the 2006 study area
classification. A, Artemisia desertorum Spreng. Syst. Veg.; H, Haloxylon ammodendron (C. A. Mey.) Bunge;
E, Elaeagnus angustifolia L.; G, grass; S, sand.

A H E G S User Accuracy

A 85 4 3 8 1 0.84
H 0 15 1 1 0 0.88
E 3 12 62 4 0 0.77
G 8 7 3 101 2 0.83
S 4 12 1 6 451 0.95

Producer accuracy 0.85 0.30 0.89 0.84 0.99
Overall Accuracy 0.90
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Table 5. Confusion matrix resulting from the accuracy assessment procedure of the 2019 study area
classification. A, Artemisia desertorum Spreng. Syst. Veg.; H, Haloxylon ammodendron (C. A. Mey.) Bunge;
E, Elaeagnus angustifolia L.; G, grass; S, sand.

A H E G S User Accuracy

A 28 0 1 1 0 0.93
H 1 7 1 3 0 0.58
E 4 2 45 4 0 0.82
G 4 13 2 104 5 0.81
S 1 3 0 16 155 0.88

Producer accuracy 0.74 0.28 0.92 0.81 0.97
Overall Accuracy 0.85

Table 6 shows the area proportions of different categories, unbiased estimates of area
and 95% confidence intervals for the entire study area.

Table 6. Area estimates obtained for the classifications, as well as the unbiased area and 95% confidence
intervals for the area occupied by each class. CI, confidence intervals; A, Artemisia desertorum Spreng.
Syst. Veg.; H, Haloxylon ammodendron (C. A. Mey.) Bunge; E, Elaeagnus angustifolia L.; G, grass; S, sand.

Class
2006 2019

Proportion of
Study Area (%)

Unbiased
Area (m2) 95% CI Proportion of

Study Area (%)
Unbiased
Area (m2) 95% CI

A 12.77 127,713 13,131 10.00 99,992 15,630
H 7.03 70,335 14,578 6.25 62,470 20,861
E 8.09 80,929 11,352 9.73 97,270 15,208
G 15.47 154,737 14,919 27.90 278,958 27,866
S 56.63 566,287 12,251 31.83 318,310 18,903

Table 7 shows the FVC of major species, which is estimated according to the unbiased
area and 95% CI area in the proportion of the study area.

Table 7. FVC of major species. A, Artemisia desertorum Spreng. Syst. Veg.; H, Haloxylon ammodendron
(C. A. Mey.) Bunge; E, Elaeagnus angustifolia Linn.; G, grass.

Class
FVC (%)

2006 2019

A 12.77 ± 1.31 10.00 ± 1.56
H 7.03 ± 1.46 6.25 ± 2.09
E 8.09 ± 1.14 9.73 ± 1.52
G 15.47 ± 1.49 27.90 ± 2.79

4. Discussion

In previous studies, FVC estimation methods based on remote sensing data were
mainly applied to a global or large scale [45]. In order to explore the FVC of each species in
a small area, in this study, we evaluated the ability of high-resolution RGB data to estimate
FVC in desert regions, mainly through ground surveying of the location information of each
species in combination with combined with the images to make more accurate training
samples and validation samples, as well as the use of a pixel-based machine learning
method in two phases of RGB data for evaluation. According to the satisfying validation
results obtained in terms of the overall accuracy, the high-resolution RGB data achieved
reliable performance in FVC estimation, even at the species level, in line with results
reported in previous studies. Zhou et al. used the RF method to classify desert vegetation
based on RGB data [33] and proposed a method of mapping rare desert vegetation based
on pixel classifiers and the use of an RF algorithm with a VDVI–texture feature, which
obtained high accuracy. Olariu et al. found that RGB drone sensors were indeed capable of
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providing highly accurate classifications of woody plant species in semiarid landscapes [46].
Furthermore, we found that good accuracy was not obtained for all species in this study,
which indicates that some species may do not perform well in RGB data. For example, the
accuracy of H (Haloxylon ammodendron (C. A. Mey.) Bunge) was the lowest, indicating that it
was misclassified more often than other species, possibly due to a lack of samples of this
species or because the RGB characteristics of vegetation H do not significantly different
from those of other types of vegetation, resulting in a poor classification effect of vegetation
H. Oddi et al. combined high-resolution RGB images provided by UAVs with pixel-based
classification workflows to map vegetation in recently eroded subalpine grasslands at the
level of life forms (i.e., trees, shrubs and herbaceous species) [47].

Geng et al. used a boosted regression tree model (BRT) that effectively enhanced the
vegetation information in RGB images and improved the accuracy of FVC estimation [48].
Wang et al. proposed a new method to classify woody vegetation and herbaceous vegeta-
tion and calculated FVC values based on high-resolution RGB images using a classification
and regression tree (CART) machine learning algorithm [49]. Guo et al. obtained FVC
and biomass information using an object-based classification method, single shrub canopy
biomass model and vegetation index-based method [24]. These studies provide information
that can be used in future studies to further improve the estimation of vegetation coverage
using RGB data at the desert species level. Measures such as expanding color space, ex-
traction of additional vegetation indices, combining multiple models and optimization of
algorithms play a considerable role in studying the application of RGB data for estimation
of vegetation coverage in desert regions. Furthermore, it is worth exploring additional
approaches. Egli et al. presented a novel CNN employing a tree species classification
approach based on low-cost UAV-RGB image data, achieving validation results of 92%
according to spatially and temporally independent data [50]. Zhou et al. evaluated the fea-
sibility of using UAV-based RGB imagery for wetland vegetation classification at the species
level and employed OBIA technology to overcome the limitations of traditional pixel-based
classification methods [51]. These methods may also improve accuracy when applied to
desert vegetation areas, although further studies are required to verify this hypothesis.

Our study showed that the main desert vegetation in the study area changed slightly
between 2006 and 2019, which indicates that the desert environment may have had an im-
pact on the study area in the past decade. In addition, crops that were not present in 2006
appeared in the study area in 2019, which indicates that the study area was disturbed
by human factors. In fact, China has been working on desert prevention, with attempts
to improve the desert area through various measures [52,53]. With respect to estimation
of FVC and desertification control in desert areas, improvements can be made in the
following aspects.

Although RGB data from UAVs achieved notable performance in vegetation classi-
fication and coverage extraction studies, the present study is subject to some limitations.
Compared with other image types (e.g., multispectral and hyperspectral), RGB data lack
band information [54,55]. The near-infrared spectrum is an important band with respect to
the study of vegetation [56–59]. Cameras can be modified to obtain images with information
encompassing the near-infrared band, which could be used to improve the classification
accuracy of desert vegetation and quantify vegetation coverage more accurately.

In addition, the optimal spatial resolution required depending on the research object
must also be taken into account. Instead of always pursuing high-resolution images,
the most suitable spatial resolution should be selected. Therefore, it is of considerable
significance to explore the optimal spatial resolution of different vegetation features and
determine the most reasonable flight altitudes for UAVs.

We only obtained image data for a specific period in the study area; therefore, our
results only reflect the status of desert vegetation during that period, and we failed to take
full advantage of the UAV. For example, UAVs could be used to acquire time-series data. In
future work, UAVs should be used to photograph the growth status of desert regions at
various time periods in a given year [36].
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5. Conclusions

In this study, we used high-resolution RGB data and pixel-based machine learning
classification methods to classify and estimate vegetation coverage of major species in
the study area. Our main conclusions are as follows: (1) The high-resolution RGB image
data from UAVs had promising effects on the classification process, resulting in reliable
performance in terms of FVC estimation, even at the species level. Therefore, this method
should be considered a reliable technique. Moreover, using a UAV to carry an RGB camera
is a convenient and fast method to obtain image data with different spatial resolutions
at different heights. (2) The FVC in the study area changed significantly between 2006
and 2019, with an increase in grass coverage from 15.47 ± 1.49% to 27.90 ± 2.79%. The
magnitude of this change may also contribute to the environmental improvement of desert
systems. (3) Although images with high spatial resolution provide more detailed informa-
tion, they are associated with considerable challenges in the subsequent data processing
steps. In order to ensure the accuracy of vegetation coverage estimation, determination
of the optimal spatial resolution for different vegetation features should be the focus of
future research.
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