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Abstract: This paper presents the development and applications of a new, open-source toolbox that
aims to provide automatic identification and classification of hydroclimatic patterns by their spatial
features, i.e., location, size, orientation, and shape, as well as the physical features, i.e., the areal
average, total volume, and spatial distribution. The highlights of this toolbox are: (1) incorporating
an efficient algorithm for automatically identifying and classifying the spatial features that are linked
to hydroclimatic extremes; (2) use as a frontend for supporting Al-based training in tracking and
forecasting extremes; and (3) direct support for short-term nowcasting of extreme rainfall via tracking
rainstorm centres and movement. The key design and implementation of the toolbox are discussed
alongside three case studies demonstrating the application of the toolbox and its potential in helping
build machine learning applications in hydroclimatic sciences. Finally, the availability of the toolbox
and its source code is included.

Keywords: spatiotemporal pattern; pattern recognition; cluster analysis; machine learning; pattern
identification and classification; rainfall monitoring and nowcasting

1. Introduction

Pattern recognition is a ubiquitous technique, usually carried out to automatically
recognise similarities and regularities among datasets, which has recently been applied
in hydroclimatic sciences [1-4]. The general approach in these applications follows a
series of steps of segmenting hydroclimatic variables or phenomena into sections, selecting
features and then classifying patterns [5]. The selection of the features that are used as
the reference for pattern classification is mainly based on the judgement and appreciation
of the object to be recognised via relevant algorithms; and to this end, assistance from
human experience is not as significant. An important application of this approach is in
forecasting those hydroclimatic events of interest, e.g., extreme storms, high temperatures,
high-speed winds, droughts and floods. In those applications, if similar patterns are found
to be frequently associated with the occurrence of a certain type of extreme event, it is
reasonable to anticipate that similar events would occur if such patterns reappeared, albeit
with uncertainties involved. For example, the intense vertical movement of airflow inside
the cumulonimbus clouds is usually expected to trigger short-term extreme rainfall, hail,
tornadoes and related disasters. Identifying the vertical pattern of airflow can be used as a
reference to forecast extreme weather. However, the required work cannot be manually
carried out, to quantify or model the causal relationship between the patterns and the
phenomena. This is particularly true in hydroclimatic research, which is often based on
big data such as spatially disaggregated, grid-based hydroclimatic datasets. Therefore, a
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substantially high computation capacity is often required and machine learning techniques
are naturally involved in pattern recognition to classify the data into different categories
for reducing labour and time consumption [6].

In recent decades, attempts have been made to utilise machine learning methods such
as artificial neural networks (ANNSs), to extract features of spatiotemporal climatic vari-
ables [7]; and further parameterise those features [8,9] to realise weather predictions [10,11].
Specifically, Nayak and Ghosh [12] developed an algorithm by incorporating a machine
learning technique based on a support vector machine (SVM), to identify the specific pat-
terns before extreme events (a lead time of 6 h to 48 h) therefore predicting the extreme
rainfall in Mumbai, India, using mesoscale and synoptic-scale weather patterns. Nguyen-Le
and Yamada [13] used Self-Organising Maps (SOM) combined with the K-means clustering
technique to classify the anomalous weather patterns (WPs) of heavy rainfall days during
the summertime (May—June, MJ, and July-August-September, JAS) in the year of 1979 to
2007 over the Upper Nan River basin in Thailand. Their results indicated that the primary
factor for producing locally heavy rainfall is the westerly summer monsoon in MJ and
westward-propagating tropical disturbances including tropical cyclones in JAS. Chattopad-
hyay, Hassanzadeh [14] applied an unsupervised clustering algorithm to classify the daily
large-scale weather patterns over North America and evaluated the performance of the
deep learning method convolutional neural network (CNN) to re-identify and predict these
clusters for up to 5 days ahead of time.

Despite these attempts of incorporating machine learning techniques into pattern
recognition for classifying and predicting extreme events in hydroclimatic sciences, a few
challenges remain to be addressed, especially those imposed by the very properties of
climate and environmental data. Unlike the data traditionally used to develop neural
networks algorithms such as face images for facial recognition and classification, which
have commonalities and specific features that can be easily classified, hydroclimatic data
provided either by model simulations or via remotely sensed observations, however, are
usually spatiotemporal, non-linear, non-stationary, chaotic with high dimensions and of
large scales [14]. For example, large-scale atmospheric circulations can significantly affect
the daily weather and extreme events, which leads to coherent and correlated patterns due
to various physical processes, and in the meantime, they are non-stationarity in nature due
to coupling and anthropogenic effects. Further, observational datasets, such as rainfall, are
usually not long enough for training the required algorithm, on top of the persistent noise
in measurements. Therefore, to achieve an accurate and reliable prediction and expand
the applications in climate science, it is important to address these issues and improve the
robustness of pattern recognition.

To this end, we designed a “Spatial Pattern Extraction and Recognition (SPER)” toolbox
that implements an unsupervised clustering technique, the k-means cluster method into a
spatial feature identification algorithm. The SPER toolbox allows for the use of large-scale
inputs of the grid-based hydroclimatic dataset (from observations or model simulations)
and employs an image thresholding segmentation method to help reduce the overhead of
sampling data for training. The significant pattern, defined as a connected set of grids with
value over the prescribed threshold, is extracted and regarded as the region of interest (ROI)
within a geographic boundary which can also be automatically detected. For each ROI, both
its spatial features (i.e., the geographic location, size, orientation, shape) and the physical
features (i.e., total volume, areal average and spatial distribution of the hydrological
variable in the ROI) are identified and calculated. The final classification of the extreme
patterns is based upon these features.

In this paper, we use three example cases to demonstrate the applicability of the SPER
toolbox, i.e., (1) a catchment-based analysis of extreme rainfall in England and Wales where
more than 900 catchments were categorised by their spatial features extracted using the
SPER toolbox, and the variation of extreme rainfall with respect to catchment location,
size, orientation and shape was quantified; (2) pattern recognition of daily rainfall over
the last century in Great Britain where the top 3 dominating patterns were recognised;
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(3) tracing the rainstorm movement, area and spatial distribution in a 24 h window, using
the high-resolution weather radar data in Guangdong, China. Furthermore, we analysed
its potential applications of SPER as a frontend of training a convolution neural network
where the toolbox was used to pre-catalogue the hydroclimatic patterns from the dataset
into several different labels.

The remainder of this paper is organised as follows: Section 2 describes the design of
the SPER toolbox and the algorithms for extracting and quantifying the spatial and physical
features of patterns; Section 3 shows the results demonstrating the three illustrative case
studies with the support of the SPER toolbox; its further application and its potential to
be frontend of Al-based training, limitations and recommendations of the toolbox are
discussed in Section 4. Finally, the conclusion and availability of the toolbox are given in
Section 5.

2. Method
2.1. The Design of the SPER Toolbox

The Graphical User Interface (GUI) of the SPER toolbox and its main functions are
presented in Figure 1. Users can load a grid-based hydroclimatic dataset such as precipita-
tion, temperature, air humidity, wind speed, pressure values with a pair of linear spatial
coordinates defined by a map projection, i.e., in a 2D matrix format, where the grid index
is marked as (x,y) that indicates the location with respect to the origin at the upper left
corner in a linear coordinate. Usually, a grid-based hydroclimatic dataset is defined on a
map projection that has two mutually perpendicular directions, where the column of the
matrix indicates the north-south direction y and the row indicates the east-west direction x.
Additionally, the resolution as well as a threshold value (i.e., xy defined in Equation (1))
for extraction needs to be prescribed. Resolution, defined as the length of the grid in the x
and y directions, is usually uniform applied in this toolbox. Figure 1a includes a case of
extracting the spatial pattern of daily rainfall in Australia, where the inputs are grid-based
daily rainfall with a resolution of 5 km and assumed to focus on the grid rainfall higher than
or equal to a threshold xy = 35 mm. The next step is to extract the hydroclimatic variables
(e.g., the daily rainfall) above the threshold located within a closed boundary which forms
a region of interest (ROI). Then, the toolbox can automatically detect the location of each
of such ROIs and quantify their spatial features, including the geographic location, size,
orientation, and shape of the ROI, and the hydroclimatic features such as the areal average
value, total volume, and spatial distribution of the hydroclimatic variable. SPER can also
visualise the ROIs selected by the users among all detected ROIs (i.e., the right panel of
GUI shown in Figure 1a). All the information of the ROIs extracted from the input datasets
can be shown in the list of GUI and saved in a text file if needed. Figure 1b demonstrates
the structure of the toolbox and specifies the inputs and example output. The details are
presented in the following sections.
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Figure 1. (a) The interface of the Spatial Pattern Extraction and Recognition (SPER) toolbox; (b) the
structure, inputs, example output of the SPER.

2.2. Thresholding Segmentation and Boundary Detection

Once the threshold value x( is defined, the first step of segmentation is to subdivide
the grid-based dataset into constituent regions, the so-called regions of interest (ROIs).
A widely used method of extracting an object from the background is to distinguish its
different modes according to the threshold xj. Following this, the toolbox converts the
dataset into a set of grids where any grid (x,y) for which f(x,y) is identified as an object
grid otherwise a background grid. Thus, the new dataset g can be defined as four cases
depending on different study purposes:

8(xy) = {

f(xy), if f(x,y) > x0
NaN,

if f(x,y) < xo

(1a)
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_ [ flxy), if f(xy) > x
gmw_{MN?ﬁﬂx%gé (1b)

_Jfxy) i f(xy) <x
8oy = {NaN, it (o) > %o (19

x,y), if f(x,y) <x
o) = (i e = 1o

where NaN means no data, which indicates the background. Equation (1a) presents the
case focusing on the ROIs whose grid values are greater than or equal to the threshold, e.g.,
for identifying high intensive rainfall with a certain value; (1b) presents the case over the
threshold, e.g., for identifying the rainfall regions; (1c) presents less than or equal to the
threshold, e.g., for identifying cold cloud regions from satellite IR brightness temperature;
(1d) presents less than the threshold, e.g., for identifying less-than-0 °C cold regions.

Then, the segmentation is carried out based on the discontinuity and similarity of
the grid values of the dataset. Discontinuity is defined as an abrupt change in grid val-
ues nearby, which can be used for detecting the overall boundary, i.e., the boundary to
distinguishing the ROI composed of the grids whose value is greater than or equal to xg
and the background with the grids equal to NaN. In this case, to reduce the computation
workload, NaN has been automatically assigned to the grids outside the ROIs then the
abrupt change can be easily found and the overall boundary can be defined. A sketch
example is presented in Figure 2a where for the new dataset g, an isolated ROI where
f(x,y) > 35 (blue grids) is defined as an area with similar property and its boundary is
detected by an abrupt discontinuity (highlighted as red grids in the sketch a), where no
data are found.

(a) (b)

Figure 2. Two example sketches of an ROI, where f(x,y) > 35 without (a) and with (b) a hole where
the blue grids indicate the ROI and the red and yellow grids are the detected outer boundary and
inner boundary (if there is a hole).

If some background grids (f(x,y) < 35) are found to reside within the ROI bound-
ary, the area that consists of these grids will form a “hole”. Holes can also be detected
straightaway based on the discontinuity in grid values. An example of such is shown in
Figure 2b, where the yellow grids are the hole boundary, while the blue grids are the ROI,
which is an interconnected region with grid values greater than the predefined threshold.
The information of each boundary (e.g., the coordinates of the boundary grid) is recorded
separately and stored.
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2.3. The Algorithm for Extracting and Quantifying the Spatial Features of the ROI

Each ROI extracted automatically from the previous step can be simplified as an
irregular polygon. We developed an algorithm to quantify their spatial features (i.e.,
geophysical location, size, orientation and shape), which consist of the following four steps:

Step 1: Decompose the irregular ROI inside the boundary (x;, y;) into many (e.g., 7)
small regular polygons A;, such as rectangles or triangles, and then the geometric centroid
(Cx, Cy) of the ROI can be calculated as:

1
Co= Y CinAi/ Y Ai = I/ Y Ai = 5 ) (yjen = %j0yy) (v +yjan) / A (22)

1 n
Cy = Y Cuis LA = 1o/ LA = £ X0 (51— ayy) (34 30)/ Ay (20)

where # is the number of vertices of the irregular RO], i.e., the number of boundary points in
(xj,y;); C; indicates the centroid of each divided polygon and Cy and C, mean the distance
of the centroid from the y-axis (the vertical axis) or the x-axis (the horizontal axis); C;, A;
and C;, A; are also known as the first moment of the area with respect to y and x; }_ A; is
the total area of an ROI, which is the sum of the area of divided polygons; I, and Iy are the
inertia of the ROI to the x and y axes.

Step 2: Calculate the second moment of the area of the ROI. This moment is used to
define the two principal axes of the ROI and the rotation, thereby obtaining the orientation
of the ROI. The second moment of an area with respect to its centroid (Cy, Cy) is given
by [15]:

1

Lx = 35 ) ?:1 (xjYj1 ) xj+10)) (}ﬁz + VYt +}/j+12) — L2/ YA (3a)
1

Iyy = E E 7:1 (ij]'+1 E xj+1yj) (JCJ'Z —|—x]-xj+1 =+ x]-+12) — Ixz/ E Al' (3b)

1 n
Ly = 57 Y ima (¥¥01 = Xjeayp) (37501 + 2% + 21541 + Xj0%) — Idy/ ) Ai (30)
As the two principal axes of an arbitrary polygon are those along which the product
of inertia is zero, the orientation of the principal axes with respect to the centroid and the
horizontal x-axis can be calculated as:

0= %tan_l (2Ly/ (Iyy — Lix)) )

where 0 is measured positive anticlockwise from the centroidal x-axis. The other principal
axis is just perpendicular to this.

Step 3: Determine the direction of the longer principal axis as the main orientation of
the ROL This direction is represented by the angle between the main orientation and the
north direction, denoted as w. w is defined in the range of [-90°, +90°], where a positive
value indicates a north-east direction, and a negative presents a north-west direction.
Figure 3a provides an example where the orientation of this ROl is indicated by the solid
principal axis, which is the longer one and orientated north-northwest (w = —10.4°).



Remote Sens. 2022, 14, 3823

7 of 18

b < S

A
N X X X X X X X
xs x XX x x

x| x x

In i
T

(@) (b)

Figure 3. (a) An example demonstrating the function of the SPER toolbox for defining the spatial
features of the ROI: the location presented by the yellow circle, the orientation (major axis) presented
by the solid magenta line, while the minor axis is presented by the dashed line, the shape defined
by its encompassing rectangle. (b) An example demonstrating the core (marked by x) of the ROI
detected by the algorithm of quantifying the hydroclimatic features of the SPER toolbox. The colour
indicates the value of rainfall from relatively high (red) to low (blue) above the threshold.

Step 4: Determine the minimum encompassing rectangle of the ROI (see Figure 3a),
which is used to characterise the elongation of the ROL. In this step, a shape index sp is
introduced to represent how elongated (or narrow) the shape is. It is defined as the ratio
of the longer side (e.g., height) of the encompassing rectangle divided by the shorter side
(e.g., width). The greater the sp is, the more elongated an ROl is.

Finally, the spatial features extracted from this four-step algorithm are quantified
as: (1) the geographic location of the ROI, which is represented by the coordinates of the
geometric centroid (Cx, Cy),' (2) the ROI size, which is the total number of grids times the
grid size; (3) the ROI orientation, which is indicated by the angle w with respect to the
north direction and (4) the ROI shape, which is described by sp. All features are converted
automatically consistent with the dataset resolution.

2.4. The Algorithm for Quantifying the Physical Features of the ROI

For a given RO, its basic features such as the areal average value and integral over
time of the hydroclimatic variable can be extracted directly by calculating the values of
the grids. To quantify the spatial distribution of the hydroclimatic variable in the ROI, the
k-means clustering technique is employed to recognise the centroid of the region(s) with
the area called “core” that involves the relative high grid values. For example, if the dataset
is grid-based hourly rainfall, the “core” with relatively high values inside an ROI can be
regarded as the rainfall centre of this event whose location and the moving track can be
easily monitored by the toolbox.

The k-means clustering is one of the partitioning-based techniques used to divide the
variables of a dataset into non-overlapping clusters according to the degree of similarity
of the variables [16,17]. The vectors of the ROI with several features, i.e., the centroid,
boundary and grid-based hydroclimatic values are inputted and the clustering process
starts by determining the number of clusters, which is usually based on the prior knowledge
of the dataset. Since such information is often unavailable, in this toolbox, we designed
multiple trials to find the optimal number of clusters k evaluated by using the Calinski—
Harabasz criterion [18]. Then, the k-means++ algorithm is carried out to partition the
data by assigning an initial centroid uniformly at random locations from the dataset, and
the distance of each grid to this centroid is calculated. A new set of centroids are then
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selected again randomly but this time with a probability proportional to the distance
from themselves to the closest centroid that is obtained from the previous step. This step
is repeated until k centroids are selected. Compared with the k-means algorithm, this
algorithm achieves a faster convergence and reduces the uncertainty caused by randomly
selecting the initial centroids. Although the k-means++ algorithm has improved the quality
of the final result to some degree, it in general still is local search heuristics meaning it
can be sensitive to the initial centroids [19]; therefore, we repeat the procedure 10 times
with different initial centroids to get relatively stable results and finally the result with the
lowest distance is used.

The distance between the core(s) and the ROI centroid is then calculated and indicated
as the spatial deviation of the rainfall event centre from the rainfall area centre, as shown in
Figure 3b where the areal average of rainfall is 29 mm/day, and the rainfall centre (i.e., the
core) is 38 mm/day marked by x which sits very closed to the centroid of the ROL

3. Results
3.1. Illustrative Case 1: Catchment-Orientated Extreme Rainfall Variation in England and Wales

Atmospheric water content, precipitation, evaporation and transpiration, and surface
water are four fundamental components of the hydrological cycle. To investigate the
hydrological process, it is customary to focus on a region of interest, e.g., country, political
city, river basin and even globally. Catchment is among the basic units in quantitative
hydrological analysis. In any given catchments, runoff starts to be produced when the
soil is saturated and cannot absorb the input water such as precipitation. Therefore, the
area-oriented variation of rainfall is of concern of engineers and flood risk managers.
Many studies, therefore, have focused on the catchment-based analysis that involves the
estimation of the volume, area, and depth of rainfall within the catchment. For example,
Ochoa-Rodriguez [20] investigated the impact of rainfall input resolution on the outputs
of different hydrodynamic models of seven urban catchments in northwest Europe and
found that increasing the catchment drainage area will decrease the impact of rainfall
input resolution. Further, many other researchers analysed gauged rainfall extremes
corresponding to their hydrological response in river catchments of different sizes [21-23].

The SPER toolbox can be useful in supporting analysing spatial variation within a
specific boundary by providing a function for detecting spatial characteristics of a catchment
or region of interest. Thus, in this first case study, we made use of the toolbox to conduct
an analysis of the spatial variation of extreme rainfall in 903 catchments in England and
Wales where the catchment’s boundaries were already given. The main aim of this study
is to explore whether and how the quantification of extreme rainfall will be affected by
the spatial features of the predefined regions such as the catchment. Firstly we extracted
the spatial features of these 903 catchments and then quantified the long-term annual
maximum daily rainfall (AMDR) in each catchment over the last century by using a well-
tested generalised extreme value (GEV) distribution where the features of AMDR are
parameterised by two distribution parameters u and ¢ These two parameters indicate
the AMDR with the most frequent occurrence and somehow occurrence probability of
the extremes, respectively. Finally, we studied how these two parameters vary with the
spatial features and more details can be referred to [24]. Figure 4a,b present one of these
catchments: the Upper Medway Catchment located in the southeast of England. The spatial
features of this catchment detected by the toolbox are: (1) centroid location is indicated as
(Easting 549 km, Northing 135 km) referring to the geographical origin [24] starting from
the location of 400 km west, 100 km north of the true origin (49°N, 2°W); (2) the size is
230 km?; (3) the orientation is northeast-by-north (12.5° from the north); (4) the shape is
elliptical (sp = 1.56). Then, we extracted the gridded daily rainfall of this catchment from
a century-long grid-based dataset [25] and did the same analysis for all the catchments
and investigated how these spatial features affect the quantification of AMDR, which is
presented in Figure 4c.
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Figure 4. Topographic and the river network map of the Upper Medway Catchment (a) and its spatial
features (geographic location, size, orientation and shape) detected by the SPER toolbox (b) and
spatial variation of parameters p and ¢ of the GEV distribution for all catchments (c).

The results show that:

In England and Wales, most catchments (approximately 99%) are less than 600 km? in
size and more than half the catchments (61%) are relatively rounded or elliptical in shape.
Those catchments near coastal regions tend to be northeast or northwest while inland—the
boundary of England and Scotland is north-south orientated.

The change in the most frequent level of AMDR and the occurrence probability of the
extremes over catchment sizes is not only affected by the size, i.e., increasing catchment
size can decrease the level of most frequent AMDR because of statistical areal average, but
also their geographic locations, e.g., when increasing size by involving more grids of higher
rainfall can overcompensate the reduction caused by areal averaging. Compared with the
geographic locations and sizes of the catchment, the effect of catchment orientation and
shape is not as significant.

3.2. llustrative Case 2: Pattern Recognition of Daily Rainfall over the Last Century in
Great Britain

Although the spatial and temporal distributions of rainfall are affected by many hy-
drometeorological processes and different topographic conditions [26], they are usually
bounded within specific patterns due to the relatively stable large-scale structure of atmo-
spheric circulation. In this respect, the SPER toolbox becomes useful in helping explore
the spatial variation of these patterns of rainfall distribution. In this case study, we made
use of the GEAR dataset [25] from 1898 to 2010 over Great Britain (GB), and employed the
SPER toolbox to extract the spatial features of daily rainfall in England, Wales and Scotland,
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respectively. Finally, all patterns were classified and the dominating patterns over the last
century of GB were identified.

The rainfall area within a closed boundary is defined and recognised as an indepen-
dent pattern where the SPER toolbox further extracted the rainfall area’s location, size,
orientation and shape, and centre. These features are used to define the similarity among
the patterns upon which feature-based grouping can be carried out. The location of the
pattern (i.e., the geometric centre) was used to present where the rainfall is, e.g., in England,
Wales and Scotland. Then, all recognised patterns are grouped into three groups by the
size of rainfall area, i.e., the rainfall area smaller than 250 km?2, between 250 and 500 km?
and those greater than 500 km?. The number of rainfall patterns in the three countries with
respect to their orientation and shape is counted (see the histogram in Figure 5 where the
colour indicates the number of each category) and the dominating features are identified
as those ROIs with the most frequent occurrence (i.e., the ones with the greatest number
shown in Figure 5). The patterns with the dominating features are regarded as the domi-
nating (leading) patterns of daily rainfall in England, Wales and Scotland. Some typical
patterns with dominating features are chosen as the examples illustrated in Table 1.

Table 1. Specific dominating patterns of daily rainfall in England, Wales, and Scotland catalogued in
three sizes.
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Figure 5. The histograms of the number of daily rainfall patterns in England, Wales and Scotland are
displayed in different colours with respect to sp and w in three sizes (C1, C2 and C3).

In England, the most frequent rainfall patterns of smaller size are mainly oriented
northeast to east with a more elongated shape (1.5 < sp < 2.0). However, for patterns of
larger sizes, the orientation of the elongation changes from mainly northwest-by-west
(w > —75°) to northwest-by-north (w > —45°). This finding may be explained by the
dynamics of the rainfall systems in various sizes. Small-sized rainfall distribution is likely
to be driven by more localised convective storms which tend to have a more regular shape.
Large rainfall systems may come as a result of frontal systems hence having a narrow band
shape. Another very interesting feature is that intensive rainfall usually happens over a
small region. The other two typical patterns of middle size in England are usually located
in the vicinity of the Lake District. Those larger than 500 km? in size usually cover the
whole south of England.

In Wales, the typical pattern in the group smaller than 250 km? in size is more rounded
with a slight north-south orientation, while the patterns in the middle-sized group become
more northeast-by-east-orientated and less rounded usually with a concave in the north-
west direction because of topographic effect. These patterns also have a relatively fixed
location at the northwest of Cardiff near the boundary of Wales and England (location index
is easting 350 km, northing 250 km). For the patterns with a size larger than 500 km?, they
are shown to have a very common “L” shape, which is almost across the north and south
of Wales. It should be noted that the underlying dataset is in fact ‘masked’ by the land
boundary; therefore, patterns of large size are artificially limited by the shape of the land.

In Scotland, the patterns whose size is smaller than 125 km? are also more rounded
and usually located to the north of the Lake District and near the boundary of England
and Scotland. The middle-sized patterns whose orientation is nearly identical to those of
smaller rainfall patterns, having two common locations: one is to the north of Lake District,
while the other is in the north of Highland. The patterns with a size of over 500 km? are
mainly northwest-orientated and normally cover the whole north and west of Highland.

3.3. llustrative Case 3: Tracing Rainfall Area and Spatial Distribution in 24 h in
Guangdong, China

Rainfall is among the basic components of a hydrological circle where many stud-
ies focused on analysing its duration, intensity, and spatiotemporal variation to enhance
the understanding of its interaction with the hydrological process. To monitor a rainfall
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event, traditional approaches often make use of rain gauge measurements to calculate the
rainfall intensity and cumulative amount for characterising the rainfall behaviour [27-29].
However, the variability of rainfall is difficult to detect only by a limited number of rain
gauges and the measurement affected by many factors such as wind and manual error can
inevitably cause uncertainties even errors. In recent decades, with the rapid developments
in environmental monitoring technology, weather radars with their high spatial and tem-
poral resolution have been widely applied to monitor and measure rainfall [30,31]. The
spatial and temporal patterns collected by weather radars are further used to model the
rainfall event and the variability detected from the consecutive series of patterns can be
used for forecasting. Therefore, identifying and tracking rainfall events are essential tasks
for radar-based hydrometeorological applications and how to process it accurately and
automatically is still a big challenge [32]. Nowadays, there are two types of algorithms
for identifying and tracking rainfall patterns [33]: (1) the pixel-based algorithm, which
makes use of pixel information and extracts the motion vectors by searching the maximum
correlation coefficient of rainfall patterns in two consecutive radar images; (2) the object-
based algorithm, which makes use of the properties of the discrete rainfall pattern such as
centroid and area in consecutive radar images. However, both algorithms have drawbacks,
e.g., the pixel-based algorithm can be easily affected by the noise; and the motion estimates
solely based on the maximum correlation coefficient may produce inconsistent classification
results, while the object-based algorithm is not good at estimating motions especially when
the shape of rainfall pattern changes rapidly.

Therefore, a stable algorithm that can be used to classify and quantify the rainfall
pattern is required. As the SPER toolbox can meet such needs, e.g., extracting hydromete-
orological properties associated with rainfall patterns, this case study demonstrates how
it can be used to monitor the rainfall area and trace the rainfall centres. Compared with
most of other object-based algorithms, the SPER toolbox is able to extract not only the
spatial features such as centroid, area, shape, but also the hydrometeorological properties
such as the storm centre that would be more stable to track the motion and less affected
by the rapidly changing shape. The data used in this case study are collected using the
cutting-edge active phased array radar (APRA), which is among the latest developments
in radar rainfall measurements with very high spatial-temporal resolution (e.g., 30 m and
30 s) and is suitable for small to medium, built-up areas. The advantage of APARs lies in
that not only are they able to provide much-refined precipitation distributions, but they
can be potentially used as a real-time driver for probabilistic flood forecasting and early
warning systems. In this case, the radar rainfall observed on 15 April 2019 in Guangzhou,
China is accumulated with resolutions of 5 min/60 metres and the SPER toolbox is used to
detect the rainfall area.

The top left panel of Figure 6a presents the rainfall over a threshold (5 mm) at 00:00
local time, which is the start of radar measurement, and the red dots mark the rainfall
centres (e.g., the core defined in Figure 3b). Then, we use an outer polygon to represent the
area containing all these rainfall centres in the identified rainfall systems and the size and
shape of the polygon can depict how this system is distributed over the study area. The
rest sub-figures of Figure 6a show the changes in rainstorm centres in the rainfall system
over space during the 24 h, where the colour of the areas indicates the elapsing time and a
time step of 3 h is selected. The covering area (i.e., the outer polygon) can demonstrate how
scattered all rainfall cells are, e.g., the larger coverage indicates the rainfall happened more
scattered over space, while the smaller area indicates a more concentrated distribution of
rainfall over space.
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Figure 6. Monitor the rainfall changes in Guangdong in 24 h: the changes in the scattered area of
rainfall centres (a), characteristics of the largest rainfall area (b) and the moving track of four rainfall
systems (c).

Since all rainfall cells are defined as a rainfall area over a predefined threshold within
a closed boundary, they can be easily detected using similar steps of pattern recognition
as discussed in Section 3.2. To monitor the movement of rainfall cells, we focus on those
covering the largest area and present its characteristics such as the areal average rainfall, the
rainfall at its centre, the orientation, and the moving track in Figure 6b, c. More comparison
between the radar images (see Supplementary Materials Figures S2 and S3) and the SPER
toolbox rainfall detection is described in Supplementary Materials Figure S1 and Text S1.
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It can be observed that the areal rainfall in the early nine hours of the day is generally
lower than that of the last nine hours but the highest rainfall in the rainfall centre is in
06:00-07:00 when the areal rainfall is not very high. As for the area orientation, the majority
show an east-west orientation or northwest-by-west or northeast-by-east, i.e., w is near
£90°, and the north—south orientation is rare in the 24 h. In addition, Figure 6¢c shows
the tracking of the largest rainfall cell with colour-coded time stamps. These trajectories
are derived by considering the centre locations of the largest rainfall cells within a short
period, e.g., 30 min, and used for demonstrating the route and direction of the cells in
24 h. There are several rainfall systems detected: the rainfall cell with the largest area in
first system located mainly in the south and moved towards west; in second system, more
rainfall accumulates in the north and moved eastward; then a gap appeared where the
rainfall stopped during the period approximately 9-13 h; the third system moved towards
southeast, and the fourth system located in the north and moved westward.

4. Discussion
4.1. Potential Use as the Frontend of Supporting Al-Based Training

Identification and classification of hydroclimatic patterns are of great value to help
understand the underlying mechanism and improve the forecasting capability, espe-
cially for those based on deep learning methods which have seen strong growth of
applications recently.

For example, in hydroclimatic sciences, some researchers applied machine learning
methods to extract spatiotemporal features and parameterise them to realise forecasts of
climatic variables [34-36]. However, more efforts must be made in training the machine
learning algorithms (e.g., ANN) before the well-trained technique can be applied to identify
and classify the new data/images of hydroclimatic variables. This is also a huge challenge
due to the data provided either by model simulations or via observations in hydrology
are usually spatiotemporal, interconnected, non-linear, non-stationary, chaotic with high
dimensions and large scales [14]. Therefore, it is in no doubt that manual diagnosing
and processing of these data will require huge labour and time, if possible at all, and
one must be aware of the complex properties of the hydroclimatic data/image before
applying supervised method to identify the patterns. The SPER toolbox can address such
needs automatically since its algorithms can detect the homo/heterogeneity of grid-based
environmental data and extract spatial features identified as various indexes which can
be readily used as the criteria for cataloguing. Users are allowed to pick up one or more
indexes of interest to group a similar pattern. Such labelled groups can be further used for
Al-based training.

To demonstrate and test the potential of the SPER toolbox being used to support Al-
based training, we trained a convolution neural network (CNN) to detect the daily rainfall
pattern in GB using four labels generated by the toolbox, i.e., no rainfall (LO), concentric
pattern (L1) where its sp is near 1.0, elongated pattern (L2) and compound pattern (L3)
which has both concentric and elongated types (see Figure 7a). Then, the trained CNN is
tested by a set of 1166 new daily rainfall images of GB. The track of training and validation
results are shown in Figure 7b where the training loss and the validation accuracy vary
dramatically during the first epoch with 680 iterations then gradually converge to 0.17 and
92.5%. The toolbox has been shown to reach a test accuracy of 93.4% in classification, i.e.,
with 1089 out of 1166 new rainfall images having been classified correctly. More details on
building and training CNN are provided in Supplementary Materials Text S2.
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Figure 7. Four labels corresponding to the daily rainfall patterns: no rainfall (LO), concentric pattern
(L1) where its sp is near 1.0, elongated pattern (L2) and compound pattern (L3) which has both
concentric and elongated types (a); and the training and validation loss (blue and black lines) and
validation accuracy (orange lines) of CNN (b).

4.2. Limitations and Recommendations to Further Work

The SPER toolbox is designed mainly for extracting patterns from map projected
data, i.e., with linear spatial coordinates, usually at local or regional scale with high
resolution. The toolbox has been well tested by the three illustrative cases which show
a good performance in dealing with these types of data and recognising the patterns
effectively. Although the current version of the toolbox cannot fully address the inherent
complexities of the hydrometeorological data that are sometimes chaotic, multilayer or lack
enough detail and can cause complicated problems, it provides a useful tool to detect the
homogeneous or heterogeneous pattern and quantify the similarity by parameterising its
spatial and physical features. Additionally, being an unsupervised method, it requires less
labour or time compared with training a supervised method such as CNN.
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Therefore, further work is recommended to make the toolbox more robust and com-
patible with large-scale dataset at various, often low resolutions, such as longitude-latitude
data at global scale. Downscaling, down-sampling method, and function to transfer data
format may need to be integrated. Additionally, further work can allow for input data
being non-uniform and within non-perpendicular coordinates—for example, the longitude
and latitude of the grid spacing can be different and the direction is not limited in north—
south and east-west, such as the Level 2 satellite swath of cross-track scan and along-track
scan [37]. Further, the shape of the pattern can be described in more ways than using only
a single shape index, e.g., the indexes of irregularity, spikiness and spiral can be involved
to indicate how much variance there is in the angular and vertex and whether there is an
inner-helical shape. Instead of using bounding box to define the elongation of the shape,
the method called “best-fit ellipse” [38] can generate an outer ellipse regardless of the
impact of the outliers, which can be used in further work.

5. Conclusions

In this paper, we present the development of a new open-source toolbox for spatial
pattern extraction and recognition (SPER) for automatic extracting and classifying hydrocli-
matic patterns by both their spatial features and hydroclimatic features. The main aims of
designing the toolbox are (1) to develop an efficient algorithm for automatically identifying
and classifying the spatial features that are linked to hydroclimatic extremes; (2) to be used
as a frontend that supports Al-based training in tracking and forecasting extremes; and
(3) to support short-term nowcasting of extreme rainfall.

The applications of the SPER toolbox are tested with several applications in various
areas and it can be concluded that the toolbox is able (1) to provide an effective and accurate
quantification of the spatial distribution of hydroclimatic variables encompassed by natural
or political boundaries; (2) to recognise the spatial patterns and features arising from physi-
cal and dynamical processes associated with hydroclimatic variables and further tracking
and predicting their temporal evolution; (3) to generate typical (leading) patterns from large
datasets and further automatic label/catalogue the datasets to support artificial intelligence
and machine learning technique by incorporating a supervised and non-supervised classifi-
cation of the events. Further study can be recommended to (1) improve the compatibility
of the toolbox to more different formats of input; and (2) to further applied in the analysis
of rainfall features with climate change (e.g., using satellite images).

The source code of the toolbox as well as the example case given above are available
on GitHub (https:/ /github.com/wanghan924 /SPER-toolbox, accessed on 4 August 2022).
The source code is provided subject to a GPL V3 license. Use/fork of the toolbox is subject
to proper acknowledgement as stated on the Webpage of the toolbox.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14153823/s1, Text S1: Processing radar rainfall. Text S2: Gen-
erating the training sets and testing the deep learning study. Figure S1: Demonstration of the step
processing radar images of 24 h rainfall in Guangdong in the morning (a) and afternoon (b). Figure S2:
Animated radar images (threshold 5 mm). Figure S3: Animated raw radar images (without setting
threshold). References [39-41] are cited in the Supplementary Materials.
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