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Abstract: The main feature of grassland degradation is the change in the vegetation community
structure. Hyperspectral-based grassland community identification is the basis and a prerequisite
for large-area high-precision grassland degradation monitoring and management. To obtain the
distribution pattern of grassland communities in Xilinhot, Inner Mongolia Autonomous Region,
China, we propose a systematic classification method (SCM) for hyperspectral grassland community
identification using China’s ZiYuan 1-02D (ZY1-02D) satellite. First, the sample label data were
selected from the field-collected samples, vegetation map data, and function zoning data for the
Nature Reserve. Second, the spatial features of the images were extracted using extended morpho-
logical profiles (EMPs) based on the reduced dimensionality of principal component analysis (PCA).
Then, they were input into the random forest (RF) classifier to obtain the preclassification results for
grassland communities. Finally, to reduce the influence of salt-and-pepper noise, the label similarity
probability filter (LSPF) method was used for postclassification processing, and the RF was again
used to obtain the final classification results. The results showed that, compared with the other seven
(e.g., SVM, RF, 3D-CNN) methods, the SCM obtained the optimal classification results with an overall
classification accuracy (OCA) of 94.56%. In addition, the mapping results of the SCM showed its
ability to accurately identify various ground objects in large-scale grassland community scenes.

Keywords: grassland communities; hyperspectral remote sensing; ZY1-02D satellite; systematic
classification method

1. Introduction

Grasslands are one of the most widely distributed vegetation types in the world.
They cover nearly 25% of the land area and are an important component of terrestrial
ecosystems [1,2]. In addition, they provide an important food supply for ruminant milk and
meat production, and store approximately 20% of the global carbon stock, thus playing a key
role in balancing greenhouse gas concentrations [2–4]. China is one of the richest countries
in the world in terms of grass resources, with a total grassland area of approximately
400 million ha, accounting for approximately 40% of the country’s total land area [2].
Grassland vegetation dominates China’s green ecological barrier from the northeastern
plains through the Inner Mongolia Plateau and Loess Plateau to the Xinjiang Mountains
and the Qinghai-Tibet Plateau [5]. However, due to the effects of climate change (e.g.,
warming) and human activities (e.g., population growth and overgrazing), grassland areas
worldwide have been degraded. The result leads to a decrease in water storage capacity
and severe soil erosion, further leading to natural disasters such as rodent infestation and
dust storms and floods, which directly affect sustainable socioeconomic development [6,7].
As a result, grassland degradation monitoring is particularly important [8,9]. The basis
and prerequisite of grassland degradation monitoring is the monitoring of grassland

Remote Sens. 2022, 14, 3751. https://doi.org/10.3390/rs14153751 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153751
https://doi.org/10.3390/rs14153751
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0536-8176
https://doi.org/10.3390/rs14153751
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153751?type=check_update&version=1


Remote Sens. 2022, 14, 3751 2 of 18

communities, and monitoring should include the reduction in grassland cover, the change
in grassland community structure, and changes in species. Therefore, the monitoring of
grassland communities and identifying the degradation indicator species in grassland
communities are important links between grassland degradation process monitoring and
grassland ecological restoration management.

A biological community is a collection of various biological populations living in a
specific area or habitat [10]. It consists of certain species, has a certain appearance and
structure, has a certain distribution range, and has other basic characteristics. Among them,
species composition of the community is the most important factor used to determine
the nature of the community and is the basic characteristic used to identify different
community types [11,12]. Traditional grassland community monitoring mainly relies on
manual fieldwork, and the results mainly depend on the professional level and practical
experience of the detectors. This method results in low accuracy, and it is extremely
difficult to obtain regional data in real time and on a large scale due to the extremely wide
distribution of grassland communities. Additionally, this method consumes many human
and material resources, thus restricting the effective promotion of grassland ecological
restoration [5,13,14]. With the development of science and technology, the monitoring of
grasslands is gradually improving, with trends indicating higher efficiency, higher accuracy,
and larger spatial scales [15].

After nearly 60 years of development, remote sensing technology is widely used in the
fields of earth resources, environmental science, and disaster monitoring, as remote sensing data
acquired for large spatial scales compensate for the spatial limitations of traditional ground-
based survey methods [16–19]. The sensors carried in satellites can acquire visible near-infrared,
shortwave infrared, microwave, and other electromagnetic wavelength bands, and remote
sensing images such as panchromatic, multispectral [20,21], hyperspectral [22], and synthetic
aperture radar (SAR) have been developed [23,24]. Panchromatic and multispectral images
contain only one or more wavebands with information expressiveness; additionally, SAR
images require complex preprocessing steps and considerable specialized basic knowledge. In
contrast, hyperspectral images (HSIs), as the current forefront in the field of remote sensing
technology, contain rich information regarding space, radiation, and spectra [25,26]. In addition,
due to the high similarity between different grassland communities, it is common for the same
species to have different spectra and for different species to have the same spectrum, which
makes identification difficult [27]. Therefore, the use of HSIs has become the first choice for
high-precision ground object identification and classification research.

Supervised classification is the process of using the image elements of the identified
category to identify the image elements of other categories [28,29]. Before classification, we
have a priori knowledge of the feature classes of certain sample areas on the image based
on visual interpretation and field surveys. Then, we select certain training samples and
train the model using the judgment function to classify each image element to its most
similar sample class according to different rules to complete the classification of the whole
image, e.g., support vector machine (SVM) [30], random forest (RF) [21], and spectral angle
mapper (SAM) [31]. However, most of these methods focus only on spectral information,
making it difficult to accurately classify complex objects. In recent years, many scholars
have successively proposed a variety of classification methods based on spatial-spectral
feature extraction. These methods are dedicated to extracting spatial-spectral features with
high recognition rates to further improve the classification accuracy. Camps-Valls et al. [32]
combined spatial and spectral information to construct a family of composite kernels and
presented a classification framework of support vector machine with composite kernels
(SVM-CK). Li et al. [33] constructed a training sample-based collaborative dictionary and
incorporated contextual regression pixels to build a collaborative representation-based
classification (CRC) process. Gao et al. [34] presented a multiscale conservative smooth-
ing algorithm to reduce noise and extract the spatial structure from coarse levels to fine
levels and then implemented the adaptive sparse representation classifier on integrated
spatial-spectral characteristics of the HSIs. Moreover, spatial information can be used to
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regularize previously obtained classification maps from regular classifiers. For example,
Cao et al. [35] implemented the cascaded Markov random field (MRF) to concatenate the
contextual information with the predicted probability of the SVM and achieved the final
promoted classification map. Kang et al. [36]. used the guiding images that reflect the
homogeneity disruption to improve the edge-preserving performance of classification maps
from a preliminary SVM classifier. Deep learning surpasses the accuracy of traditional
classification methods due to its powerful feature extraction capabilities and end-to-end
training approach. Xu et al. [37] proposed a deep feature fusion network structure based
on residual learning, and this structure can be used to obtain better classification results.
In addition, the spectral-spatial fully convolutional network conditional random field
(SSFCN-CRF) [38] is a pixel-based classification method that uses two weighting factors
to distinguish the importance of spatial-spectral features. In addition, the attention-based
adaptive spectral–spatial kernel improved residual network (A2S2K-ResNet) [39] is an adap-
tive spatial-spectral kernel improved residual network based on the attention mechanism,
which can capture spatial-spectral characteristics by combining the attention mechanism.

Although these feature extraction-based classification methods have improved clas-
sification accuracy to some extent, there are still some problems that must be addressed.
Feature extraction methods based on deep learning generally require a large number of sam-
ples to train the deep network, while the number of training samples in the classification
process of HSIs is generally small. This method fundamentally limits the classification ef-
fect, makes interpretability more difficult, and requires the use of more human and material
resources to tune the parameters, thus limiting its application in practical production [40].
In addition, the grassland community has a complex structure and low vegetation, and the
model based on manual feature extraction does not fully consider the systematic approach
of classification, including feature extraction before classification and processing after
classification, and this lack of consideration limits the classification accuracy to some extent.

To solve the above problems, this paper proposes a systematic classification method
(SCM) for grassland communities, including sample selection, preclassification processing,
feature-based classification, and postclassification processing. First, based on the field
collected samples, updated vegetation map (1:1,000,000) data (hereafter referred to as
vegetation map data) and function zoning data for the Nature Reserve (hereafter referred
to as function zoning data), some pixels within the study area were selected as the sample
label data. Second, the features of the HSIs of grassland communities were obtained using
extended morphological profiles (EMPs) [41]. Then, the extracted features were combined
with the sample label data, and preclassification results were obtained using random
forest (RF). Finally, the classification results were postprocessed using the label similarity
probability filter (LSPF) method, and further classification was performed using RF to
reduce the influence of salt-and-pepper noise on the classification results. This method
can effectively remedy the problems of poor classification performance and low accuracy
of traditional classification methods and provides a complete classification process for
grassland community identification.

The rest of this paper is organized as follows. Section 2 presents the experimental
data, study area, and auxiliary data for grassland community classification. A systematic
classification method for grassland community division is proposed in Section 3. Section 4
evaluates and discusses the performance of the proposed method on hyperspectral datasets.
Section 5 is the summary.

2. Materials
2.1. Experimental Data
2.1.1. ZY1-02D Hyperspectral Data and Preprocessing

The ZiYuan 1-02D (ZY1-02D) satellite (5-m optical satellite) is a medium-resolution
earth observation satellite launched on 12 September 2019, to serve broadband observation
and quantitative remote sensing missions [28,42]. The satellite is mainly equipped with
two payloads: a visible and near-infrared camera (VNIC) and an advanced hyperspectral
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imager (AHSI). The AHSI, ranging from 0.4 to 2.5 µm, has 166 spectral bands, including
76 spectral bands in visible near-infrared (VNIR) and 90 spectral bands in shortwave
infrared (SWIR) [43,44]. The satellite orbits in a sun-synchronous orbit of 778 km, and
the revisiting cycle can be as short as three days. Table 1 lists the information of the
AHSI sensor in ZY1-02D. The HSIs from ZY1-02D can provide data for large-scale natural
resource surveys and monitoring.

Table 1. ZY1-02D satellite payloads information.

Satellite Payloads ZY-1-02D

Launch Country China
Launch Time 12 September 2019
Number of Bands 76 (VNIR), 90 (SWIR)
Spectral Range (nm) 400–2500
Spectral Resolution (nm) 10 (VNIR), 20 (SWIR)
Spatial Resolution (m) 30
Swath Width (km) 60

2.1.2. Hyperspectral Data Preprocessing

The acquired raw data are L1-A products, and some necessary preprocessing op-
erations, including atmospheric correction, orthorectification correction, bad band re-
moval, and image mosaicking, are required before classification. First, atmospheric cor-
rection was performed by Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-
cubes (FLAASH) atmospheric correction using atmospheric parameters obtained from
the header file and MODTRAN5 radiative transfer model. Second, atmospheric correc-
tion was performed using the Global Digital Elevation Model Version 2 (GDEM 002)
(https://search.earthdata.nasa.gov/search/, accessed on 20 September 2021) and rational
polynomial coefficient (RPC) models for orthorectification correction. Third, 46 bands
affected by UV and water vapor were removed, including 1–3, 63–67, 83–86, 96–107,
122–137, and 161–166. Finally, the acquired multiview images were mosaicked to cover the
study area.

2.2. Study Area

The study area is located in Xilinhot Grassland, Xilinhot city, Inner Mongolia Au-
tonomous Region, China, with geographic coordinates between 115◦16′37.98′′–116◦52′32.21′′E
and 43◦18′52.78′′–44◦29′48.53′′N, as shown in Figure 1. A total of four ZY1-02D HSIs were
selected, and two views were acquired, with one on 21 May 2021, and one on 13 August 2021,
all with cloudiness below 10%. The study area is located in the middle of the Inner Mongolia
Plateau, with high topography in the south and low topography in the north, i.e., low hills in
the south and gentle undulating plains in the north. The average elevation is 988.5 m, which
is a typical temperate semiarid continental climate with an average annual temperature of
1.3–4.8 ◦C and annual precipitation of 150–400 mm [45,46]. The study area is the main area
of Xilin Gol National Nature Reserve and is rich in flora and fauna, with a complete range
of grassland types, including typical grasslands with dominant species such as Stipa grandis
P.A. Smirn., arid grasslands with dominant species such as Cleistogenes squarrosa (Trin.) Keng,
and meadow grasslands with dominant species such as Stipa krylovii roshev and Achnatherum
splendens (Trin.) Nevski. Thus, the region constitutes a complete ecological series of meadow
grasslands-typical grasslands-arid grasslands (ecological variants of typical grasslands) in the
Xilin River basin, providing an ideal experimental site for the study and dynamic monitoring
of grassland communities in temperate eastern Asia [45].

https://search.earthdata.nasa.gov/search/
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2.3. Auxiliary Data
2.3.1. Field Survey Data

A field vegetation survey was conducted in July and August 2021, as shown in
Figure 2a. The survey area was mainly the study area covered by the images. The survey
was conducted by first circling a 30 m × 30 m area, the size of which was the same as the
spatial resolution of ZY1-02D; then, five 1 m × 1 m cells were randomly arranged in the
area, and the dominant species in the cells and the corresponding spectral information
were obtained, as shown in Figure 2b. A total of 125 sampling points were obtained in the
study area, and the distribution of field survey data is shown in the green cross in Figure 1.

2.3.2. Updated Vegetation Map of China (1:1,000,000)

The collection of China’s last national vegetation map data began in the 1980s and
took 20 years to complete; however, its vegetation distribution has changed dramatically
due to climate change and human activities [47]. Therefore, the vegetation map of China
urgently needs to be updated to improve our understanding and management of terres-
trial ecosystems in China. This vegetation map update utilized “crowdsourcing-change
detection classification-expert knowledge”, which can better reflect the current vegeta-
tion distribution in China and help vegetation management, vegetation restoration, and
biodiversity conservation [48].

2.3.3. Functional Zoning Data of the Nature Reserves

The data included the natural concentrated distribution area of representative natural
ecosystems and information on rare and endangered wildlife species, including the core
area, buffer area, and experimental area [49]. The core area is the core area of ecosystem
protection, into which no unit or individual can enter, and scientific research activities are
not allowed permitted. The buffer area of a certain area can be designated on the periphery
of the core area, and in this area only scientific research and observation activities are
permitted. The periphery of the buffer area is designated as the experimental area, and
scientific experiments, teaching practice, visits, tourism, and activities such as breeding
rare and endangered wildlife are permitted [50].
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3. Methods
3.1. Overview

In this section, we propose an SCM for hyperspectral grassland communities. Figure 3
illustrates the flow chart of the proposed method, which consists of four main parts. The
first part was sample acquisition, which included field-collected samples, vegetation map
data, and function zoning data. Some pixels within the study area were selected as sample
label data, and the correct selection of sample labels directly led to the accuracy of the final
grassland community classification. Second, preclassification processing using EMPs to
obtain HSIs rich in spatial feature information is capable of distinguishing structural objects
or substances. Following classification, the spatial features of grassland communities
and the sample label data were input into the RF classifier for training, and the trained
model was used to test the images to obtain the preclassification results of the grassland
communities. Finally, postclassification processing was conducted, because RF is based on
pixel features for classification. This method generates salt-and-pepper noise, which leads
to inaccurate grassland classification, so the preclassification results were processed using
the LSPF and were input into the RF classifier to obtain the final classification results.
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3.2. Sample Label Data Acquisition

The selection of sample label data determines the accuracy of grassland community
delineation to a certain extent. Therefore, to ensure the reasonableness of sample selection,
this study combined the field-collected samples, vegetation map data, function zoning data,
and ZY1-02D hyperspectral data to construct the sample label data.

Field surveys were conducted in July and August when the grassland vegetation
was growing abundantly, and the latitude and longitude coordinates of the survey points
and the dominant vegetation type of the grassland were recorded. Then, four ZY1-02D
hyperspectral images of Xilinhot, Inner Mongolia Autonomous Region, with a cloudiness
of less than 10% and an imaging time in July and August, were selected. Through field
investigation, it was found that in a certain area near the 30 m × 30 m sample plot, the
vegetation type was basically the same as that of the sample plot. Therefore, a buffer area
of 200 m was formed around the actual survey points, and the pixels in the buffer zone
were used as sample label data.

The vegetation map data for 2020 are available to the public and contain the geospatial
distribution of more than 800 group systems and subgroup systems of 12 vegetation type
groups, 55 vegetation types, and approximately 2000 dominant species of communities
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in China. Vegetation map data, function zoning data, and image data were overlaid in
ArcGIS, and the communities within the core and buffer zones were considered unchanged
over the years; however, the communities within the experimental area required sample
label selection in conjunction with the current imagery. Through the above process, a total
of 13 grassland community types were selected, and details of the sample data are shown
in Table 2.

Table 2. The sample information of the Xilinhot grasslands.

Class Ground Object Training Testing

1 Stipa grandis P.A. Smirn. (stg) 980 8824
2 Leymus chinensis (clg) 63 563
3 Stipa krylovii roshev (skr) 41 373
4 Achnatherum splendens (Trin.) Nevski (acs) 372 3348
5 Pioneer plant (pip) 7 64
6 Swampy meadow (swm) 20 182
7 Artemisia desertorum Spreng. (ard) 122 1094
8 Caragana liouana (cal) 143 1287
9 Ulmus pumila (ulp) 34 302
10 Cleistogenes squarrosa (Trin.) Keng (cls) 19 167
11 Broadleaved herb (brh) 86 769
12 Crop 8 76
13 Building (bui) 53 481

Total 1948 17,530

3.3. Extracting Spatial Features of the Xilinhot Grassland Using EMPs

The original HSI data are X ∈ Rm×n×d, where m× n and d are the spatial size and the
number of bands, respectively. The HSI consists of d bands, which carry information useful
for grassland community classification but often cause information redundancy and an
increase in computational effort. Therefore, to reduce the computational effort and spectral
dimension, principal component analysis (PCA) [51] was used to process the HSI data
from the d-dimension to the p-dimension and to maintain the spatial dimension. Thus,
the dimensionality-reduced HSI data are represented as Xpca ∈ Rm×n×p, where p is the
spectral band after PCA.

The spatial features are extracted for Xpca using EMP, which mainly includes open
and closed transformations. For any pixel x in Xpca to perform the first erosion and then
expansion open transform, the operation is defined as follows:

MPγ = γk(x), ∀k ∈ [0, l] (1)

where MPγ denotes the image after open transformation; γk(x) denotes the open operation
performed on image x; and l is the number of open operations. Then, an expansion was
performed followed by an erosion closure transformation on pixel x. The operation is
defined as follows:

MPΦ = Φk(x), ∀k ∈ [0, v] (2)

where MPΦ denotes the closed transformed image; Φk(x) denotes the closed operation on
image x; v is the number of closed operations; and k in Equations (1) and (2) is the size
of the structure element, and when k = 0, it means that no operation is performed on the
original image.

Based on the morphological features after the “open transform” and “closed trans-
form”, the morphological profile was constructed by selecting the corresponding spectral
band, and the morphological profile of pixel x was p× (2l + 1), i.e., yspa = EMP:

EMP = {MPγ, x, MPΦ} (3)
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The EMP feature extraction method can be used to obtain rich spatial information and
to distinguish between structural objects or substances.

3.4. Classification Postprocessing Using LSPF

The spatial features yspa and sample label data obtained from preclassification process-
ing were input to the RF classifier for training, and the preclassification results of grassland
communities were obtained by testing the images using the model obtained from the
training. Since RF is based on pixel features for classification, it generates salt-and-pepper
noise, which leads to inaccurate grassland classification, so it was necessary to perform a
postclassification processing operation on the preclassification results. The classification
results were further postclassified using the LSPF method to estimate the label probabilities
of all pixels in all categories using the spatial correlation with surrounding pixels, and
then the probability data and sample label data were input into the classifier to refine
the preobtained classification maps and reduce the effect of salt-and-pepper noise on the
classification results.

First, the initial classification result map was converted into a series of binary label
maps according to whether the pixel belonged to category c. If it belonged to the category,
it was set to 1; otherwise, it was 0. For example, if there were 10 categories of feature types
in the image scene, the preclassification result map was divided into 10 layers of binary
label maps. Second, based on the simplicity and validity of the two-dimensional Gaussian
distribution in the real world, the label similarity probability (LSP) was modeled in a local
spatial window using the exponential function:

g(a, b) = e−(a2+b2)/2σ2
(4)

where g(a, b) is the LSP between the center pixel (value 1) and its neighboring pixels in the
same spatial window, e is the natural constant, and σ is the standard deviation.

Further within each spatial window, the LSPF for each class c can be expressed
as follows:

fc(i, j) = ∑ Ic
ij �Gij (5)

where fc(i, j) is the cumulative probability of the central pixel (i, j) category c, � is the
Hadamard product, Gij = [g(a, b)] is the LSP matrix in the (i, j)_th space window, and
Ic

ij = [Ic(a, b)] is the Boolean matrix in the preclassified result graph.
Finally, all classes were traversed, and the cumulative probability data of all pixels

were obtained as Fc(i, j) = [ fc(i, j)]Cc=1, which can be expressed as a 1× C vector. Then, the
cumulative probability and sample label data of all pixels were input to the RF classifier,
and the trained model was used to test Fc(i, j) to obtain the classification map of the
hyperspectral data of the grassland community.

4. Experimental Results and Discussion
4.1. Experimental Setup

In this paper, all experiments were run on a Windows 10 computer with an Intel
Core i7-10700 Processor (2.9 GHz), 128 GB of RAM, and an NVIDIA GeForce RTX 3080
Tigraphics card (10 GB of RAM). The training samples of each class were selected randomly
based on the number of samples, the percentage of training samples was set to 10, and the
remaining samples were used for testing. The EMP parameters were mainly the structural
element (SE) and the size of the structural element (k). Referring to the literature [52,53],
the SE of the EMP was uniformly chosen as ‘disk’, and the size of the SE was a series
of increasing parameters set as k = [1,3,5,7,9]. In addition, to avoid errors, each method
was repeated five times. The overall classification accuracy (OCA), average classification
accuracy (ACA), kappa coefficient (KC), and training time t were used in the experiments
to evaluate the classification performance of the method.
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4.2. Classification Accuracy and Mapping Results

In this section, to verify the effectiveness of the proposed method, seven methods
were used for comparison. The traditional classification methods include RF and SVM,
where the parameter tree of RF was set to 400, and SVM used the radial basis function (RBF)
kernel function. RF-LSPF is the RF classification of the original HSI and LSPF classification
postprocessing, and EMP-RF is the result of extracting EMP features from HSI data and
is based on RF classification. Deep learning methods include neural networks (NN), 3D
fully convolutional networks (3D-FCN) [54], and 3D convolutional neural networks (3D-
CNN) [55]. NN is trained with three fully connected layers and classified, 3D-FCN applies
multiple 3D local convolution filters of different sizes to jointly utilize the spatial-spectral
features of HSIs for classification, and 3D-CNN can extract deep spectral-spatial combined
features from HSI data without relying on any preprocessing or postprocessing.

Table 3 shows that the SCM method in this paper achieved the best results in terms of
classification accuracy. Its OCA reached 94.56%, which was 26.93% and 15.90% better than
that of SVM and RF, respectively. The KC also achieved the highest accuracy of 92.03%,
which was 37.38%, 47.67%, and 31.82% better than that of the deep learning methods NN,
3D-FCN, and 3D-CNN, respectively, due to the existence of spatial heterogeneity in the
grassland causing the deep learning methods to perform poorly. The OCA of RF-LSPF
was improved by 7.00% compared with that of RF, which indicated that postclassification
processing was a very necessary step, as seen from the comparison of the SCM and EMP-RF
methods. The KC of EMP-RF was improved by 21.51% compared with that of RF, which
indicated that preclassification processing had a great contribution to the classification
and could even surpass the postclassification processing operation. In this paper, the
SCM method obtained the highest classification accuracy in all 12 grassland feature types,
among which Stipa grandis P.A. Smirn., Artemisia desertorum Spreng., Caragana liouana, and
Broadleaved herbs had an accuracy of more than 95%, which well reflects the distribution
range of various grassland communities, while other methods were more prone to misclas-
sification. In terms of training time, the SCM time was more moderate and lower than that
of the deep learning methods, thus meeting the needs of business-oriented production.

Table 3. Classification accuracy (%) of different methods for the Xilinhot Grassland.

Class SVM RF NN 3D-FCN 3D-CNN RF-LSPF EMP-RF SCM

stg 77.43 93.46 80.42 75.74 82.56 93.30 98.69 99.12

clg 6.80 15.10 1.00 2.09 6.23 36.31 34.99 54.53

skr 16.63 39.20 52.61 40.39 46.29 54.96 81.77 88.47

acs 34.24 64.02 57.13 39.97 59.07 81.05 90.71 92.59

pip 14.29 31.88 0 0 27.08 37.81 50.00 64.06

swm 43.35 63.96 53.84 41.65 59.45 72.20 75.82 87.36

ard 83.91 88.28 80.04 76.65 83.08 93.20 95.80 97.44

cal 80.08 81.94 75.55 68.47 83.21 89.26 97.44 97.75

ulp 14.53 26.09 24.51 13.85 34.08 54.90 62.58 72.85

cls 0 18.68 6.01 7.79 7.58 45.75 51.50 69.46

brh 3.10 67.44 24.63 23.65 56.95 83.38 94.02 95.71

crop 0 19.21 0 0 0 37.37 57.89 43.42

bul 80.92 76.38 77.45 66.28 83.28 88.27 93.35 96.67

ACA 35.02 52.74 41.01 35.12 48.37 66.75 75.73 81.49

KC 45.11 67.35 54.65 44.36 60.21 78.88 88.86 92.03
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Table 3. Cont.

Class SVM RF NN 3D-FCN 3D-CNN RF-LSPF EMP-RF SCM

OCA 67.63 78.66 71.47 64.71 74.31 85.66 92.47 94.56

Train_time(/s) 15.02 11.20 254.26 548.39 512.05 106.78 107.69 200.81

Furthermore, the mapping results of the Xilinhot grassland communities obtained by
different methods is shown in Figure 4. The distribution range of each community is easily
seen. Stipa grandis P.A. Smirn. and Achnatherum splendens (Trin.) Nevski occupied the main
distribution area, and these are the main forage areas in the grassland. Degraded species
such as Caragana liouana were mainly distributed in the southwestern part of Xilinhot,
which is the key area for grassland degradation management. Through the above analysis,
the SCM method proposed in this paper can be well applied to large-scale grassland
community identification and can provide technical support for decision-makers.
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Figure 4. Classification maps obtained using different methods for the Xilinhot Grassland with the
corresponding OCA. (a–h) represent the classification results of SVM, RF, NN, 3D-FCN, 3D-CNN,
RF-LSPF, EMP-RF, SCM methods, respectively. Areas A and B will be described in detail in Section 4.3.
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4.3. Typical Area Analysis

Compared with UAV remote sensing and ground remote sensing, satellite remote
sensing has the ability of large-scale observation [56,57]. The grassland community veg-
etation has the characteristics of wide distribution and large cross-regional distribution.
Therefore, the application of satellite remote sensing has greater application potential. In
this study, satellite hyperspectral remote sensing was used to classify and map grassland
communities in Xilinhot Grassland. In order to express the distribution pattern of grassland
communities in more detail, areas A and B in Figure 4 were analyzed separately.

Area A in Figure 5 is located directly east of Xilinhot City, its main grassland community
type is Stipa grandis P.A. Smirn., and the rest of the dominant species are Stipa krylovii roshev,
Achnatherum splendens (Trin.) Nevski, crop, etc. Stipa grandis P.A. Smirn. is a perennial dense
clump herb that grows in temperate and semi-arid climate zones. Its basal leaves are abundant
and can be preserved relatively intact until winter and spring, which can provide a large amount
of forage for livestock. Figure 6(a1,a2) are field investigation photos of Stipa grandis P.A. Smirn.,
and (b1) and (b2) are field investigation photos of Achnatherum splendens (Trin.) Nevski. The
SCM proposed in this paper can clearly map the distribution range of land object types such as
Stipa grandis P.A. Smirn. Combined with Table 3, it is obvious that both preclassification and
postclassification processing can be of great help for improving the mapping results.

Area B in Figure 7 is located in the southeast of Xilinhot City. Similar to Area A,
Stipa grandis P.A. Smirn. is also dominant. Compared with the SVM, RF, NN, and 3D-FCN
methods, SCM can map the distribution range of various grassland communities in more
detail, which also proves that preclassification processing can improve the model training
ability. Compared with the EMP-RF method, the LSPF method can reduce the influence of
salt-and-pepper noise on the mapping results, indicating that postclassification processing
can further improve the classification accuracy.

4.4. Disadvantages of Hyperspectral Images

HSIs show considerable potential in data mining, but great problems also exist.
(1) Given a limited number of training samples, when the feature dimension increases

to a certain number, the classification accuracy may decrease as the feature dimension
increases: a phenomenon known as the “Hughes” phenomenon. This phenomenon renders
the HSIs unable to accurately identify the target properties, and satisfactory results are
difficult to obtain. Two reasons exist for this phenomenon: (1) ground truth label samples
with sufficient and representative distribution in the statistical sense are very difficult to
obtain; (2) the training data and the test data are usually assumed to obey the same data
distribution, but the ground object scene is complex, and the real distribution of the data
space is difficult to accurately describe with a limited number of training samples.

(2) The atlas integration of HSIs provides strong support for the joint analysis of
multisource features, but some difficulties also exist in the fusion of multisource informa-
tion: (1) if texture features and spectral features are used simultaneously, the resulting
feature space will be larger, and the “Hughes” phenomenon will be more prominent;
(2) when spatial information is introduced, more prior knowledge needs to be introduced
to be able to more accurately interpret the target, such as information on the shape and
neighbor correlation.

(3) The heterogeneity of the material itself, image resolution, mixed pixels, noise,
and other factors may lead to changes in the spectrum, and such changes may cause two
adverse effects: (1) the spectrum of similar ground objects has changed, including the
difference in spectral amplitude and spectral angle, which can easily lead to omissions and
errors in the interpretation process; (2) after the spectra of different targets are perturbed,
the originally inconspicuous spectral differences are submerged.

(4) Usually, remote sensing images, especially HSIs, have a large amount of data. The
large amount of data occupied by hundreds or thousands of spectral images increases
the resource consumption of computing and storage and reduces the efficiency of HSI
interpretation.
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Figure 7. Typical taxonomic region B of grassland communities in Xilinhot. (a–h) represent the classi-
fication results of SVM, RF, NN, 3D-FCN, 3D-CNN, RF-LSPF, EMP-RF, SCM methods, respectively.

5. Conclusions

In this paper, we explored the distribution pattern of grassland communities in Xil-
inhot using China ZY1-02D HSI satellite data and proposed a systematic hyperspectral
grassland community classification method for this purpose. The method includes sam-
ple label data acquisition, preclassification processing, classification model training, and
postclassification processing, and the importance of preclassification processing and post-
classification processing on the results was verified through experiments. Compared with
the seven methods, SCM had the highest classification accuracy (with OCA = 94.56%), a
more moderate computation time (with train_time = 200.81 s), and a greater advantage
in mapping. In addition, we analyzed typical community distributions, which will help
decision-makers develop appropriate responses to specific needs. In the future, we will
consider a combination of hyperspectral and high spatial resolution data for grassland
community identification to further improve the classification performance.
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