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Abstract: Rapidly developing remote sensing techniques are shedding new light on large-scale crop
growth status monitoring, especially in recent applications of unmanned aerial vehicles (UAVs).
Many inversion models have been built to estimate crop growth variables. However, the present
methods focused on building models for each single crop stage, and the features generally used in
the models are vegetation indices (VI) or joint VI with data derived from UAV-based sensors (e.g.,
texture, RGB color information, or canopy height). It is obvious these models are either limited to
a single stage or have an unstable performance across stages. To address these issues, this study
selected four key wheat growth parameters for inversion: above-ground biomass (AGB), plant
nitrogen accumulation (PNA) and concentration (PNC), and the nitrogen nutrition index (NNI). Crop
data and multispectral data were acquired in five wheat growth stages. Then, the band reflectance
and VI were obtained from multispectral data, along with the five stages that were recorded as
phenology indicators (PIs) according to the stage of Zadok’s scale. These three types of data formed
six combinations (C1–C6): C1 used all of the band reflectances, C2 used all VIs, C3 used bands and
VIs, C4 used bands and PIs, C5 used VIs and PIs, and C6 used bands, Vis, and PIs. Some of the
combinations were integrated with PIs to verify if PIs can improve the model accuracy. Random forest
(RF) was used to build models with combinations of different parameters and evaluate the feature
importance. The results showed that all models of different combinations have good performance
in the modeling of crop parameters, such as R2 from 0.6 to 0.79 and NRMSE from 10.51 to 15.83%.
Then, the model was optimized to understand the importance of PIs. The results showed that the
combinations that integrated PIs showed better estimations and the potential of using PIs to minimize
features while still achieving good predictions. Finally, the varied model results were evaluated to
analyze their performances in different stages or fertilizer treatments. The results showed the models
have good performances at different stages or treatments (R2 > 0.6). This paper provides a reference
for monitoring and estimating wheat growth parameters based on UAV multispectral imagery and
phenology information.

Keywords: wheat growth variable; phenology; machine learning; random forest; UAV multispectral imagery

1. Introduction

Winter wheat is one of the most widely cultivated and fertilized food crops, and
it is used in many products for human consumption [1]. Wheat growth monitoring is a
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crucial part of achieving a reasonable yield, and field management is the following step after
analyzing the crop growth situation. Among different kinds of field management, fertilizing
has been recognized as the most important. Proper fertilizing is the key strategy to secure
optimal crop yield. Nitrogen-based fertilizers provide vast N for crop growth. Nitrogen
(N) takes part in multiple metabolisms and structural components, which makes N one of
the most important elements in both crop and environmental sciences. It is an essential
element in both wheat crop growth and yield formation [2]. While N deficiency makes it
difficult to achieve the target yield, overfertilization is a common mistake in the unilateral
pursuit of high yield. Excessive N applications lead to delayed maturity, which causes
reduced yield, and adverse environmental impacts, such as soil contamination; furthermore,
nitrogen is a major contributing source of greenhouse gas (GHG) [3,4]. Diagnosing crop
growth status and variable rate fertilization can assist in avoiding the above problems.
The principle of precision agriculture is the spatial and temporal variability of fertilizer.
Therefore, the determination of crop status is the key procedure in practice [5]. Several
parameters have been used for measuring the plant growth condition; for example, plant
nitrogen concentration (PNC) and accumulation (PNA) are direct indicators of crop growth.
Additionally, above-ground biomass (AGB) is another frequently used indicator because it
is the proxy of the final yield. When the parameters are put together, the nitrogen nutrition
index (NNI) is established by critical N dilution theory [6,7]. These parameters have been
proved to be effective for use in variable rate fertilization; however, the issue is the speed
of the process [8].

The timely and accurate monitoring of crop growth status is necessary for modern
agricultural management. Traditionally, to acquire the growth variables, field samples
are taken for lab analysis, which is time-consuming. Additionally, the results are spa-
tially limiting. Thus, it is important to find a way to achieve more effective results [9].
Remote-sensing technology offers an alternative for assessing crop nutrient status, and
crop parameters have been retrieved from remote-sensed data by different approaches [10].
With the emerging unmanned aerial vehicle (UAV) platform, which carries passive or
active sensors, it is becoming easier to access rapid and non-destructive spatial results of
crop growth parameters [11]. UAVs have advantages of flexibility and versatility; they
are operated at relatively low cost while acquiring high spatial and temporal resolution
data. In practice, the crop AGB can be estimated by RGB or multispectral images, and other
N-related crop parameters can also be estimated by fusing image and spectral information.
The reported modeling process includes seeking sensitive bands or VIs, and then using
them to build models. Meanwhile, some studies investigated the optimal time window for
growth monitoring [12–15]. These previous experiments have demonstrated the feasibility
of UAV application.

Crop growth variables and retrieval methods can be categorized in three ways: empir-
ical, physical, and hybrid methods. Previous research focused on the simple linear or non-
linear relationships between vegetation indices (VI) and specific crop parameters [12,16],
or used physical-based methods, known as radiative transfer models, to retrieve crop N
status [17]. In order to make full use of the abundant UAV data, including band reflectance,
VI or texture, and other features, machine learning regression algorithms of various kinds
have been introduced for quantitative vegetation remote sensing [18–20]. Machine learn-
ing methods are becoming powerful modelling tools to interpret information from large
amounts of remotely sensed data. Among different regression algorithms, random forest
(RF) is a classic and powerful method [21]. It is an ensemble learning model that combines
a large number of decision trees, which makes it robust when the model consists of many
input variables. RF models have been widely used in crop classification, growth moni-
toring, and yield forecast [22,23]. Additionally, RF prevails in the previous comparison
studies of different algorithms for monitoring different crops [24,25]. These studies have
yielded satisfactory results by using RF models, both in classification and prediction, which
strongly illustrated the feasibility of the RF model.
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Although crop parameters are estimated by different techniques using remotely sensed
data, a common problem is that these kinds of models neglect the fact that crops are sig-
nificantly different in their different growth stages. Crop growth is an allometry process.
The morphology traits of a crop can change substantially from the vegetation to repro-
ductive stages, and the leaves, stems, and spikes play different roles in different stages.
This would cause significant impacts on remote-sensing observations. In the practice of
crop vegetation remote sensing using optical sensors, the leaves, stems, and panicles are
the spectrally responsive organs. Leaves are always the major sources of reflection in the
different stages [26]; however, as the growth stages progress, leaves will transform from
a sink to a source of assimilates. When leaves are sinks, their major function is as the
storage warehouse of photosynthesis production, while they turn into a photosynthesis
producer when the leaves are mature. At the same time, the stems start to become the major
storage of the assimilates, especially after the shift from the vegetation to the reproductive
stage, and the panicles become the new sink for the yield formation. During this period,
the characters of the leaves, stems, and panicles keep changing, affecting sink and flow
interrelation and transformation; consequently, biomass and N deposits will translocate in
different sinks accordingly [27], id est, the leaves will provide substantial reflectance while
not always being responsible for the majority of crop biomass and nitrogen storage. Since
this asymmetric information is hard to be exhibited in spectral information [28], it might
explain the deficits of the simple linear model; furthermore, this phenomenon suggests
that phenology information should be considered in the crop monitoring models. Several
researchers have pointed out that crop phenology is important in predicting crop growth
conditions or forecasting yield [29,30].

Current machine learning models for monitoring crop growth status have been es-
tablished by solely using multiple vegetation indices [12,31]. In addition to this, efforts
include fusing color features or combining them with cultivar information [32,33]. More-
over, canopy fluorescence is an increasingly popular technique that can be used for growth
monitoring [34]. Furthermore, using spectral-based deep learning is also a rational ap-
proach [35]. These studies utilized spectrum information in addition to other vegetation
characteristics. Only a few studies considered the variation of phenology and integrated it
into the model. Since the crop growth status significantly varied from stage to stage, optical
sensors had a limited ability to track this inherent variation. The addition of different
types of data could be descriptive for different stages, which clearly showed that the direct
application of phenology is appealing in the context of adjusting the model instability in
multi-stage scenarios. Therefore, the main objectives of this study are:

(1) To verify the phenology effect on retrieving wheat crop parameters from UAV multi-
spectral data;

(2) To use RF models to evaluate the accuracy of different combinations of band reflec-
tions, Vis, and PIs in wheat parameters prediction;

(3) To Specify the accuracy of different growth stages and N treatments in established
models to understand the model applicability.

2. Materials and Methods
2.1. Experimental Site and Design

We conducted the experiment during the 2020–2021 winter wheat growing season
at the Xiaotangshan National Experiment Station for Precision Agriculture (116◦26’36” E,
40◦10’44” N) in Beijing, China (Figure 1). The field site is in the northernmost section of
the North China Plain, which has a temperate monsoon semi-humid climate of medium
latitudes, with an average altitude of 36 m. It has an average annual precipitation of
500–600 mm and an average annual temperature of 12 ◦C. The annual amount of solar
radiation is 4800 MJ m−2 (China Meteorological Data Service, http://data.cma.cn/ accessed
on 6 January 2022). We provide the weather information of the experiment duration in
Figure 2.

http://data.cma.cn/
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This study was part of an ongoing long-term fertilizer experiment. We selected two
local wheats (Triticum durum L. cultivar. JH11 and cultivar. ZM1062) and four nitrogen
fertilizer rates (0, 90, 180, 270 N/ha) in the field experiment. The plot size was 9× 15 m. We
set row spacing to 15 cm, and we uniformly set the plant density to 360 × 104 plants ha−1.
We settled treatments in all field experiments using a complete randomized block design
with four replicates. We divided the nitrogen fertilizer application into two splits and
applied 1:1 for the base and top-dress before sowing and at the jointing stage.

The primary soil type is a clay loam soil by Food and Agriculture Organization
(FAO) soil classification, with a pH of 7.7, 19 g·kg−1 organic matter, 1.01 g·kg−1 total N,
14.5 mg·kg−1 Olsen-P, and 127.9 mg·kg−1-available K in the 0–20 cm-surface soil layer. We
performed other field management procedures, including weed control, pest management,
and our application of phosphate and potassium fertilizer followed local standard practices
for winter wheat production.

2.2. Crop Data Acquisition and Calculation of Nitrogen Nutrient Index

We conducted five experiments in five key wheat growth stages (jointing, booting,
anthesis, early filling, late filling). There were 24 samples in the jointing stage and 32 in the
other stages. In total, the sampling number was 152. During field sampling at each stage,
we randomly collected 20 tillers around the white frame of each plot. We immediately took
fresh samples to the laboratory and separated them into leaves and stems, and also spikes
after they emerged. We put the samples into paper bags and placed them in the oven at
105 ◦C for 20 min to stop metabolism, and then dried at 80 ◦C until the samples became
constant weight. We recorded the dry weight of each sample by a balance with an accuracy
of 0.001 g. After we acquired the AGB, we analyzed all samples for N concentration using
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the micro-Kjeldahl method. We calculated the total plant N concentration as the ratio of the
total N accumulation to AGB.

AGB =
(LW + SW + PW)·T

20·L (1)

PNA = (LW·LN + SW·SN + PW·PN) (2)

PNC =
PNA
AGB

(3)

where LW, SW, and PW are the dry weights of leaf, stem, and panicle samples, respectively.
LN, SN, and PN are the N concentrations of leaf, stem, and panicle samples, respectively.
T is the number of winter wheat stems per unit area and L is the row spacing (15 cm).
Subsequently, PNA is plant nitrogen accumulation and PNC is plant nitrogen content.

As described by Lemaire [36], we calculated the nitrogen nutrition index (NNI) of
each treatment within various growth stages by the following equation:

NNI = Na/Nc (4)

where the Na represents the actual N concentration, Nc represents the critical N concentra-
tion. The Nc curve used in this study was adopted from previous research [37]:

Nc = 5.35·AGB−0.53 (5)

We established the equation from a previous nitrogen fertilizer experiment in the same
field. Crop nitrogen status is normal when NNI is between 0.95 and 1.05, it overdoses when
NNI exceeds 1.05, and there is a deficit when it is less than 0.95.

2.3. Acquisition and Preprocessing of UAV Images

We used a DJI Phantom 4 Multispectral 4-rotor-wing unmanned aerial vehicle (UAV)
(DJI-P4M, SZ DJI Technology Co., Ltd., Shenzhen, China) to capture multispectral images.
The UAV had 2 million pixel multispectral sensors consisting of 6 cameras, including Blue
(450 nm ± 16 nm), Green (560 nm ± 16 nm), Red (650 nm ± 16 nm), RE (730 nm ± 16 nm),
NIR (840 nm± 26 nm), and visible light (RGB). The details of the UAV and sensor information
are in Figure 3.
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Figure 3. DJI P4M and sensor properties used in study.

We conducted five flights within each key wheat growth stage. We set the flight
mission height to 30 m, with a speed of 4 m/s. We set the image overlap and sidelap to
80%. The ground spatial resolution is 1.6 cm under such parameters. We performed all
flight missions between 10:00 and 12:00 on clear and cloudless days. Prior to each flight,
we collected calibration images with a standard reflectance panel. The panel is a fine cloth
installed inside a plastic box, and it has a basic reflectance of 0.797, 0.872, 0.877, 0.875, and
0.867 for Blue, Green, Red, RE, and NIR, respectively. We calibrated each image to follow
the specific band. After the flight, we calibrated our collected multispectral images and
processed into ortho-mosaic maps using DJI Terra software (Terra, SZ DJI Technology Co.,
Ltd., Shenzhen, China) for further analysis.
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2.4. Feature Extraction and Determination

We used the ortho-mosaic maps for band reflectance and VIs extraction. We extracted
all data within the white frames using shapefiles for each stage. Additionally, we calculated
plot average of all pixel values as the extraction results.

We used three types of features in this study, including the original multispectral
band reflectance as the first type, vegetation indices for the second type, and phenology
indicators (PIs) for the third type. For the first two types of data, because we extracted
them from UAV images, in order to keep consistency, we acquired all of them from within
the white frame (Figure 1). We collected the original reflectance of each band as the first
data type, and then we selected several vegetation indices as second data type, of which
we used part of them to model AGB. Additionally, we used part of them to retrieve key
growth parameters in the previous studies, which indicated all the selected VIs have
reasonable potential to be used for crop nitrogen status monitoring. As for the third type,
we recorded the five stages that represent the typical wheat growth process as Zadok growth
stages—phenology indicators. In this case, ZS33, ZS47, ZS65, ZS75, and ZS80 represent the
wheat jointing, flag leaf, anthesis, early filling, and late filling stages, respectively. In order
to maintain data uniformity, we simplified the phenology into a number of stages. The
three types of data are listed in Table 1.

Table 1. List of used features in this study.

Data Type Features Acronym Equation Reference

Original Reflectance

Blue Band Reflectance B Reflectance of B band /
Green Band Reflectance G Reflectance of G band /
Red Band Reflectance R Reflectance of R band /

RedEdge Band Reflectance RE Reflectance of RE band /
Near-Infrared Band Reflectance NIR Reflectance of NIR band /

Vegetation Indices

Difference Vegetation Index DVI NIR − R [38]

Enhanced Vegetation Index EVI
2.5× NIR− RED

NIR + 6× R− 7.5× B + 1
[39]

Enhanced Vegetation Index 2 EVI2
2.4× NIR− R

NIR + R + 1
[40]

Leaf Chlorophyll Index LCI

NIR− RE
NIR + R

[41]

Modified Chlorophyll Absorbtion Ratio Index MCARI
((RE− R)− (0.2× (RE− G)))× RE

R
[38]

Modified Non-Linear Index MNLI
1.5× NIR2 − 1.5× G

NIR2 + R + 0.5
[42]

Modified Soil-Adjusted Vegetation Index MSAVI
2×NIR+1−

√
(2×NIR)2−8×(NIR−RED)

2
[43]

Modified Simple Ratio Index MSR

NIR
R
− 1√

NIR
R

+ 1
[44]

Normalized Difference Red-Edge NDRE

NIR− RE
NIR + RE

[45]

Normalized Difference Vegetation Index NDVI

NIR− R
NIR + R

[46]

Ratio Vegetation Index RVI
NIR

R
[47]

Soil-Adjusted Vegetation Index SAVI
NIR− R

NIR + R + 0.5
× (1 + 0.5) [48]

Phenology Indicators Phenology Indicators PI 33 (jointing stage), 47 (flag leaf stage), 65
(anthesis), 75 (early filling), 80 (late filling) [49]



Remote Sens. 2022, 14, 3723 7 of 19

2.5. Data Analysis and Model Establishment

We analyzed the 4 crop parameters data by Tukey’s HSD test to distinguish the
differences across 5 stages. We performed a three-way analysis of variance (ANOVA) to
explore how much the phenology contributes to the biometrics. We analyzed the effects of
cultivars, N treatment, and phenology on AGB, PNA, PNC, and NNI. We used Duncan’s
test to analyze differences in parameter averages between treatments. The threshold for
statistical significance was p < 0.05.

In this study, we employed RF to build models for AGB, PNA, PNC, and NNI. As
mentioned above, we grouped all the features into three types of data, and we selected
these features as six combinations (Table 2).

Table 2. Combinations of features in RF models.

Band VI PI

C1
√

C2
√

C3
√ √

C4
√ √

C5
√ √

C6
√ √ √

RF is an ensemble technique that combines multiple decision trees, and each tree
in the forest predicts independently. We put all predictions into a vote to make the final
prediction. It is a practicable model when dealing with small sample sizes. RF models
involve a hyperparameter-adjusting process to maximize the accuracy of the models. Thus,
we optimized the models’ hyperparameters through 10-fold cross-validation. The only
parameter in random forests that typically need optimization are the number of trees in
the ensemble. We settled on a total of 200 decision trees for the model based on the stable
results from primary validation. We also used the number of decision trees in related
remote-sensing studies [50].

To analyze the special effects of our most interesting PIs we performed multiple
iterations to deconstruct the model feature by feature. Firstly, we ranked each feature based
on the Bayesian framework; therefore, the ranking result can be used as a feature reduction
tool. Then, we removed the lowest relevant feature in each iteration. Eventually, we found
the most sensitive features. Through iterations, we determined the minimum number of
features to build a model while keeping the accuracy acceptable.

2.6. Model Evaluation

We built and evaluated all models by 10-fold cross-validation, and we used the mean
results of cross-validation in the model comparisons. We used three commonly used indices
(R2, RMSE, and NRMSE) to compare the performance of generated models The calculation
equations of R2, RMSE, and NRMSE are as follows:

R2 = 1− ∑n
i=1 (yi − yi

′)2

∑n
i=1 (yi − y)2 (6)

RMSE =

√
∑n

i=1 (yi − yi
′)2

n
(7)

NRMSE =
RMSE

N
(8)

where yi and yi
′ are the measured and predicted values for sample i, respectively. y

indicates the mean values and n is the number of samples used for calibration or validation
set. N is the average value of the samples.
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3. Results
3.1. Statistics of Crop Data and Their Relationships with Selected Bands and VIs

Field experiment results of the four parameters are summarized in Figure 4. Across
the different stages, the AGB and PNA increased with a steady overall trend; however,
noticeably, their growth rates peaked at different stages. AGB had rapid growth rates at
different stages, e.g., ZS47~ZS65, and they were significantly different because of the start
of the filling stages. PNA grew fast in the early stages of ZS33~ZS47 and they showed
significant differences, indicating that plants absorb plenty of nitrogen at the jointing stage.
As for PNC, it reached stabilization after decreasing at the early stages. PNC showed a
significant downward trend in the early stages, especially ZS33 and ZS47. The NNI trend
through the stages had little fluctuations for the various nitrogen treatments in this study,
which shows it is a promising indicator for evaluating wheat N status.
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Linear regressions were performed between biometrics and the reflectance of different
bands, and the Red reflectance had the best relationship with all biometrics. Then, Green
and Blue had relatively strong relationships with AGB, PNA, and NNI. For NIR, it had
good relationships with PNA, PNC, and NNI. RE showed low relativity with the biometrics.
From another view, PNC is hard to model from band reflectance, but the other three are
comparatively easier. The highest R2 was 0.42 between the Red band reflectance and NNI.

Regression between 12 selected VIs and four biometrics is recorded in Table 3. Almost
all the VIs were closely related to the biometrics, and the best determination coefficient was
made by using NDRE for AGB, with an R2 of 0.64; overall, the VIs had the best relationships
(0.34~0.63) with NNI, and were greatly related to AGB (0.1~0.64) and PNA (0.29~0.58),
while they had a relatively lower R2 (0.01~0.39) between VIs and PNC.
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Table 3. Coefficient of determination (R2) between biometrics and reflectance or vegetation indices.

Feature AGB PNA PNC NNI

Original
Reflectance

Blue 0.21 ** 0.17 ** 0.00 ns 0.13 **
Green 0.22 ** 0.25 ** 0.08 ** 0.26 **
Red 0.25 ** 0.35 ** 0.19 ** 0.42 **
RE 0.11 ** 0.07 ** 0.00 ns 0.03 *

NIR 0.03 * 0.14 ** 0.21 ** 0.24 **

Vegetation
Indices

DVI 0.16 ** 0.35 ** 0.35 ** 0.52 **
EVI 0.1 ** 0.29 ** 0.39 ** 0.48 **
EVI2 0.38 ** 0.5 ** 0.06 ** 0.52 **
LCI 0.28 ** 0.33 ** 0.08 ** 0.34 **

MCARI 0.21 ** 0.37 ** 0.29 ** 0.49 **
MNLI 0.22 ** 0.43 ** 0.33 ** 0.59 **
MSAVI 0.23 ** 0.45 ** 0.36 ** 0.61 **

MSR 0.31 ** 0.52 ** 0.29 ** 0.63 **
NDRE 0.64 ** 0.58 ** 0.01 ns 0.43 **
NDVI 0.3 ** 0.49 ** 0.32 ** 0.61 **
RVI 0.3 ** 0.5 ** 0.26 ** 0.6 **

SAVI 0.23 ** 0.45 ** 0.36 ** 0.61 **
Significance level: ns = not significant, * p < 0.05, ** p < 0.01.

3.2. Phenology Contribution in Estimating Crop Data

The results of Section 3.1. showed the best performing model was built by R reflectance.
Therefore, it was selected along with the commonly used NDVI to plot Figures 5 and 6. They
showed the linear relationships of single factors with biometrics across different stages, and
we noticed that there were clear phenology differentials. In Figure 5a, at different stages,
the slope and intercept vary from −72.42~ to −18.56 and 4.33 to ~16.57, respectively. We
show similar gaps in Figure 5b,c; however, in Figure 5d, the slope and intercept change
slightly at different stages. Figure 5 shows it is inferable that the VIs have similar results,
such as in NDVI and the drastic slope and intercept variations of AGB, PNA, and PNC;
however, NNI shows little change. There is an apparent negative correlation between R
band reflectance and crop parameter and a positive correlation between NDVI and crop
parameters. This situation is because as crop growth increases, red light is increasingly
absorbed by crop vegetation, with the NIR band showing a higher reflection rate. At late
stages, mature crops tend to show low reflection rates in both bands.
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Nitrogen treatment and phenology are the main factors affecting the four parameters,
as shown in the three-way ANOVA (Table 4). Among the results, nitrogen treatment
contributed mostly in NNI (72.64%), and the least in AGB (36.81%). Phenology contributed
majorly in AGB and PNC but minorly in PNA (35.02%), and it contributed even less in
NNI (16.04%). Besides the main factors, the interactions between nitrogen fertilizer and
phenology also showed significant effects (5.88~12.22%) on the biometrics. From a statistical
view, the ANOVA results strongly suggested that phenology plays an important role in
modeling crop parameters.

Table 4. A three-way ANOVA for effects of wheat variety (V), nitrogen fertilizer (N), and phenology
(P) on AGB, PNA, PNC, and NNI.

Factor AGB PNA PNC NNI

p Value Contribution p Value Contribution p Value Contribution p Value Contribution

V 0.941 0.00% 0.654 0.15% 0.114 1.22% 0.428 0.59%
N 0.000 36.81% 0.000 51.53% 0.000 41.54% 0.000 72.64%
P 0.000 49.87% 0.000 35.02% 0.000 40.22% 0.001 16.04%

V*N 0.819 0.64% 0.616 1.35% 0.237 2.04% 0.593 1.75%
V*P 0.990 0.21% 0.975 0.36% 0.963 0.29% 0.946 0.69%
N*P 0.123 10.96% 0.287 9.78% 0.004 12.22% 0.873 5.88%

V*N*P 0.999 1.52% 0.998 1.80% 0.947 2.45% 0.997 2.42%

3.3. RF Model Results of Different Combinations
3.3.1. Model Results Using All Features

The models were built for crop parameters according to the combinations mentioned
in Table 2. In each combination, all features were used to build models. The results are in
the heatmap of Figure 7, which is a comparison between different combinations. Generally,
combinations with more features performed better. Figure 7a shows the data of R2 increase
from C1 to C6. Figure 7b,c show it decreases from C1 to C6. The model with the poorest
predictions was C1, which only uses band reflectance. The best results were C5 for PNC, with
R2 = 0.77, RMSE = 0.2, and NMRSE = 10.32, and C5 for NNI, with R2 = 0.73, RMSE = 0.15, and
NMRSE = 13.92, while C6 for AGB and PNA had the highest R2 and lowest RMSE or NRMSE.
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Compared with C1, C2, and C3, the C4, C5, and C6 include PIs as part of their
features, and the latter showed better estimations. In a comparison between C1 and
C4, the PIs significantly improved the model that only used band reflectance for four
crop parameters, such as R2 from 0.48~0.65 to 0.69~0.76 or NMRSE from 15.09~15.83 to
11.19~14.96. This showed that PIs had the potential to enhance the models of AGB, PNA,
and PNC. Furthermore, in the comparison between C2 and C5, PIs only improved the VI
model in predicting PNC (R2 from 0.66 to 0.77), and C6 performed better than C3 or C5,
showing the best results using all features.

Overall, all models showed good estimations of the parameters, particularly C5 and
C6, which showed great results for all crop parameters. C5 was the combination of VI and
PI, and C6 was the combination of all three types of data. The best model for AGB was
C6, and the best model for PNA, PNC, and NNI was C5. The results showed that AGB,
PNA, and PNC were better estimated when integrated with PIs; however, NNI showed
insensitivity to PIs.

3.3.2. Model Iteration and Feature Selection Results

In Figure 7, we show the integration of the C4, C5, and C6 models with PIs, and they
showed a generally high performance, especially C6, which had the highest R2 (0.79). The
comparisons between the results of C1 and C4 and C3 and C6 showed that phenology
might play an important role in predicting key wheat growth parameters. Therefore, we
disassembled the model to comprehend whether the models were enhanced by coupling
phenology indicators. It was identified that C5 and C6 were the best models for four crop
parameters because they had similar prediction abilities and C6 took all features in the
model. Consequently, a feature-by-feature iteration was performed for C6, and the results
are presented in Figure 8.
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dotted lines were models with 4 features, and texts along them are features of this particular model.
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Of all crop parameter models presented in Figure 8, AGB and PNA predicted with
fewer error ranges, while PNC and NNI had apparent error ranges. All models tended
to show that stable estimations were acquired at more than three features. Therefore, we
selected the model with four features for further analysis, and the details of four-feature
models are presented in the text of the figures. The AGB and PNC models were integrated
with PIs, while the PNA and NNI models were built by VIs. Overall, EVI2, NDRE, and PIs
had the most appearances. However, the highest mean R2 varied when using a different
number of features. For AGB models, R2 was the highest at four features, and they were B,
EVI2, NDRE, and PIs. Additionally, in Figure 8c for PNC, three features of EVI, LCI, and
PIs had the highest R2. For PNA models, although the model seemed stable at minimum
features, the best R2 was at 11 features. The best models for NNI were built with two VIs of
MNLI and NDRE. It is worth mentioning that PIs took great priority in the AGB and PNC
models because the best model emerged with the appearance of PIs; however, PIs showed
little significance in the PNA and NNI models.

We present the relative importance of different variables in Figure 9. The number of
features in different parameters was set to four. In the models of AGB, PNA, PNC and NNI,
and NDRE, the relative importance was 46.8%, 39.9%, 11.4%, and 42.7%, respectively. Our
interested PIs had a relative importance of 10.1% and 47.9% in AGB and PNC, respectively.
These results showed that PIs provide a good contribution in the model performances of
AGB and PNC. Especially in PNC, PIs showed the highest importance among all features.
Taken together in Figures 8 and 9, it was obvious that PIs can significantly improve the
model accuracy in few-parameter circumstances.
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3.4. Model Validation and Spatial Results of UAV Data

After the iterations and best features were found, the model for the four parameters
was evaluated using all data. The results we present in Figure 10 show that all parameters’
models showed great estimation accuracy. Among the four parameters, AGB and PNC
were better estimated (R2 > 0.80), and NNI had the lowest R2 of 0.74. These results showed
the model was effective and demonstrated the feasibility of integrating PIs into the machine
learning model.
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Among all models built in this study, the best models were used to build pixel-level
spatial results of the four wheat parameters. The results of one key-stage anthesis (ZS65)
are in Figure 11. The spatial results were highly consistent with the field experiment.
The inside-plot variance of each treatment is low, and the difference between different-
plot treatments is obvious. In this manner, the results were acquired ready for field-level
precision fertilizing.
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3.5. Model Accuracy in Different STAGES and N treatments

A further analysis was performed to specify how the model accuracy varied in different
stages or N treatments, and all predication results from 3.4 were extracted and grouped
by stages or N treatments. The stage results are presented in Figure 12. PNA, PNC, and
NNI models showed higher R2 and lower RMSE at different stages, with an average R2 of
0.72, 0.70, and 0.75, respectively, and AGB showed a relatively lower average R2 of 0.61 and
a higher RMSE. As the growth period advanced, the trends of the four parameters were
different. The PNA and NNI models showed steady results, the AGB model had better
estimations in the late stages, and conversely, the PNC model showed lower results in the
late stages. Among all stages, ZS65 generally had high model accuracy.
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Similarly, Figure 13 shows another analysis that was performed in a different N
treatment. The models of AGB and PNC showed higher R2, while the PNA and NNI
models showed lower performances at different N treatments. For all N treatments, N0,
N2, and N3 showed an average R2 of 0.63, 0.68, and 0.68, respectively. The AGB model
of N1 treatment showed great results; however, the other three models did not perform
well in N1. Generally, the AGB model showed good results in all N treatments and the
other models showed good performances in high N treatments. These results clarified that
the models we built in this study have different accuracies among different stages and N
treatments. This means the PIs can have different impacts on the model accuracy in terms
of the experiment setup.
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4. Discussion
4.1. Comparison between Models Using Band or VI

In this paper, we firstly evaluated the linear model built from bands and VIs. Generally,
band reflectance models performed less effectively compared with the VI models, which is
easy to understand because VI is the synthetic of multiple bands’ information; therefore, it
can better perform than a single band. When putting more bands into consideration, the
model performance is improved. Similar results were found in using bands’ information
to model the rice leaf area index (LAI) [51]. As shown in Figures 5 and 6a, a common
situation is that the band or VI is easily saturated in the late growth stages due to high
vegetation cover or biomass. The possible explanation is that the R band cannot penetrate
deeper while the canopy is densely closed, and so are bands within the visible light. On the
contrary, RE is less absorbed by the upper canopy, which means it can penetrate further
into the canopy and carry more canopy information [13,52]. This physical limitation could
be the major cause of the lower accuracy of models using bands.

In this paper, RF is also used to establish band and VI models to predict wheat growth
status parameters. The model accuracy is significantly improved by only using band
information. As the results in Figure 7 showed, C1 had the lowest accuracy. C2 and C3
showed great prediction abilities. The results of the saturation problem can be alleviated in
RF models; meanwhile, in our models, NDRE and LCI were selected as features to predict
AGB, PNC, and NNI, which could be a reasonable outcome because they were the indices
using the RE band [12,53].

4.2. Integrating PIs into Crop Growth Monitoring Is Promising

At present, research has been performed to use texture information [8,54], RGB color
features [32,55], crop height [56], meteorological factors, or soil data [57] as variables
to build models for crop monitoring, along with other deep learning approaches, such
as convolutional neural networks (CNNs) [58,59]. These methods successfully built the
model for crop status monitoring; however, the models can be complicated and redundant.
As a matter of fact, optical sensors tended to show stable variations of the reflectance
gradient in one particular experiment; however, in several experiments across different
growth stages, the stable outcome is affected by many factors, such as major plant growth
status, soil conditions, and the interactions of these factors [30]. Hence, it is necessary
to add phenology information in order to address the deviation of the sensor. In this
paper, phenology information was added to the retrieval models and showed significant
importance in the built models.

PI had been emphasized by many previous studies [29,60,61]. The merits of using
PIs can be summarized as: (1) compared with other variables, they are easily acquired
during the field experiments. Anyone can distinguish basic crop stages and record it
by Zadok’s scale stages. (2) PIs can also help to build models with less features, thus
reducing the computation time while maintaining model accuracy (Figure 8). (3) PIs
are expandable because of their consistency in one particular region [62]. For further
expansion, PIs can be converted to other parameters, such as growing degree days (GDD),
days of year (DOY), and days after sowing (DAS) [60]. All these parameters are either of
a meteorological or time-series type, meaning that they can be determined even without
agronomy expertise knowledge.

Zadok’s stages or other stage codes, such as Feekes’ scale or BBCH [63], are abbreviated
designations. There are alternatives for PIs; furthermore, in addition to the GDD, DOY,
or DAS mentioned above, leaf age is another index that can detail all growth situations.
Otherwise, there could be a normalized index known as the relative growth stage (RGS) [61].
The potential utilization of these indicators still needs to be examined.
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4.3. Other Machine Learning Models Integrated with PIs

This paper concluded that RF models combined with PI could yield accurate predic-
tions of crop growth status parameters. The RF can only represent the decision-tree-type
machine learning model [23,32]. The other types of machine learning models integrated
with PIs need to be tested. For example, partial least squares regression (PLSR) and sup-
port vector regression (SVR) are the most commonly used machine learning algorithms in
current remote-sensing data interpretation [19,33,56,64]. All combinations in this research
were used to build models using different methods, and the different machine learning
models had the same improved results when considering PIs in the models.

The results showed similar trends compared with RF models. C1 showed lower accu-
racy, while models that used C4 showed better performance, of which is the combination
of C1 and PIs. Likewise, slight improvements were observed between C2 and C5 or C3 and
C6. To summarize, the models consisting of band reflectance can be improved greatly, and
the models consisting of VI can be improved slightly. The detailed results are presented in
Tables 5 and 6:

Table 5. PLSR results for different combinations.

R2 RMSE NRMSE

AGB PNA PNC NNI AGB PNA PNC NNI AGB PNA PNC NNI

C1 0.62 0.67 0.42 0.68 2.25 33.96 0.33 0.16 14.65 14.13 16.44 15.15
C2 0.81 0.78 0.76 0.74 1.57 27.9 0.21 0.14 10.24 11.61 10.38 13.61
C3 0.81 0.78 0.78 0.75 1.58 27.53 0.20 0.14 10.31 11.45 10.00 13.28
C4 0.74 0.69 0.67 0.67 1.86 33.02 0.25 0.16 12.15 15.93 12.36 15.34
C5 0.82 0.78 0.74 0.74 1.56 27.75 0.21 0.14 10.15 11.55 10.83 13.57
C6 0.82 0.79 0.75 0.76 1.56 27.06 0.21 0.14 10.16 11.26 10.62 13.18

Table 6. SVR results for different combinations.

R2 RMSE NRMSE

AGB PNA PNC NNI AGB PNA PNC NNI AGB PNA PNC NNI

C1 0.45 0.46 0.39 0.68 2.79 45.52 0.34 0.16 18.19 18.94 17.04 15.28
C2 0.81 0.74 0.76 0.74 1.58 30.48 0.21 0.14 10.31 12.68 10.58 13.71
C3 0.81 0.74 0.77 0.76 1.59 30.26 0.20 0.14 10.40 12.59 10.20 13.25
C4 0.71 0.63 0.66 0.69 2.00 38.27 0.25 0.16 13.02 13.74 12.53 15.13
C5 0.81 0.74 0.75 0.74 1.57 30.12 0.21 0.14 10.26 12.53 10.75 13.73
C6 0.81 0.75 0.77 0.77 1.57 29.68 0.2 0.14 10.22 12.35 10.28 12.87

5. Conclusions

In this paper, we examined the linear relationships between remote-sensing indices
and found that verified crop growth parameters were significantly affected by phenol-
ogy. Statistically, phenology had a 16.04–49.87% contribution to different crop variables.
Therefore, PIs were integrated into the random forest model to evaluate if it could improve
the model’s prediction ability. The results showed that most models can provide accurate
predictions of the selected parameters with R2 > 0.7, and PIs were important in the built
models. The optimized RF model with best performance was analyzed using different
nitrogen treatments or stages. The results were varied in different growth variables, with
an average R2 ranging from 0.61 to 0.75 in different stages. These results indicated that the
phenology needed to be considered in future studies. Additionally, when using different
types of remotely sensed data, PIs had different adaptations to the model effectiveness, and
to better understand the insertion of PIs, more studies coupling with different PI datatypes
need to be conducted. Future crop monitoring work needs to consider crop phenology
and the possible ways of transforming phenology, as well as introducing other kinds of
advanced machine learning regression methods into this subject.
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