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Abstract: Land-use–cover change (LUCC)/vegetation cover plays a critical role in Earth system
science and is a reflection of human activities and environmental changes. LUCC will affect the
structure and function of ecosystems and a series of other terrestrial surface processes, such as energy
exchange, water circulation, biogeochemical circulation, and vegetation productivity. Therefore, accu-
rate LUCC mapping and vegetation cover monitoring are the bases for simulating the global carbon
and hydrological cycles, studying the interactions of the land surface and climate, and assessing
land degradation. Based on field GPS surveys and UAV data, with cloud-free and snow/glacier
algorithms and the SVM classifier to train and model alpine grassland, the alpine grassland and
LUCC were extracted by using Landsat-8 OLI satellite images in Sanjiangyuan National Park in
this paper. The latest datasets of vegetation types with 30 m × 30 m spatial resolution in the three
parks were prepared and formed. The classification results show that the SVM classifier could better
distinguish the major land-use types, and the overall classification accuracy was very high. However,
in the alpine grassland subcategories, the classification accuracies of the four typical grasslands were
relatively low, especially between desert steppes and alpine meadows, and desert steppes and alpine
steppes. It manifests the limitations of Landsat-8 multispectral remote sensing imageries in finer-
resolution grassland classifications of high-altitude alpine mountains. The method can be utilized for
other multispectral satellite imageries with the same band matching, such as Landsat 7, Landsat 9,
Sentinel-2, etc. The method described in this paper can rapidly and efficiently process annual alpine
grassland maps of the source areas of the Yellow River, the Yangtze River, and the Lancang River.
It can provide timely and high-spatial-resolution datasets for supporting scientific decisions for the
sustainable management of Sanjiangyuan National Park.

Keywords: multispectral remote sensing; grassland classification; alpine grassland; cloud-free algorithm;
support vector machines (SVM); Sanjiangyuan National Park

1. Introduction

Vegetation is a crucial indicator reflecting ecological changes. It has become a research
hotspot, especially in sustainable development and the management of ecological systems,
in recent decades [1,2]. Grasslands cover about one-third of the global land surface and are
the most cultivated biome on Earth [1,3]. Currently, grassland degradation is considered
as a major threat to the maintenance of ecological services, food security, and sustainable
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development, and jeopardizes the global effects of meeting goals and targets, such as the
UN Decade on Ecosystem Restoration and Sustainable Development Goals [1,4]. Even in a
world where climate change is soon halted, the global temperature rise will likely reach be-
tween 1.5 ◦C and 2 ◦C above preindustrial levels. This means that vegetation will likely face
climate change effects that are substantially worse than those already experienced [3,5,6].
Compared with the accelerated global warming, human activities, e.g., intensified livestock
grazing, construction of infrastructure, and unprecedented urbanization, have played
more and more critical roles in changing the patterns and dynamics of vegetation on
the Qinghai–Tibetan Plateau [7–9].

Vegetation classification is the initial basis for monitoring global vegetation dynamics
and distribution patterns [10,11]. Traditional vegetation classification relies heavily on
purely or semi-manual work, which needs a long period of time and intensive human, ma-
terial, and financial resources [11–14]. In light of the literature, supervised remote sensing
vegetation classification heavily relies on auxiliary experienced knowledge, such as field
investigation, aviation aircraft images, and DEM slope and map algorithms, to fill the gaps
caused by the low spatial resolution of remote sensing images [11,13,15,16], with manual
delineation and semi-manual interpretation being important [16,17]. Geographic informa-
tion was interpreted directly based on coarse remote sensing images by experts with field
investigation knowledge, e.g., species types, vegetation structure, temporal phenology, and
spatial distribution patterns [16]. However, the interpretation speed and efficiency heavily
depended on the field experience of the interpreter, which was greatly influenced by the
decisions of the interpreters. As there is no unified national/local vegetation plot database,
vegetation plot-recording protocols, and agreed thematic outputs for classification, classi-
fied vegetation types are always confused with each other, especially in poorly sampled
and plot-free regions [16,18,19]. There has been much uncertainty in the sub-class level
integration and fusion of data in different formats, which are intensive, time-consuming,
and inefficient [20,21]. With the progress of improved satellite sensors and band algorithms,
remote sensing techniques have developed significantly in recent decades. Hyperspectral-
and multispectral-resolution satellites have been applied to vegetation classification, with
broad coverage, high timeliness, and the ability to make uninterrupted, long-term observa-
tions of vegetation, which play a dominant role in monitoring the dynamics of the global
ecological system [11,22–25].

The majority of past studies observing grassland management from space used coarse-
spatial-resolution sensors, such as the NASA Advanced Very-High-Resolution Radiometer
(AVHRR) or Moderate-resolution Imaging Spectroradiometer (MODIS), or coarse-temporal-
resolution sensors, such as Landsat [11,17,26,27]. Many land-cover maps at global and
regional scales have been produced in recent years using remote sensing data, and the
popular products include the International Geosphere Biosphere Programme (IGBP) global
land-cover dataset [28], European Commission Joint Research Centre Global land cover
for the year 2000 [29], University of Maryland land-cover map [30], the MODIS global
land-cover products [31], and the finer-resolution global land cover [32]. However, most
of the land-cover products have a coarser spatial resolution. Coarser-spatial-resolution
(e.g., lower than several hundred meters) remote sensing data are not enough for catching
the detailed grassland types and coverage change information [11,24,33]. Recent advances
in medium-resolution data acquisition and accessibility have made Landsat-like spatial
resolution remote sensing data a suitable choice for deriving finer-resolution grassland-
cover maps [17,26,34,35].

Currently, the most popular algorithms for remotely sensing vegetation classification
are multispectral remote sensing compositions, which capture the characteristics of land
cover and acquire the classification results more easily compared with radar images and hy-
perspectral images. In addition, they are low in cost, have high time efficiency, and are suit-
able for multi-objective and multi-demand-driven vegetation classifications [12,16,18,26].
Although multispectral remote sensing images always have a broad field of view and
cover a large land surface area, their temporal resolution is coarse [17,23]. Frequent cloudy
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weather will severely limit the production of high-quality remote sensing images by optical
sensors, especially in the Sanjiangyuan region of the Qinghai–Tibetan Plateau [35,36]. As
these regions have high elevation and alpine, rainy climates, most of the remote sensing
images are more or less affected by clouds and snow, which seriously affect the identifi-
cation and classification algorithms of subsequent images [11,36,37]. In addition, these
regions have high elevations and are commonly frigid during the year. Accordingly, the
vegetation growing season is extremely short. Cloud-free and snow-free remote sensing
images are relatively scarce in the growing season [35]. Snow coverage and glaciers are
the other crucial influencing factors for vegetation classification accompanied by frequent
clouds in these regions [38,39]. How to effectively remove the influence of cloud and
snow on images is particularly critical in image processing and application. Therefore,
minimizing or removing the influence of cloud and snow is the basis for the accurate
interpretation of remote sensing images and is a meaningful way to make remote sensing
data reasonable and effective [38–40].

Cloud-removal algorithms for multispectral remote sensing images are the challenges
focused upon in alpine regions at present [17,39]. Many thin-cloud-removal algorithms
based on different principles and techniques have been developed and have different per-
formances, and have been confined to modular environments in recent years [20,32,35,41].
The representative method is the Automated Cloud Cover Assessment (ACCA) system [42].
It uses multi-spectral filters and the thermal infrared band for detecting cloud and shadow,
and has historically been used for cloud filtering of Landsat images. Another typical
algorithm is the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
for generating an internal cloud mask [43]. For low- and mid-latitudes, LEDAPS has good
performance in atmospheric correction and cloud detection. At present, the operational
algorithm C-function of mask (CFmask) is used for generating feature masks in the Landsat
images provided by the U.S. Geological Survey (USGS, https://earthexplorer.usgs.gov/
accessed on 20 July 2022) and estimating the pixel fraction of cloud cover in a single scene
accompanied by the Landsat level 1/2 imageries [44]. The Fmask algorithm was originally
designed to generate cloud, shadow, and snow masks for Landsat 4–7, and was later ex-
panded to Landsat-8 as CFmask by utilizing the cirrus band [45]. The CFmask algorithm
has been demonstrated to perform well in high altitudes, but overestimates cloud cover
over snow/ice and water biomes and bright targets, and underestimates cloud cover over
desert/hot biomes, primarily because it uses a fixed-scene-based threshold for all of the
pixels [46]. Zhao et al. explored a cloud-removal algorithm using a low-pass filter to filter
the noise and extract the low-frequency components, selected thin clouds in the Three
Gorges area of the Yangtze River in eastern Sichuan, and obtained empirical results that
the method is particularly suitable for removing thin clouds in large areas [47]. Li et al.
proposed a novel algorithm for cloud and shadow detection based on multispectral images
using a pure-image-analysis method, and applied the detection algorithm to effectively
remove clouds and shadows in a data fusion framework [48]. In 2005, Wang et al. explored
a high-pass wave de-clouding method based on multispectral images, which was easy
to realize and could directly process cloudy images. Furthermore, this method obtained
promising results for cloud-covered ETM images, and also had good performance, particu-
larly for removing thin clouds from a large area [37]. Liu et al. analyzed the removal of
thin clouds on multispectral images and proposed to select suitable de-clouding products
for different atmospheric conditions and sensors; however, the heavy snow was difficult
to treat [49]. Ma et al. proposed a new multispectral-based MODIS image de-clouding
algorithm, but the requirements for alignment between images and data were stringent [50].
However, traditional cloud-removal algorithms do not easily remove clouds from high-
elevation mountainous area optical remote sensing images. Shen et al. introduced an
air-domain-filtering method based on the traditional homomorphic filtering, which has
largely improved the ability to remove the clouds from images of mountainous areas [51].
In 2014, Long et al. applied the DCP algorithm for cloud removal, and used a low-pass
Gaussian filter to smooth the calculated atmospheric reflection to avoid the halo artifacts

https://earthexplorer.usgs.gov/


Remote Sens. 2022, 14, 3714 4 of 22

generated by the DCP algorithm [52]. Subsequently, DCP has been continuously improved
and used for thin cloud removal [53]. A GRS-HTM algorithm based on the improvement
of the HTM algorithm was proposed [54]. It is based on the initial HTM calculation and
suppresses the local area radiation centered on the ground edge points to calculate a
more accurate cloud distribution map and avoid the excessive defogging phenomenon.
In 2019, Xu et al. proposed a noise-adjusted principal component transformation-based
cloud-removal algorithm, CR-NAPCT [55]. They proved that, the more clouds in remote
sensing images, the higher the signal-to-noise ratio (SNR) of high-altitude correlation, and,
conversely, the fewer clouds in remote sensing images, the lower the SNR, effectively
discriminating the presence of clouds in pixels. At present, cloud-detection algorithms
mainly focus on four typical categories [56]: (1) Physical rule-based algorithms based on
the physical properties of clouds/cloud shadows that determine the optimal thresholds to
achieve masking [42,44]; (2) Temporal change-based algorithms that compare the temporal
changes in clear-sky surfaces and the sudden changes in surface reflectance caused by
clouds/cloud shadows [56–58]; (3) Variational model-based algorithms, which construct a
variational model with a priori constraints based on the prior knowledge of cloud-cover
components in an image and the cloud-free image components, and detect clouds through
an optimal solution of the variational model [59,60]; and (4) Machine-learning-based algo-
rithms, involving constructing a suitable classification model, e.g., CNN, SVM, or RF, and
iteratively optimizing the model parameters based on largescale training data, resulting in
the model having certain generalized application capabilities [61,62].

Although a number of cloud-masking algorithms have been developed for optical
sensors, very few studies have carried out a quantitative intercomparison of state-of-the-art
methods in this domain. A representative work was carried out by the Cloud Masking Inter-
comparison eXercise (CMIX, https://calvalportal.ceos.org/cmix accessed on 20 July 2022)
conducted within the Committee Earth Observation Satellites (CEOS) Working Group on
Calibration and Validation (WGCV). CEOS is the forum for space agency coordination
and cooperation on Earth observations, with activities organized under working groups.
CMIX, as one such activity, is an international collaborative effort aimed at intercomparing
cloud-detection algorithms for moderate-spatial-resolution (10–30 m) spaceborne optical
sensors [46]. CMIX-I has evaluated the most representative 10 algorithms, namely ATCOR,
CD-FCNN, Fmask 4.0 CCA, FORCE, IdePix, InterSSIM, LaSRC, MAJA, S2cloudless, and
Sen2Cor, developed by 9 teams from 14 different organizations representing universities,
research centers, and industries, as well as space agencies (CNES, ESA, DLR, and NASA).
However, the CMIX-I final report [63] demonstrates that there is not an optimal cloud-
detection algorithm for general utilization in the Landsat image series, as the performance
of algorithms varies depending on the reference dataset [46]. The same conclusions were
summarized by Tarrio et al. [64] after examining the relative performance of five different
cloud-masking algorithms (Sen2Cor, MAJA, LaSRC, Fmask, and Tmask). They recom-
mended that no one algorithm produces the best results for detecting both clouds and
shadows in Sentinel-2 images. They suggested that combining the results from multi-
ple algorithms can improve the overall accuracy of the results, but clearly require more
high-quality datasets of annotated images and computational effort. Until now, there
has not been a globally available cloud/shadow-masking dataset. The most influential
Landsat-8 Cloud Cover Assessment Validation Data of USGU (https://landsat.usgs.gov/
landsat-8-cloud-cover-assessment-validation-data accessed on 20 July 2022) are based
on Fmask with C program (https://www.usgs.gov/landsat-missions/cfmask-algorithm
accessed on 20 July 2022) and delivered by NASA with Landsat images. However, the
fractional snow-covered area (fSCA) product is only available in Alaska and the Western
U.S.—there are no data for Asia and the Tibetan Plateau (https://www.usgs.gov/landsat-
missions/landsat-fractional-snow-covered-area-science-products accessed on 20 July 2022).
Many researchers propose improving the already-developed detectors with large datasets
of annotated samples [45,60], or developing novel, high-efficiency, and high-accuracy
cloud/shadow-masking algorithms [46,56,62]. Additionally, in high-altitude mountainous
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areas, the number of low cloud/snow percentage images is very limited due to the short
growing season—these methods have limited performance in high elevations [10,38,65–67].
There is a high need to develop novel, high-accuracy, and high-efficiency cloud/shadow-
masking algorithms in these areas.

The Sanjiangyuan Region (SJY) is 363,000 km2 (31◦39′–36◦12′N, 89◦45′–102◦23′E),
which accounts for half of the area of Qinghai Province. The SJY is called the “Chinese Wa-
ter Tower” due to its abundant water resources, and its name means “Three River Source”,
being the source of the three most important rivers in China: the Yangtze, the Yellow,
and the Lancang Rivers [68]. Sanjiangyuan National Park (SNP) includes three early estab-
lished nature reserves, including the Yellow River Source Park, the Yangtze River Source
Park, and the Lancang River Source Park [69]. SNP plays a critical role in maintaining the
ecological balance of the Qinghai–Tibet Plateau [35]. It has a long, frigid winter, but a very
short, temperate summer. As the vegetation growing season for alpine grassland is very
short, there are very few satellite images for cloud/snow removal and vegetation classi-
fication, which seriously affects the recognition and classification of subsequent images.
There is an urgent need for new, high-resolution data products to monitor and classify the
alpine grassland in SNP. The paper takes SNP as a case study to classify alpine grasslands
in cold and high altitudes based on multispectral Landsat-8 images, aiming to facilitate the
methods for similar alpine regions.

2. Materials and Methods
2.1. Data Source and Pre-Processing
2.1.1. Landsat-8 Remote Sensing Images

This paper is based on the image data of the Landsat-8 Operational Land Imager
(OLI) of the United States Geological Survey (USGS) (http://glovis.usgs.gov accessed on
20 July 2022) for vegetation classification and extraction. The Landsat-8 satellite can achieve
global coverage every 16 days, with an imaging width of 185 km × 185 km. It maintains a
good continuity with Landsat 1–7 in terms of spatial resolution and spectral characteristics.
It has 11 bands, band 1 to band 7, and band 9 to band 11 having a spatial resolution of 30 m,
and band 8 is a panchromatic band with a resolution of 15 m. The OLI sensor includes all
the wavebands of the ETM sensor, with the major change being the adjustment of band 5 to
0.845–0.885 µm to exclude the effect of water vapor absorption at 0.825 µm. Panchromatic
band 8 has a narrower range to better distinguish between vegetated and non-vegetated
areas. The new blue band 1 (0.433–0.453 µm) is used for coastal zone observation, and
short-wave infrared band 9 (1.360–1.390 µm) is used for cirrus cloud detection [23]. Glaciers
and snow could be heavily influenced and mixed by clouds in summer rainy seasons.
Therefore, a window period with the least cloud and snow cover is the optimal time. We
have demonstrated that the best period is between late September and early November.

Based on the objective of vegetation classification, multi-temporal Landsat-8 remote
sensing images captured in the growing seasons from July to earlier November between
2018 and 2021 in the SJY were used in this case study. The images from 2021, with a
few scattered, thin clouds, thick clouds, or snow, were used as the target images. The
multi-temporal images between 2018 and 2021 with fewer clouds and snow were used as
the reference images for regression analysis (Figure 1).

The purpose of pre-processing multi-temporal data is to match the reference image
with the target image in terms of both the spatial location and spectral characteristics, and
to prepare the data for subsequent cloud area-detection and cloud removal. Landsat-8 data,
similar to other TM/ETM+ data, are labeled L1T with systematic radiometric correction
and geometric correction for terrain participation when released, and can be used directly
without geometric correction. According to the objective of remote sensing monitoring
applications, the images were radiometrically calibrated and atmospherically corrected
to eliminate the influence of the sensors themselves and factors such as the scattering
of atmospheric molecules and aerosols in images of different phases on the reflections

http://glovis.usgs.gov
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of features, to obtain the true reflections of grassland features, and then use their rich
wavelength spectral information.
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Figure 1. A representative Landsat-8 image with cloud cover after initial data preprocessing
(17 July 2018, Path 135, Row 36 (WRS-2), Headwater of Huang River. Note that there are thin
and scattered clouds in the red box).

(1) Radiometric Calibration. Radiometric calibration converts the DN value of the raw
image to the reflectance at the top of the atmosphere, which eliminates the response dif-
ferences between different sensors in the same image, and also eliminates the effect of
solar altitude angle on the image. The process uses radiometric calibration in ENVI 5.1
software to process the raw image, where the associated irradiance conversion param-
eters are read from the image head files for FLAASH atmospheric correction;

(2) Atmospheric Correction. All Landsat-8 data are atmospherically corrected by the
FLAASH atmospheric correction module in ENVI 5.1. FLAASH uses the MOD-
TRAN4+ radiative transfer model to effectively remove water vapor/aerosol scatter-
ing effects. At the same time, based on pixel-level correction, the “proximity effect”
of the cross-radiation between the target pixel and adjacent pixels is corrected, and
high-precision ground-object-reflectivity data can be obtained.

2.1.2. GPS and UAV Sample Vegetation Types

In order to finely extract the vegetation types in the SNP, this research group conducted
an intensive field investigation in the three parks in August 2018. Typical vegetation types
were sampled by GPS positioning (Figure 2), and a ground-verification-point dataset for the
three parks was developed (http://sjynp.tpdc.ac.cn/zh-hans/ accessed on 20 July 2022).
Furthermore, a visible-light camera equipped with DJI Phantom 4 drone was utilized to
photograph the vegetation types in some typical vegetation areas. Ultimately, the ground-
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vegetation-type information datasets of the SNP were established (http://sjynp.tpdc.ac.
cn/zh-hans/ accessed on 20 July 2022). After careful examination and exact classification,
1/3–1/2 were reserved as verification samples, and the rest were treated as training samples
for the classification modeling.
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Figure 2. Four typical alpine grassland photos from Sanjiangyuan National Park. (The photos were
taken by Yanqiang Wei).

2.2. Cloud-Removal Algorithms

Multispectral remote sensing images are popular data sources for remote sensing
retrieval and remote sensing monitoring of the environment on a global or regional scale.
Due to climatic influences, frequently cloudy weather exacerbates difficulties for optical
sensors to obtain high-quality remote sensing images, especially in the vast QTP. It is a
challenge to obtain completely cloud-free remote sensing images. Most remote sensing
images from high elevations are more or less affected by cloud or snow when they are
acquired. Therefore, how to remove the influences of cloud and snow has been considered
a complex issue in image processing and classification.

For practical applications, such as large-scale vegetation remote sensing retrieval
and dynamic monitoring, it is not only necessary to effectively recover the image areas
obscured by thin clouds, thick clouds, and cloud shadows, but also to remove or diminish
the influence of clouds and shadows with the minimum loss of image information, and
to maintain the qualities of images after de-clouding. This process is the prerequisite
for practical utilizations, and it provides high-quality pre-processing products for remote
sensing retrieval and monitoring.

(1) Cloud detection

From the spectral digital number (DN) values obtained from the sampling paths
(Figure 3), the cloud area could be directly identified through the cirrus band (Band 9) of
Landsat-8 OLI. When the empirical representative spectral value of Band 9 is greater or
equal to a specific threshold ∆Cirrus, the cloud area could be directly calculated. The DN
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values of other features in Band 9 were always less than this threshold. With this condi-
tion for cloud area-detection, the cloud area-detection model of Landsat-8 was obtained
as Equation (1):

DNT9 ≥ ∆Cirrus (1)

where DNT9 is the spectral value of the Landsat-8 Band 9 image, and ∆Cirrus is the cloud
threshold in the cirrus band. The empirical cloud threshold in this study was 5400.
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(2) Shadow detection

The reflectance of the shaded area and the water body showed a rapid decrease
from Band 2 to Band 7 (Figure 3), and the reflection values were significantly less than
those of other feature types. If the differences of each band between the objective im-
agery and referenced imagery are calculated, the mean absolute difference Mabs must be
greater than the threshold ∆SM. In addition, the reflection values of the cloud-shaded
areas in bands 2 to 7 were all close to each other, while the reflections of water bodies
in bands 2, 3, and 4 were slightly higher than the values in bands 5, 6, and 7; therefore,
water bodies could be removed from the areas with lower reflectance values. By using
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this condition for detecting cloud shadow areas, the cloud shadow area detection model of
Landsat-8 OLI is (Equation (2)):

Mabs × Sign(N − n + 1) ≥ ∆SM (2)

where n is the number of bands, Mabs is the mean absolute difference of 2 images in two
periods, ∆SM is the cloud shadow area detection model, N is the cloud shadow area
discriminant function, Sign() is the sign function, and the values are 1, 0, and −1 according
to the positive, zero, and negative of the variables, respectively. For water bodies, which
are easily mixed with shadows, the normalized water body index NDWI (Equation (3)) has
been used to eliminate them from shadows [36]:

NDWI =
T3 − T5

T3 + T5
(3)

where T3 and T5 are the Band 3 (green) and Band 5 (near-infrared) of the referenced image.

(3) Cloud and shadow removal

The cloud-free area in the target image and the corresponding area in the referenced
image were subjected to spectral linear regression analysis to obtain the linear regression
coefficients between the two images. Since the temporal phases of the two Landsat-8
images were very close, the correlation coefficients between each band were relatively high.
The high correlation coefficients not only indicated the high spectral similarity between
the corresponding bands of the two images, but they also demonstrate that the variations
in the ground coverage are very slight. The reference image after atmospheric correction
could objectively represent the cloud-cover target image. Therefore, in order to better
eliminate the differences in spectral features between the target image and the reference
image, the linear regression coefficients between the target image and the reference image
were calculated to establish the linear fitting models by the least-squares method. Finally,
Landsat-8 cloud-free products were obtained (Figure 4).
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2.3. Snow- and Glacier-Removal Algorithms

Cloud contamination can significantly limit the signal quality of snow/glacier property
detections made by satellite optical–infrared spectrum remote sensing. For multi-band
remote sensing images, the spectral–band ratio method has proved to be a simple, highly
efficient, robust, and accurate technique to extract glacier outlines [70–74]. The slight
differences in the spectral features of the objects are enhanced, which helps to distinguish
the types of objects. The method avoids the problems of sensor saturation and shadowed
areas, and discriminates debris-mantled ice and ice-marginal water bodies [73]. We used
Landsat spectral bands to calculate the band ratio (Equation (4)):

Ratio = CHn/CHm (4)

where n is the band number of the red spectral (Red) band (Band 4 in OLI) or the near-
infrared spectral (NIR) band (Band 5 in OLI), and m is the band number of short-wave
infrared spectral (SWIR 1) band (Band 6 in OLI).

To eliminate snow-cover influences, the normalized-difference snow index (NDSI)
was used to distinguish the snow zones (Equation (5)):

NDSI = (CHn − CHm)/(CHn + CHm) (5)

where n is the band number of the visible spectral band, and m is the band number of the
near-infrared spectral band, e.g., Band 3 and Band 6 in OLI. This is based on the difference
between the strong reflection of visible radiation and the near-total absorption of shortwave
infrared wavelengths by snow [74,75]. The NDSI has been effective in distinguishing
snow from similarly bright soil, vegetation, and rock, as well as from clouds in Landsat
imagery [72]. Although the spectral band ratio method could quickly extract glacier
outlines, it needs several attempts to determine the threshold of the ratio. Inappropriate
thresholds will cause misclassification between glaciers, bare land, and water bodies.
On-screen digitizing by the manual delineation of glacier ice is time-consuming and labor-
intensive; however, it could make up for the shortcomings of the spectral band ratio method.
It is still widely used in combination with supervised classification techniques, especially
when the analyst is knowledgeable about snow/glaciers [71,74–76]. The DEM is employed
to eliminate the effects of perspective distortion and to reduce the topographic effect of
remotely sensed data [77,78]. Combining the above-mentioned methods, the outline of
the glacier and snow can be distinguished from clouds and other objects by the spectral
band algebraic operation.

In this study, pseudocolor synthesis was performed on the 7, 5, and 3 bands of
Landsat-8 cloud-free images produced by the de-clouding algorithm, and the training
samples were selected sequentially based on the ground sampling point dataset for veg-
etation recognition by the support vector machines (SVM) classifier [79,80]. The SVM
algorithm is one of the most accurate and robust algorithms in data mining and can be
used to classify linear and nonlinear data. In most cases, SVM-based classifiers can achieve
better classification accuracy than other widely used classifier techniques [81]. The SVM
algorithm was first proposed by Cortes and Vapnik [82] to classify data that were linearly
separable and later generalized to nonlinear states. By using this algorithm, the data were
categorized into two phases of train and test sets, and, to validate the data, cross-validation
techniques, such as k-fold, holdout, or leave-n-out training methods, were applied [82,83].
In order to find the optimal value of the penalty parameter (C) and the kernel parameter
(σ), the holdout cross-validation was applied to perform the classification with the highest
accuracy. The SVM classifier outperformed univariate decision trees, maximum likelihood,
and backpropagation neural network classifiers, and with a limited number of training
samples, there was almost no Hughes phenomenon [79–81,84]. There are four main ad-
vantages of SVM. Firstly, it has a regularization parameter, which makes the user think
about how to avoid over-fitting. Secondly, it uses the kernel trick, so one can build on
expert knowledge about the problem by engineering the kernel. Thirdly, SVM is defined
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by a convex optimization problem (no local minima) for which there are efficient methods.
Lastly, it is an approximation to a bound on the test error rate, and there is a substantial
theoretical knowledge base underlying the model [81]. Owing to these advantages, SVM is
widely used in remote sensing classification [80,81,84,85]. In this paper, 1/3 of the samples
were considered as test data each time, and the remaining 2/3 were taken as training data.
The common radial basis function (RBF) is used in SVM classification modeling. The overall
technical flowchart is shown in Figure 5.
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2.4. Vegetation Classification Tree

This study utilizes the currently widely used IGBP DISCover land-use type classifi-
cation system of the IGBP (International Geosphere–Biosphere Programme). The system
adopts the USGS classification method, and it was furtherly developed by the IGBP [28,86].
According to the system, there are 17 classification types on Earth (Table 1).

Table 1. IGBP DISCover land cover classification definition system.

Code Classification Description

1 Evergreen Needleleaf Forest Land dominated by trees with a percent canopy cover of >60% and height exceeding
2 m. Almost all trees remain green all year. Canopy is never without green foliage.

2 Evergreen Broadleaf Forest Land dominated by trees with a percent canopy cover of >60% and height exceeding
2 m. Almost all trees remain green all year. Canopy is never without green foliage.

3 Deciduous Needleleaf Forest
Land dominated by trees with a percent canopy cover of >60% and height exceeding
2 m. Consists of seasonal needleleaf tree communities with an annual cycle of leaf-on
and leaf-off periods.
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Table 1. Cont.

Code Classification Description

4 Deciduous Broadleaf Forest
Land dominated by trees with a percent canopy cover of ≥60% and height exceeding
2 m. Consists of seasonal broadleaf tree communities with an annual cycle of leaf-on
and leaf-off periods.

5 Mixed Forest
Land dominated by trees with a percent canopy cover of >60% and height exceeding
2 m. Consists of tree communities with interspersed mixtures or mosaics of the other
four forest cover types. None of the forest types exceeds 60% of the landscape.

6 Closed Shrublands Lands with woody vegetation less than 2 m tall and with shrub canopy cover of >60%.
The shrub foliage can be either evergreen or deciduous.

7 Open Shrublands Lands with woody vegetation less than 2 m tall and with shrub canopy cover between
10–60%. The shrub foliage can be either evergreen or deciduous.

8 Woody Savannas Lands with herbaceous and other understorey systems and with forest canopy between
30 and 60%. The forest cover height exceeds 2 m.

9 Savannas Lands with herbaceous and other understorey systems and with forest canopy of
10–30%. The forest cover height exceeds 2 m.

10 Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than 10%.

11 Permanent Wetlands
Lands with a permanent mixture of water and herbaceous or woody vegetation
that cover extensive areas. The vegetation can be present in either salt, brackish,
or fresh water.

12 Croplands
Lands covered with temporary crops followed by harvest and a bare soil period
(e.g., single and multiple cropping systems). Note that perennial woody crops will
be classified as the appropriate forest or shrub land-cover types.

13 Urban and Built-Up
Land covered by buildings and other man-made structures. Note that this class will not
be mapped from the AVHRR imagery, but will be developed from the populated places
layer that is part of the Digital Chart of the World (Danko 1992).

14 Cropland/Natural
Vegetation Mosaic

Land with a mosaic of croplands, forest, shrublands, and grasslands in which no one
component comprises more than 60% of the landscape.

15 Snow and Ice Land under snow and/or ice cover throughout the year.

16 Barren or Sparsely Vegetated Land of exposed soil, sand, rocks, or snow that never has more than 10% vegetated
cover during any time of the year.

17 Water Bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt water.

Based on the unique characteristics of the QTP, such as high altitude, severe cold,
and short vegetation growing season, the vegetation and land-cover types in the SJY were
classified into 7 major types based on the China Vegetation Type System 2007 [87]. Firstly,
based on the multi-year NDVI average, the areas with NDVI less than 0.05 were judged as
unvegetated areas [88,89]. The alpine grassland types were subdivided into four categories:
swamp meadow, alpine meadow, alpine steppe, and desert steppe. This division can
objectively and reasonably reflect the alpine vegetation types and their characteristics in the
SJY. It can also achieve a more refined classification of vegetation types within the capacity
of multispectral remote sensing. Considering that SNP is a national park area with very
little agricultural, settlement, or construction land, it is difficult to interpret these plots into
a separate land-use type alone in the overall system. In the main categories, non-vegetated
sandy land, mudflats, saline land, and other types are combined into bare land. The
division scheme can objectively reflect the vegetation characteristics of the SJY and realize
the reasonable classifications of subcategories in the context of ecology and hydrology.
The overall vegetation classification system and remotely sensed feature characteristics
are shown in Table 2.
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Table 2. Vegetation classification system and field characteristics of Sanjiangyuan National Park.

Code Name Illustration Description

1 Water
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distribution, and obvious morphological
features combined with the topography,
making it easier to identify.
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3. Results and Discussion
3.1. Classification Accuracy and Validation

Based on the SVM classifier, this paper classified the grassland based on Landsat-8
multitemporal cloud-free remote sensing images of the three parks in the SJY. A land
cover/vegetation type dataset (2021) of the three parks in SNP by manual verification
and correction of misclassification was produced. As the classification accuracy was the
main issue for its application, we estimated the errors of our SVM method in this study.
The average minimum distance matrix (Least to Most) between each classified type was
calculated based on the statistics of the classifier sample points (Figure 6).
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classifier in Sanjiangyuan Natural Park.

According to the statistical results, the SVM classifier can better distinguish the four
main grassland types, and the overall accuracy of classification is relatively high. The
average Kappa coefficient among the four grassland types in the three parks is 0.8366, the
overall classification mapping accuracy can reach 84.52%, and the mapping accuracy for
users could reach as high as 87.67%. The statistical results indicate that the average min-
imum distance between some first-level classes reached the maximum value of 2.0. For
example, the differences between bare land/water bodies and other classes were relatively
high, and the classification accuracies were high overall. However, within alpine grass-
lands, the classification accuracies of the four sub-grasslands were relatively low, especially
between desert steppe and alpine meadow (1.3297), and desert steppe and alpine steppe
(1.4171). We believed that this was highly related to the limited number of ground GPS
sample points and the low heterogeneity of the selected sample points [84,90,91]. The high
degree of similarity of the spectral characteristics of the four grassland types was also con-
sidered to be the main reason [23,81,85]. On the other hand, the low classification accuracy
has demonstrated the limitations of Landsat-8 multispectral remote sensing imageries in
finer-resolution grassland classifications of high-altitude alpine mountains [23,36,92].

In order to compare the accuracy of the produced datasets with other similar data
products, the MODIS 500 m vegetation classification dataset MCD12Q1 (https://lpdaac.
usgs.gov/products/mcd12q1v006/ accessed on 20 July 2022), ESA-CCI Global Land Cover
300 m (http://maps.elie.ucl.ac.be/CCI/viewer/download.php accessed on 20 July 2022),
and Global Land Cover 30 m (GLB30, http://www.globallandcover.com/ accessed on
20 July 2022) were then selected for the comparison of classification accuracy in this paper.

From the two randomly selected validation sites in the Yellow River Source Park
(Figure 7), the data produced in this paper have outstanding classification advantages in
terms of the type richness of land use/vegetation cover and the spatial and temporal resolu-
tions of the dataset. The performances of these datasets demonstrate that the classification
results of this paper can optimally distinguish the four alpine grassland types. However,
they could not be classified or performed for the other multispectral remote sensing datasets

https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://www.globallandcover.com/
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due to their low spatial resolutions or coarse classification systems. In these datasets, for
example, GLB30 had the most consistent spatial resolution with the dataset in this paper.
It only classified alpine grassland types as “grassland”, and classified swamp meadow
as “wetland”. The classification schedule cannot reflect the local characteristics of SNP
in a finer resolution. The comparisons demonstrate that the dataset of this paper has the
advantages of more alpine grassland types and higher spatial and temporal resolutions.
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Figure 7. Comparison of 2 samples in the headwater of Huang River between other products and the
results of this paper.

3.2. Classification Results

(1) Yellow River Source Park

The Yellow River Source Park is located in the eastern part of the SNP (Figure 8), with
a total area of about 19,000 km2. It has the top-two largest plateau freshwater lakes, Zhaling
Lake and Eling Lake, with a total water area of 1524.6 km2, in the territory, accounting
for 8% of the total park area at the source of the Yellow River. On the whole, the north is
low, with relatively little precipitation and mainly desert steppe areas, while the southern
part is relatively high, with abundant precipitation and mainly alpine meadow and alpine
steppe areas. According to the classification results (Figure 8), the most widely distributed
areas were alpine steppe and desert steppe. The areas were 6189.9 km2 and 6405.9 km2,
respectively, accounting for 32.6% and 33.7% of the total area of the park. The dominant
species of the alpine steppe were Elymus nutans, Roegneria nutans, Kobresia tibetica, and
Carex spp. Swamp meadows were mainly distributed near lakes or the Yellow River channel
on flat terrain, with an area of 1326.1 km2, accounting for 7% of the park’s total area. Swamp
meadows in this area were dominated by Kobresia littledalei, Kobresia tibetica, and Kobresia
prattii. Alpine meadows were mainly concentrated in the high-altitude mountains in the
south, with an area of 2175.2 km2, accounting for 11.4% of the total area. The species
of the alpine meadow were dominated by Kobresia pygmaea, K. humilis, K. setchwanensis,
K. capillifolia, Polygonum sphaerostachyum, Kobresia tibetica, Carex lanceolata, C. muliensis, and
C. meyeriana. In addition, mudflat-dominated bare land was distributed near the Yellow
River channel, accounting for 6.5% of the park area. There were glaciers or permanent snow
scattered on the tops of high mountains, but these covered less than 1% of the total area.
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Figure 8. Vegetation classification results of 2021 in the headwater of Huang River in Sanjiangyuan
National Park.

(2) Yangtze River Source Park

The Yangtze River Source Park has the largest area among the three parks of SNP, with
a total area of about 90,500 km2. It is located in the northwest of the SNP (Figure 9). The
elevation of the eastern part of the SJY is generally low and gradually increases from east
to northwest. The Yangtze River Source Park has the highest average elevation among
the three parks of SNP and the same elevation distribution trend as SJY. According to the
classification results (Figure 9), the whole park was dominated by alpine vegetation. It
was a typical alpine meadow, alpine steppe, and desert steppe area. The north and west
were mainly dominated by desert steppes and bare lands due to the high altitudes and
abundant glaciers and water bodies. The desert steppes covered 19,776 km2 and bare
lands covered 17,230 km2, accounting for 21.7% and 18.9% of the park’s area, respectively.
The dominant species of the desert steppe were Carex moorcroftii, Corex pseudofoetida, Stipa
purpurea, Festuca ovina, Artemisia spp., Ceratoides compacta, Ceratoides latens, Stipa glareosa,
Ephedra gerardiana, Orinus thoroldii, and Pennisetum flaccidum. The central and eastern areas
with lower elevations were mainly alpine steppes and swamp meadows. The areas were
26,294 km2 and 14,240 km2, accounting for 28.9% and 15.6% of the total area of the park,
respectively. The dominant species of alpine steppe and swamp meadow of this area
were Kobresia tibetica, Kobresia prattii, Kobresia littledalei, Kobresia pygmaea, Kobresia deasyi,
K. humilis, Carex lanceolata, C. muliensis, and C. meyeriana. In general, the vegetation in
the Yangtze River Source Park has a very short growing season, very little above-ground
biomass, relatively weak grassland-carrying capacity, and high vulnerability in alpine
grassland ecosystems.
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(3) Lancang River Source Park

This area is located in the south of SJY and is the smallest of the SNP. It is influenced
by warm and humid moisture from the southeast Asia monsoon. The annual mean pre-
cipitation is about 400–600 mm, which is relatively high for this region. Based on the
classification results in this paper (Figure 10), the area was mainly dominated by alpine
steppe, alpine meadow, and swamp meadow and was a typical plateau alpine grassland
area (Figure 10). Alpine grassland covered 3207.7 km2, alpine meadow covered 2877.7 km2,
and swamp meadow covered 2241.6 km2, accounting for 23.5%, 21.1%, and 16.4% of the
total area of the park, respectively, and 61% of the total area of the park. The alpine
steppe was mainly dominated by Kobresia setchwanensis, Kobresia tibetica, Kobresia deasyi,
Kobresia prattii, Kobresia littledalei, Kobresia pygmaea, Kobresia humilis, Carex lanceolata, and
Corex spp. The alpine meadow was mainly dominated by Elymus mutans, Roegneria nutans,
Corex spp., Kobresia pygmaea, Kobresia setchwanensis, Kobresia littledalei, and Thylacospermum.
The elevation of the western part of the region was relatively high, with more glaciers
and bare land distribution, while the northern part and river mudflats were distributed
with desert steppes, dominated by sparse vegetation, such as Sanssurea, Stipa aliena, Stipa
purpurea, Stipa breviflora, Stipa glareosa, Festuca ovina, S. purpurea var. arenosa, Littledalea
racemose, Carex moorcroftii, Ceratoides compacta, Ceratoides latens, Salsola abrotanoides, Artemisia
sphaerocephala, Puccinellia spp., Polygonum sibiricum, and Orinus thoroldii. In addition, there
were significantly developed networks of braided water systems, abundant water bodies,
and widespread swamp meadows.
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4. Conclusions

In this paper, we took the cold and high-altitude SNP as a typical research area, the
land-use/vegetation types of the three parks in SNP were extracted by multi-temporal
Landsat-8 OLI multispectral remote sensing images, and cloud-free remote sensing images
were obtained by using the de-clouding/snow/glacier algorithms. The verification sam-
pling points were trained with a SVM classifier by combining field GPS sampling points
and UAV sample data. Eventually, the alpine grasslands in cold and high altitudes were
classified, and the data accuracy and validation were examined in this paper. We obtained
the following conclusions:

(1) The classification results showed that the SVM classifier could better distinguish the
four vegetation types of alpine grassland, and the overall classification accuracy was
relatively high. The average Kappa coefficient was 0.8366 among the vegetation types
of the three parks, and the overall classification mapping accuracy could reach 84.52%.
The mapping accuracy for the user was as high as 87.67%. The classification perfor-
mances between the major land-use types were relatively high and the classification
accuracies were very high. However, in the alpine grassland subcategories, the classifi-
cation accuracies of the four typical grasslands were relatively low, especially between
desert steppe and alpine meadow, and desert steppe and alpine steppe. This is highly
related to the limited number of GPS sample points in the field, the low heterogeneity
of the selected sample points, and high consistencies of the spectral characteristics
of the four grassland types. The relatively low classification accuracy indicates the
limitations of Landsat-8 multispectral remote sensing imageries in finer-resolution
grassland classifications of high-altitude alpine mountains;

(2) The accuracy comparison between the dataset produced in this paper and the other
similar products demonstrated that the classification results of this paper were good
at distinguishing the four typical types of alpine grasslands. In contrast, the other
similar products tested were unable to distinguish grassland types either due to the
low spatial resolution or inadequate classification system. This demonstrates that the
datasets produced in this paper had the advantages of finer alpine grassland types
and higher spatial/temporal resolutions;
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(3) The method in this paper can be applied to other similar cold and high altitudes
with short vegetation growing seasons, but abundant clouds and snow/glaciers. The
method in this paper can improve the efficiency of producing grassland type datasets
and engineeringly generate year-by-year alpine grassland cover datasets, and provide
high-quality data with high time efficiency and high spatiotemporal resolutions. The
method can be utilized for other multispectral satellite imageries with the same band
matching, such as Landsat 7, Landsat 9, Sentinel-2, etc. The results of this paper can
facilitate further essential research on alpine grassland types, distribution, above-
ground biomass, carrying capacity, and grassland degradation on the QTP with finer
spatial and temporal resolutions.

Author Contributions: Conceptualization, Y.W., H.H. and X.W.; methodology, Y.W., W.W. and H.H.;
software, Y.W.; validation, Y.W., X.T. and H.L.; formal analysis, W.W. and X.T.; investigation, Y.W.,
W.W., X.T., H.L. and H.H.; resources, Y.W. and X.W.; writing—original draft preparation, Y.W. and
X.T.; writing—review and editing, Y.W. and X.T.; visualization, Y.W., W.W. and H.H.; supervision,
X.W.; funding acquisition, Y.W. and X.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDA19040500), and Joint Research Program of the Chinese Academy
of Sciences and Government of Qinghai province (Grant No. LHZX-2020-03).

Data Availability Statement: All the satellite data used in the manuscript are already publicly
accessible, and we have provided the download addresses in the manuscript.

Acknowledgments: We appreciate the anonymous reviewers for their valuable remarks and sugges-
tions. This research was funded by the Strategic Priority Research Program of the Chinese Academy
of Sciences (Grant No. XDA19040500), and Joint Research Program of the Chinese Academy of
Sciences and Government of Qinghai province (Grant No. LHZX-2020-03). We are very grateful for
their generous funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, J.; Wang, Y.; Piao, S.L.; Liu, M.; Han, G.D.; Li, J.R.; Liang, E.Y.; Lee, T.M.; Liu, G.H.; Wilkes, A.; et al. Toward a sustainable

grassland ecosystem worldwide. Innovation 2022, 3, 100265. [CrossRef] [PubMed]
2. DeFries, R.; Nagendra, H. Ecosystem management as a wicked problem. Science 2017, 356, 265–270. [CrossRef] [PubMed]
3. IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to

the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK;
New York, NY, USA, 2021. [CrossRef]

4. UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015;
Volume A/RES/70/1, pp. 1–35.

5. Overpeck Jonathan, T.; Breshears David, D. The growing challenge of vegetation change. Science 2021, 372, 786–787. [CrossRef]
[PubMed]

6. IPCC. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to
The Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK;
New York, NY, USA, 2007; Volume 18.

7. Wei, Y.Q.; Lu, H.Y.; Wang, J.N.; Wang, X.F.; Sun, J. Dual influence of climate change and anthropogenic activities on the
spatiotemporal vegetation dynamics over the qinghai-tibetan plateau from 1981 to 2015. Earth’s Future 2022, 10, e2021EF002566.
[CrossRef]

8. Wei, Y.Q.; Fang, Y.P. Spatio-temporal characteristics of global warming in the tibetan plateau during the last 50 years based on a
generalised temperature zone-elevation model. PLoS ONE 2013, 8, e60044. [CrossRef]

9. Wang, S.J.; Wei, Y.Q. Qinghai-tibetan plateau greening and human well-being improving: The role of ecological policies.
Sustainability 2022, 14, 1652. [CrossRef]

10. Lan, H.; Dong, G.; Chen, J.L.; Cheng, W.X. Study on the cover and the change of vegetation in ruoergai plateau. Bull. Sci. Technol.
2021, 37, 1–8, (In Chinese with English Abstract). [CrossRef]

11. Lange, M.; Feilhauer, H.; Kuehn, I.; Doktor, D. Mapping land-use intensity of grasslands in germany with machine learning and
sentinel-2 time series. Remote Sens. Environ. 2022, 277, 112888. [CrossRef]

12. De Caceres, M.; Wiser, S.K. Towards consistency in vegetation classification. J. Veg. Sci. 2012, 23, 387–393. [CrossRef]

http://doi.org/10.1016/j.xinn.2022.100265
http://www.ncbi.nlm.nih.gov/pubmed/35722354
http://doi.org/10.1126/science.aal1950
http://www.ncbi.nlm.nih.gov/pubmed/28428392
http://doi.org/10.1017/9781009157896.001
http://doi.org/10.1126/science.abi9902
http://www.ncbi.nlm.nih.gov/pubmed/34016765
http://doi.org/10.1029/2021EF002566
http://doi.org/10.1371/journal.pone.0060044
http://doi.org/10.3390/su14031652
http://doi.org/10.13774/j.cnki.kjtb.2021.03.001
http://doi.org/10.1016/j.rse.2022.112888
http://doi.org/10.1111/j.1654-1103.2011.01354.x


Remote Sens. 2022, 14, 3714 20 of 22

13. Guo, K.; Liu, C.C.; Xie, Z.Q.; Li, F.Y.; Franklin, S.B.; Lu, Z.J.; Ma, K.P. China vegetation classification: Concept, approach and
applications. Phytocoenologia 2018, 48, 113–120. [CrossRef]

14. Liu, M.; Fu, B.L.; Xie, S.Y.; He, H.C.; Lan, F.W.; Li, Y.Y.; Lou, P.Q.; Fan, D.L. Comparison of multi-source satellite images for
classifying marsh vegetation using deeplabv3 plus deep learning algorithm. Ecol. Indic. 2021, 125, 107562. [CrossRef]

15. Franklin, S.B.; Hunter, J.T.; De Caceres, M.; Dengler, J.; Landucci, F.; Krestov, P. Introducing the iavs vegetation classification
working group. Phytocoenologia 2016, 46, 5–8. [CrossRef]

16. Gellie, N.J.H.; Hunter, J.T.; Benson, J.S.; Kirkpatrick, J.B.; Cheal, D.C.; McCreery, K.; Brocklehurst, P. Overview of plot-based
vegetation classification approaches within australia. Phytocoenologia 2018, 48, 251–272. [CrossRef]

17. Reinermann, S.; Asam, S.; Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens.
2020, 12, 1949. [CrossRef]

18. Chytry, M.; Tichy, L. National vegetation classification of the czech republic: A summary of the approach. Phytocoenologia
2018, 48, 121–131. [CrossRef]

19. De Caceres, M.; Chytry, M.; Agrillo, E.; Attorre, F.; Botta-Dukat, Z.; Capelo, J.; Czucz, B.; Dengler, J.; Ewald, J.;
Faber-Langendoen, D.; et al. A comparative framework for broad-scale plot-based vegetation classification. Appl. Veg. Sci.
2015, 18, 543–560. [CrossRef]

20. Wildi, O. Revising classifications. In Data Analysis in Vegetation Ecology, 3rd ed.; CABI: Oxfordshire, UK; Boston, MA, USA, 2017;
pp. 261–277. [CrossRef]

21. Kumar, P.; Prasad, R.; Choudhary, A.; Mishra, V.N.; Gupta, D.K.; Srivastava, P.K. A statistical significance of differences in
classification accuracy of crop types using different classification algorithms. Geocarto Int. 2017, 32, 206–224. [CrossRef]

22. Gong, X.M.; Lin, J.; Gao, K.; Liu, Y.; Wang, M. A Hyperspectral Classification Method Based on Experimental Model of Vegetation
Parameters and c5.0 Decision Tree of Multiple Combined Classifiers. In Proceedings of the 2015 International Conference on
Optical Instruments and Technology: Optoelectronic Imaging and Processing Technology, Beijing, China, 17–19 May 2015.
[CrossRef]

23. Barsi, A.J.; Lee, K.; Kvaran, G.; Markham, L.B.; Pedelty, A.J. The spectral response of the landsat-8 operational land imager.
Remote Sens. 2014, 6, 10232–10251. [CrossRef]

24. Lewis, K.; de Barros, F.V.; Cure, M.B.; Davies, C.A.; Furtado, M.N.; Hill, T.C.; Hirota, M.; Martins, D.L.; Mazzochini, G.G.;
Mitchard, E.T.A.; et al. Mapping native and non-native vegetation in the brazilian cerrado using freely available satellite products.
Sci. Rep. 2022, 12, 1588. [CrossRef]

25. Zhao, S.; Jiang, X.D.; Li, G.Y.; Chen, Y.L.; Lu, D.S. Integration of ziyuan-3 multispectral and stereo imagery for mapping urban
vegetation using the hierarchy-based classifier. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102594. [CrossRef]

26. Fan, D.L.; Su, X.Y.; Weng, B.; Wang, T.S.; Yang, F.Y. Research progress on remote sensing classification methods for farmland
vegetation. AgriEngineering 2021, 3, 971–989. [CrossRef]

27. Biurrun, I.; Bergmeier, E.; Dengler, J.; Jansen, F.; Willner, W. Vegetation classification and its application are relevant globally.
Phytocoenologia 2019, 49, 1–6. [CrossRef]

28. Loveland, T.R.; Reed, B.C.; Ohlen, D.O.; Brown, J.F.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover
characteristics database and igbp discover from 1 km avhrr data. Int. J. Remote Sens. 2000, 21, 1303–1330. [CrossRef]

29. Bartholomé, E.; Belward, A.S. Glc2000: A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens.
2005, 26, 1959–1977. [CrossRef]

30. Hansen, M.C.; Sohlberg, R.; Defries, R.S.; Townshend, J.R.G. Global land cover classification at 1 km spatial resolution using a
classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [CrossRef]

31. Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.;
Cooper, A.; et al. Global land cover mapping from modis: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302.
[CrossRef]

32. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.C.; Zhao, Y.Y.; Liang, L.; Niu, Z.G.; Huang, X.M.; Fu, H.; Liu, S.; et al. Finer resolution
observation and monitoring of global land cover: First mapping results with landsat tm and etm+ data. Int. J. Remote Sens.
2013, 34, 2607–2654. [CrossRef]

33. Yang, H.Y.; Du, J.M. Classification of desert steppe species based on unmanned aerial vehicle hyperspectral remote sensing and
continuum removal vegetation indices. OPTIK 2021, 247, 167877. [CrossRef]

34. Muldavin, E.H.; Addicott, E.; Hunter, J.T.; Lewis, D.; Faber-Langendoen, D. Australian vegetation classification and the
international vegetation classification framework: An overview with case studies. Aust. J. Bot. 2021, 69, 339–356. [CrossRef]

35. Peng, K.F.; Jiang, W.G.; Hou, P.; Sun, C.X.; Zhao, X.; Xiao, R.L. Spatiotemporal variation of vegetation coverage and its affecting
factors in the three-river-source national park. Chin. J. Ecol. 2020, 39, 3388–3396, (In Chinese with English Abstract). [CrossRef]

36. Li, H.Y.; Luo, C.F.; Wang, Y.; Yang, H.H. Cloud and shadow removal method in landsat8 image and its application. Geospat. Inf.
2017, 15, 71–74+81+10, (In Chinese with English Abstract).

37. Wang, R.; Liu, H.B.; Gong, R. A method of removal cloud of multispectral satellite image. Comput. Mod. 2005, 6, 13–15,
(In Chinese with English Abstract). [CrossRef]

38. Sun, Y.H.; Zhang, T.J.; Liu, Y.J.; Zhao, W.Y.; Huang, X.D. Assessing snow phenology over the large part of eurasia using satellite
observations from 2000 to 2016. Remote Sens. 2020, 12, 2060. [CrossRef]

http://doi.org/10.1127/phyto/2017/0166
http://doi.org/10.1016/j.ecolind.2021.107562
http://doi.org/10.1127/phyto/2016/0116
http://doi.org/10.1127/phyto/2017/0173
http://doi.org/10.3390/rs12121949
http://doi.org/10.1127/phyto/2017/0184
http://doi.org/10.1111/avsc.12179
http://doi.org/10.1079/9781786394224.0000
http://doi.org/10.1080/10106049.2015.1132483
http://doi.org/10.1117/12.2185000
http://doi.org/10.3390/rs61010232
http://doi.org/10.1038/s41598-022-05332-6
http://doi.org/10.1016/j.jag.2021.102594
http://doi.org/10.3390/agriengineering3040061
http://doi.org/10.1127/phyto/2019/0323
http://doi.org/10.1080/014311600210191
http://doi.org/10.1080/01431160412331291297
http://doi.org/10.1080/014311600210209
http://doi.org/10.1016/S0034-4257(02)00078-0
http://doi.org/10.1080/01431161.2012.748992
http://doi.org/10.1016/j.ijleo.2021.167877
http://doi.org/10.1071/BT20076
http://doi.org/10.13292/j.1000-4890.202010.019
http://doi.org/10.3969/j.issn.1006-2475.2005.06.005
http://doi.org/10.3390/rs12122060


Remote Sens. 2022, 14, 3714 21 of 22

39. Carlson, B.Z.; Hébert, M.; Van Reeth, C.; Bison, M.; Laigle, I.; Delestrade, A. Monitoring the seasonal hydrology of alpine
wetlands in response to snow cover dynamics and summer climate: A novel approach with sentinel-2. Remote Sens. 2020, 12, 1959.
[CrossRef]

40. Zhao, M.Y. Study of Clouds Removal Methods on Remote Sensing Images. Master’s Thesis, Tianjin University of Science and
Technology, Tianjin, China, 2016. (In Chinese with English Abstract).

41. Jia, K.; Liang, S.L.; Zhang, N.; Wei, X.Q.; Gu, X.F.; Zhao, X.; Yao, Y.J.; Xie, X.H. Land cover classification of finer resolution
remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J. Photogramm. Remote Sens.
2014, 93, 49–55. [CrossRef]

42. Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the landsat-7 etm+ automated cloud-cover assessment
(acca) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [CrossRef]

43. Schmidt, G.; Jenkerson, C.B.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (Ledaps)
Algorithm Description; Open-File Report: Reston, VA, USA, 2013; p. 27. [CrossRef]

44. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in landsat imagery. Remote Sens. Environ.
2012, 118, 83–94. [CrossRef]

45. Qiu, S.; Zhu, Z.; He, B.B. Fmask 4.0: Improved cloud and cloud shadow detection in landsats 4–8 and sentinel-2 imagery.
Remote Sens. Environ. 2019, 231, 111205. [CrossRef]

46. Skakun, S.; Wevers, J.; Brockmann, C.; Doxani, G.; Aleksandrov, M.; Batič, M.; Frantz, D.; Gascon, F.; Gómez-Chova, L.; Hagolle,
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