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Abstract: The triple-frequency linear combination method can provide combinations with different
characteristics and is one of the important methods to improve the performance of navigation services.
Due to the large number of combinations and different combination performances, combinatorial
clustering optimization is very important, and the efficiency of manual screening is very low. Firstly,
based on the basic model, the objective equations are derived. Secondly, based on the fuzzy c-
means (FCM) algorithm, three improved PSO-FCM algorithms are proposed, namely the S-PSO-
FCM algorithm, L-PSO-FCM algorithm, and LOG-PSO-FCM algorithm. Thirdly, according to the
different combination characteristics, the two datasets whose combined coefficients sum to 0 and 1
are emphatically discussed. Finally, the effectiveness of the improved PSO-FCM algorithms is studied
based on the public dataset and the measured BeiDou-3 navigation satellite system (BDS-3) data of
short baseline, long baseline, and ultra-long baseline. The results show that the performance of the
proposed algorithm is better than that of the FCM algorithm, especially in short baseline and long
baseline cases.

Keywords: triple frequency; clustering optimization; combination; FCM algorithm; improved PSO-
FCM algorithm

1. Introduction

The global satellite navigation system (GNSS) can provide effective “positioning,
navigation, and timing” (PNT) services. It is one of the most important military and
civil infrastructures [1,2]. As one of the three typical GNSS observations, carrier phase
observations are mainly used to provide centimeter-level positioning services. However,
they are vulnerable to cycle slip caused by signal loss and building block, which will
significantly affect the positioning performance. Therefore, the cycle slip needs to be
detected and repaired in the process of positioning solution [3]. Positioning with carrier
phase observations usually needs to solve the integer ambiguity, and the efficiency of fixed
ambiguity will also significantly affect the time of the positioning solution. At the same
time, the ionospheric delay error will also significantly affect the positioning accuracy [4].
Therefore, triple-frequency GNSS has attracted extensive attention because it can detect
cycle slip with high precision, improve the efficiency of ambiguity fixing, and correct the
ionospheric delay error.

The linear combination of triple-frequency carrier phase observations is one of the
common methods in high-precision positioning. By this time, it will bring the combination
coefficient, and the coefficient is generally required to be an integer to ensure the ambiguity
being integral. Thus, the number of triple-frequency combinations is extremely large. More-
over, different combinations have different characteristics, such as different combination
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wavelengths, combined ionospheric delay errors, and combined noises [5,6]. Additionally,
they are suitable for different scenarios [7]. However, the traditional triple-frequency com-
bination optimization method usually involves traversal search, which will calculate the
corresponding combined wavelength, combined ionospheric delay error, and combined
noise, and the optimal combination will be manually selected [8]. However, the method
ignores the similarity of different combinations. Additionally, the method is not suitable in
the case of more combinations, and its efficiency is very low.

The fuzzy clustering algorithm can classify objects with similar characteristics, which
is consistent with the optimization of triple-frequency combined observations, so it has
been widely studied. Additionally, the most popular algorithm is the fuzzy c-means (FCM).
The FCM was proposed by Bezdek1 in 1984 aiming to partition datasets into suitable
clusters, gaining great success in many fields [9,10]. However, the FCM tends to fall into
the local minimum trap failing to find the best solution of cluster centers [11]. The initiation
of the algorithm is executed randomly; thus, the clustering results may be highly sensitive
to the initial value.

In recent years, many studies use the fuzzy clustering algorithm and its improved
variants to automatically select the triple-frequency combinations [12]. When the dataset
is very small, Xing introduced Kruskal’s spanning tree algorithm to examine the clusters
of combinations and to find the optimal combinations subsequently [13]. Tian proposed
a modified kernel-based fuzzy C-means clustering algorithm, claiming that this method
improves the initiation sensitivity [8], whereas Daniel pointed that the improvements of
kernel-based FCM are questionable [14]. They experimentally demonstrated that kernel-
based FCM do not produce significant improvement over standard FCM for most datasets.
What is more problematic is that the kernel-based FCM appear to be highly sensitive
to the selection of the values of the kernel parameters, which damages the feasibility of
kernel-based FCM. Huang introduced the dissimilarity matrix to promote the self-adaptive
clustering algorithm to analyze the combination observations obtained by the longer
wavelength criterion [15].

In general, the mainstream to select the optimal triple-frequency combination au-
tomatically is the FCM method, whereas the urgent requirement is to address some of
the algorithm’s current shortcomings, such as the initiation process and local optimum
trap [16,17]. Thus, considerable efforts were made to improve the performance of the
FCM algorithm.

As mentioned by Kuo et al. [18], most of the improved versions failed to achieve a
significant development of FCM. Out of this, the present paper proposed a novel approach
to enhance the FCM algorithm.

On the one hand, the graph theory to determine the initial cluster centers for sub-
sequent calculation instead of random calculation is introduced. To the best of the au-
thors’ knowledge, seldom has the graph theory been applied for the initiation of clus-
tering algorithm. The obtained initial value is still coarse, but it is much better than the
random process.

On the other hand, one of the famous heuristic methods, the particle swarm optimiza-
tion, is utilized to enhance the global search ability of FCM, so as to avoid falling into the
local optimum trap as much as possible.

The paper is organized as follows. Firstly, the main characteristic parameters of BDS
triple-frequency combined observations are introduced, and the calculation formulae of
combined wavelength, combined ionospheric delay error, and combined noise are deduced.
Secondly, according to the above constraints, three improved FCM algorithms are proposed,
and the algorithm flow and algorithm analysis are given. Thirdly, based on the calculation
results, the performance of the algorithms and the physical meaning of them are analyzed,
and the performance of the proposed methods based on the public dataset is studied, and
the effectiveness of the algorithms based on the measured BeiDou-3 navigation satellite
system (BDS-3) data of short baseline, long baseline, and ultra-long baseline is further
tested. Finally, the discussion is given.
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2. Basic Model of BDS-3 Triple-Frequency Combined Observations
2.1. BDS-3 Basic Equation

The basic equations of BDS-3 carrier phase and pseudorange observations are [19,20]

Pi = ρ + cdtr − cdts + T + qi I + εPi (1)

λci ϕi = ρ + cdtr − cdts + T − qi I + λci Ni + λciεϕi (2)

where the subscript i (i = 1, 2, 3) represents the three frequencies of BDS-3, respectively. P
indicates the pseudorange observation in units of meters. ϕ represents the carrier phase
observation in units of cycles. ρ (in meters) represents the geometric distance between
the satellite and the receiver. C refers to the speed of light in vacuum. dtr and dts denote
the receiver and satellite error in units of seconds. T and I, respectively, represent the
tropospheric delay and ionospheric delay at frequency f 1, both in units of meters. λc
denotes wavelength in unit of meters. f = c/λc represents frequency in Hz. qi = f 2

1 / f 2
i is

the ionospheric scale factor. N denotes the integer ambiguity in units of cycles. εP and εϕ

represent pseudorange noise (in meters) and carrier phase noise (in cycles), respectively.

2.2. Linear Combination of BDS-3 Observations

The linear combination method can be used to provide different types of combinations
with different characteristics, and its expression is [21]

λϕM = ρ + λNM − ∂M I + λεϕM (3)

where λ represents the combined wavelength. ϕM = lϕ1 + mϕ2 + nϕ3 denotes the com-
bined carrier phase observations. NM is the combined ambiguity. ∂M represents the
combined ionospheric scale factor. εϕM represents the combined observation noise. These
parameters are defined as

λ = (
l

λc1
+

m
λc2

+
n

λc3
)
−1

(4)

NM = lN1 + mN2 + nN3 (5)

∂M = λM(l
q1

λc1
+ m

q2

λc2
+ n

q3

λc3
) (6)

εϕM = lεϕ1 + mεϕ2 + nεϕ3 (7)

The combined frequency is expressed by

fM = l f1 + m f2 + n f3 (8)

2.3. BDS-3 Basic Parameters

In order to facilitate subsequent analysis, it is assumed that the three frequencies meet
the requirements that f1 > f2 > f3, and the reference frequency fo is defined as

fo = fi/ki (9)

where ki represents the frequency multiple and is an integer. Relevant parameters are
defined as follows.

(a) Lane number

The lane number k is defined as

k =
lk1 + mk2 + nk3

gcd(k1, k2, k3)
(10)

where gcd(·) represents the greatest common divisor operator, and gcd(k1, k2, k3) = 1.

(b) Combined wavelength
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Combined with Equations (4) and (10), the combined wavelength can be expressed as

λ = c/( fok) = λo/k (11)

where λo represents the wavelength corresponding to the reference frequency.

(c) Combined ionospheric scale factor

From Equations (3) and (6), the combined ionospheric delay in units of cycles can be
expressed as

∂M I
λ

=
lλc1 + mλc2 + nλc3

λ1
(I/λc1) (12)

Thus, the combined ionospheric scale factor ∂c of the combined ionospheric delay in
units of cycles is

∂c =
lλc1 + mλc2 + nλc3

λc1
(13)

When ∂c = 0, the combination is the ionosphere-free (IF) combination.

(d) Combined noise amplification factor

Assuming that the noises of the triple-frequency carrier phase observations are the
same and identical in the standard deviation, that is σϕ = σϕ1 = σϕ2 = σϕ3 . According to
the error propagation law, the standard deviation of the combined noise is

σM =
√

l2σ2
ϕ1

+ m2σ2
ϕ2

+ n2σ2
ϕ3

=
√

l2 + m2 + n2σϕ (14)

The combined noise amplification factor η is defined as

η =
√

l2 + m2 + n2 (15)

For BDS-3, B1I, B3I, and B2a are selected, which are listed in Table 1.

Table 1. Information of the triple-frequency signals.

System Carrier f (MHz) λc (m)

BDS
B1I 1561.098 0.192
B3I 1268.52 0.236
B2a 1176.45 0.255

Three linearly independent combinations are usually used to detect and repair cy-
cle slips and improve the success rate of ambiguity fixing [22]. The traditional manual
screening method has low efficiency and strong subjectivity, which is difficult to realize
high-automation positioning. Therefore, the positioning solution program should auto-
matically select the appropriate linear combination based on scenarios, constellations, and
frequency points, which is an effective way to achieve high automatic positioning. The
clustering optimization algorithm can be embedded in the solution program, which is an
important method to solve the above problem. Among them, the FCM algorithm, as a
traditional clustering optimization algorithm, can realize combination classification and
selection, but its clustering performance needs to be improved.

3. Theoretical Basis of Clustering Algorithms

In this section, the concepts of graph theoretic and particle swarm optimization are
mainly introduced to promote the performance of the original FCM algorithm, as well as
the granularity concept, which is utilized in the proposed method as a clustering index [23].
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3.1. FCM Theory and Mathematic Basis

In the present paper, the dataset chosen artificially from triple-frequency combination
observations of BDS-3 is defined as Xn = {x1, x2, · · · , xn} of n objects indexed by i where each
object is represented by its corresponding characteristic vector, i.e., xi = {xi1, xi2, · · · , xim}.
The characteristic vector is composed of λ, ∂c, and η. In order to eliminate the negative
effects of the dimension, the raw dataset is manipulated by a Z-score calculator based on
the mean value and standard deviation [24,25].

c is defined as the amount of clusters. And βc is defined as the characteristic vector of
the corresponding cluster center listed by j. Note that the FCM is different from the hard
cluster method (HCM) for the underlying idea of the fuzzy partition matrix U = [uij]c×n,
and uij is the important index that indicates the proportion of the object with jth cluster
center. We define dij as the Euclidean distance between data xi and cluster center β j.

In the FCM, the fuzzy partition matrix is further added as follows

J(U, β) =
c

∑
j=1

n

∑
i=1

(uij)
md2(xi, β j) (16)

where m is the fuzzy weighting exponent ranging from 1 to 5, and it is regulated as 2 in
this paper; d(xi, β j) is the Euclidean distance between data xi and cluster center β j, i.e.,
dij = ‖xi − β j‖. The constraint conditions are as follows

uij ∈ [0, 1], ∀j = 1, 2, · · · , c; ∀i = 1, 2, · · · , n (17)

c

∑
j=1

uij = 1, ∀i = 1, 2, · · · , n (18)

0 <
n

∑
i=1

uij < n, ∀j = 1, 2, · · · , c (19)

The FCM method falls into the category of iterative algorithms. In order to mini-
mize the objective function, the cluster centers and fuzzy partition matrix are updated
through the following equations based on the Lagrange method derived by rigorous
mathematical proof.

β j =

n
∑

i=1
(uij)

mxi

n
∑

i=1
(uij)

m
(20)

uij =
1

c
∑

k=1
(dij/dkj)

(2/(m−1))
(21)

During iteration, the cluster centers and fuzzy partition matrix are calculated. The pro-
cess continues before the new cluster centers change within an error threshold, indicating
that the prototypes of cluster centers are stabilized.

Additionally, before implementing the FCM method, the initialization should be
finished. The random process is usually used to generate the fuzzy partition matrix and
cluster center vectors, causing a severe convergence problem, i.e., falling into the local
minimum trap.

3.2. Graph Theory

The clustering method falls into the unsupervised machine-learning algorithm, and
there is no prior knowledge about the cluster structure of the dataset, including the number
of clusters. Thus, the clustering algorithm executes random initiation conditions, leading
to the non-convergence solution or falling into the local optimum.
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Taking the selection of triple-frequency combination observations, for example, the
first step is to generate a set of cluster centers before implementing the clustering method
for almost all algorithms. Additionally, the number of clusters is also unknown, which will
be determined by empirical rules or an artificial test. Usually, the maximum number of
clusters is less than

√
n.

The present paper proposed a novel approach to calculate the number c, called the
graph theory model.

Imagine the different data vectors are points in hyper-dimension space. Under specific
distance measurement, we determine the distance between any two points. Then, all
the data points and the corresponding distance relationship can be treated as undirected
weighted graph in graph theory.

A graph G = (W, E) is a pair where W = (w1, w2, · · · , wn) is a set of vertices, and
E = {e1, e2, · · · , es} is a set of edges. The amount of vertices equals the number of data,
while the number of edges s is n(n− 1)/2.

In order to analyze the relationship between every pair of vertices, the Chebyshev
distance is the measurement of the different vertices. The definition of the Chebyshev
distance is given as follows:

D(xi, xj) = max(
∣∣xi − xj

∣∣)
D =

n
∑

i,j=1,i 6=j
D(xi ,xj)

n(n−1)/2

(22)

Further, we define the distance exponent λ = 0.6; edges with distance of more than
λ·D will be eliminated, where the D is the average distance for all the selected edges.

It is impossible and meaningless to incorporate all edges with the graph, especially
the ones with too large a distance, which means that they are probably not similar. The
underlying idea is to eliminate the extra edges with too large a distance, i.e., more than
λ·D, and to save those edges with limited distance. Then, we can refer to some methods in
graph theory, e.g., degree distribution, to analyze the cluster structure.

In graph theory, we can obtain a matrix denoting the relationship between adjacent
vertices, called the adjacent matrix, which is given by

A =


a11 a22 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann

,

aij =

{
1, D

(
xi, xj

)
< λD

0, else

(23)

The degree of wi is represented as ki, which is actually the number of edges connected
with the vertices The degree can be expressed as

ki = a(2)ii (24)

where a(2)ii is the diagonal element of matrix A2.
The vertices with a large degree, and the belonging vertices, will be considered as one

cluster. The remaining vertices will update the degree distribution, and then, a similar
process will be executed to determine the other cluster centers and their belonging vertices.

Step1: calculate the degree for all vertices.
Step2: reckon the one with the largest degree is the one of the cluster center and

eliminate this vertex and its belonging edges.
Step3: calculate the amount of remaining vertices, judge whether the number is less

than 0.05n. If yes, then classify these vertices to the nearest cluster, and if not, return to
Step 1.
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With the support of the graph theory, we are able to obtain the probable cluster center
β0 and the amount of classes c. It is noted that the results are very coarse and merely serve
as the initiation of the clustering algorithm. And the initiation results are much better than
the random calculation.

3.3. Cluster Indices
3.3.1. CV Based on Granularity Concepts

There are many indices used for cluster validation, among which the DBI, PBM, and DI
are the main approaches. The present paper presents a new perspective, called granularity,
to examine the clustering validation, which was originally the physical concept being
used to depict the measurement of information density. Granularity includes compactness
and separation.

Granularity compactness (GC) is similar to the goal function of FCM, which is the
average of all the data vectors.

GC(c) =
1
n

c

∑
j=1

n

∑
i=1

um
ij d2

ij, j = 1, 2, · · · , c; i = 1, 2, · · · , n (25)

Granularity separation (GS) depicts the dissimilarity among different classes.

GS(c) =

c
∑

j,k=1;j 6=k
d2

jk

[c(c− 1)]/2
; j, k = 1, 2, · · · , c; (26)

Hence, the clustering validation function can be expressed as follows:

CV(c) = αGC(c) + (1− α)
1

GS(c)
(27)

The weighting exponent α is used to adjust the compactness index and separation
index. The one with the relatively large range will be endowed with small weighting
exponent α for better validation results. In general, the weight of GC will be larger than the
weight of GS; thus, in the present paper, α = 0.6, 1− α = 0.4. Further, we can conclude
that smaller CV(c) indicates better clustering results.

3.3.2. PBM Index

Pakhira introduced a new index to evaluate the clustering result, which is defined
as [26]

VPBM = (
1
c
× E1

Jm
× Dc)

2
(28)

where E1 =
n
∑

i=1
uij‖xi − β j‖; Dc = maxc

i,j‖βi − β j‖; c is the number of clusters;

Jm = (U, β) =
n
∑

i=1

c
∑

j=1
(uij)

m1‖xi − β j‖, whereas, m1 here is set to 1.5.

Similar to the GC mentioned in Section 3.3.1, the factor E1/Jm depicts the overall
compactness of the cluster system. What is different is the adoption of Dc depicting the
separation distance of the varied cluster center, causing the result that higher PBM indicates
better clustering results.

The clustering indices, including CV and PBM, will be used as the evaluation and
validation of the proposed clustering method.

3.4. Particle Swarm Optimization (PSO)

The traditional PSO algorithm runs in an intuitive and simple way where each particle
utilizes the prior best solution itself and the other particle with global best solution [27].
Ref. [28] claims that the particle swarm technique is more efficient with respect to generic
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algorithms. Additionally, it was mentioned in ref. [29] that PSO outperforms the differential
evolution algorithm.

During the iteration, a certain number of particles are involved to find the best solution.
Each particle owns two kinds of properties. One is solution property, referred to as the
position matrix p, and the other is mutation property, referred to as the velocity matrix v.
Parameters in the optimal control problem constitute the position vector, and every particle
can be recognized as a possible solution. The velocity vector includes the information of
each particle’s mutation, which helps the particle to find better solution.

Assume M to be the size of the swarm. The position vector and velocity vector can be
formulated as p and v. For each particle, the previous best solution property in history will
be remarked as pbest, while the global best solution is gbest. Obviously, gbest is of superiority
with respect to pbest. The PSO follows the equation to search better solutions

vt+1
i,j = wvt

i,j + c1r1(pt
best(i, j)− xt

i,j)

+ c2r2(gt
best(i, j)− xt

i,j)

pt+1
i,j = pt

i,j + vt
i,j

,

i = 1, 2, · · · , M, j = 1, 2, · · · , m

(29)

where vt+1
i denotes the ith particle’s mutation with regard to the parameter in the iteration;

w is the inertial weight; c1 and c2 are acceleration coefficients; r1, r2 are random numbers,
which are uniformly distributed in the interval between 0 and 1. More details can be found
in ref. [27].

The fitness value is determined by the clustering validation function, according to
which the PSO will repeat the application of Equation (29) until the iteration stops. Actually,
the fitness function is the parameter that connects the FCM with the PSO method and will
be discussed in the remainder of the present paper.

4. Proposed Clustering Algorithms

The present section introduces the hybrid algorithm based on the FCM and improved
PSO, combining the merits of these two methods. However, FCM is sensitive to the initial
cluster centers and fuzzy partition matrix, tending to fall into the local minimum trap,
while the PSO has a strong ability in the global exploration of the optimum.

4.1. Variants of Some Improved PSO

Some variants of PSO were proposed to promote the ability, among which the impor-
tant one is the variable inertia weight strategy, e.g., Ref. [30]. Inertia weight is a balancing
parameter controlling the overall performance of PSO. Large weight indicates better capa-
bility in global search, while small weight is of better performance in local exploitation.

Thus, the present paper introduced three kinds of strategies to adjust inertial weight
with respect to the iterations.

• Linear inertia weight strategy

The most common improvement is the linear strategy, referred to as L-PSO. It was first
introduced by Eberhart to boost the ability of PSO [30]. It has also been mentioned that the
performance brought by the linear strategy varied a lot; thus, different kinds of strategies
must be experimented for providing an analysis with the specific dataset and background.

Here, one can obtain the linear inertial weight strategy as follows:

w(i) = ws− (ws− we)(i/maxgen), i = 1, 2, · · · , maxgen (30)

where maxgen is the max generation; ws and we are set to be constant 1.2 and 0.3.

• Square inertial weight strategy
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Similar to the previous section, the square inertial weight strategy, referred to as Square
PSO (S-PSO), is expressed as follows:

w(i) = ws− (ws− we)(i/maxgen)2, i = 1, 2, · · · , maxgen (31)

• Logarithmical inertial weight strategy

Ref. [23] proposed a novel strategy of inertial weight, which has proved to be helpful
for balancing the global search and local search capabilities of the particle swarms, referred
to as Logarithmical PSO (LOG-PSO) in the present paper. The formulation is as follows:

ω(i) = (ln(2.98 + i/maxgen))−z, i = 1, 2, · · · , maxgen (32)

where i is the current iteration, z is the regulatory factor for fine tuning, e.g., 1.51 by
experience.

Set the max generation as 300 and 1000; then, three kinds of inertial weight curves are
shown in Figure 1.
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Further, the update of three kinds of inertial weight is substituted into Equation (29),
as given synthetically by

vt+1
i,j = w(k/maxgen)vt

i,j + c1r1(pt
best(i, j)− xt

i,j)

+ c2r2(gt
best(i, j)− xt

i,j)

pt+1
i,j = pt

i,j + vt
i,j

,

i = 1, 2, · · · , M, j = 1, 2, · · · , m, k = 1, 2, · · · , maxgen

(33)

Let the number of particles be constant M, and the position matrix of each particle
has a similar format. The size of the position matrix is c× m, where c is the number of
clusters obtained by the graph theory model, and m is the dimension of the dataset. Thus,
the particle position matrix can be expressed as follows:

p(l) =

β11 · · · β1m
...

. . .
...

βc1 · · · βcm

, l = 1, 2, · · · , M (34)

Each particle represents a possible solution of cluster centers for the dataset with
m dimensions. Once the cluster centers are determined, the fuzzy partition matrix is
calculated subsequently according to its membership function mentioned in the FCM
method. Every update of particle p(l) means the change of cluster centers followed with
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Equation (33), where the rule to select the best particle is the fitness function in PSO. Here,
the fitness function can be expressed briefly as follows:

f (p) = J(U, β) (35)

where J is the objective function of the FCM method. Hence, smaller fitness means better
clustering results.

4.2. Hybrid Method Based on FCM and PSO

Although FCM is of high efficiency and rigorous mathematic basis, it tends to fall
into the local optimum. Thus, an improved PSO algorithm is combined with FCM to
utilize the outstanding ability for global searching, whereas in a traditional FCM algorithm
and PSO algorithm, the initiation process is usually implemented randomly, causing the
initiation sensitivity problem, which is harmful for searching the global optimal solution of
the cluster center.

Additionally, the graph theory model provides the cluster number and possible cluster
center, which will be used as the initial value.

Specifically, the FCM will be integrated into the framework of the PSO algorithm; thus,
the hybrid method, called PSO-FCM, will be strongly integrated together to maintain the
merits of both algorithms. The hybrid method provides more advantages over the sensitiv-
ity problem occurring in FCM and the local optimum trap by utilizing the optimization
framework of the improved PSO.

4.3. Validation of The Proposed Algorithms

Before applying the proposed method to the selection of the optimal triple-frequency
combination observation for BDS-3, the proposed clustering method must be verified upon
a well-known machine-learning dataset in the present section, called Iris. The running
platform is Matlab 2017a, and the CPU is intel i7-11800H 2.3GHz.

The Iris dataset includes 150 samples, which possess four attributes, respectively, i.e.,
petal length, petal width, sepal length, and sepal width. It contains three classes of the iris
plant, which are Iris-setosa, Iris-versicolor, and Iris-virginica, respectively. Since the classes
of samples are already known, it is easy to validate the clustering algorithm.

The clustering results derived from the FCM and one of the proposed PSO-FCM
methods will be compared with the true clusters provided by the dataset. Without a loss of
generality, the S-PSO-FCM is verified in terms of the objective function and cluster centers.
The basic clustering results are shown as Figures 2 and 3. The clustering task is easy due to
the small number of samples. Additionally, all three kinds of proposed PSO-FCM methods
are experimented to search the cluster centers, as shown in Table 2.

Table 2. Clustering results.

Attributes True Results S-PSO-FCM L-PSO-FCM LOG-PSO-FCM FCM

Petal Length 6.58, 5.93, 5.00 6.72, 5.81, 5.00 6.72, 5.81, 5.00 6.72, 5.81, 5.01 6.72, 5.81, 5.01
Petal Width 2.97, 2.77, 3.42 3.07, 2.70, 3.41 3.07, 2.70, 3.41 3.07, 2.70, 3.41 3.07, 2.70, 3.41

Sepal Length 5.55, 4.26, 1.46 5.46, 4.32, 1.50 5.46, 4.32, 1.50 5.46, 4.33, 1.50 5.46, 4.32, 1.50
Sepal Width 2.02, 1.32, 0.24 1.98, 1.38, 0.10 1.98, 1.38, 0.10 1.98, 1.38, 0.26 1.98, 1.38, 0.26

It can be concluded that the clustering results obtained from the FCM and S-PSO-FCM
are almost the same, except for a little difference in the clustering centers. Hence, the
proposed methods are valid and feasible to solve the clustering issue.
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5. Results

In this section, firstly, datasets are constructed for BDS-3 B1I, B3I, and B2a, which will
be divided into different groups. Secondly, two groups of linearly independent combina-
tions in S0 are selected and analyzed. Thirdly, for group S1, on the basis of proving the
clustering advantages of the improved PSO-FCM algorithm based on the public dataset, all
combinations are divided into six categories and analyzed. Finally, based on the observa-
tion data of short baseline, long baseline, and ultra-long baseline, the success rates of cycle
slip detection of the optimal combinations are calculated, and the clustering performance is
also studied.

5.1. Datasets Construction

Let υ = l + m + n, then, according to the different values of υ, Sυ represents different
groups. Theoretically, υ can be integers, such as 0, ±1, ±2. According to Equations (10) and
(13), for given k and ∂c, there exists a combination with minimum combined noise based
on the principle of minimum noise. In this paper, the traversal search is carried out in the
range of −100 ≤ k ≤ 1500 and −5 ≤ ∂c ≤ 5, and they are grouped according to the values
of υ = ±2, ± 1, 0, 3. At the same time, the search results are limited in η < 100, as shown
in Figure 4.
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It can be seen from the above figure that: (a) the searched effective combinations are
symmetrically distributed, and the combined ionospheric scale factor gradually decreases
with the increase in the number of lanes; (b) for different υ, as long as the number of
lanes is appropriate, the combined ionospheric delay error can reach zero, that is, there
always exists the IF combination; (c) for the same group, the effective data present a banded
distribution, that is, there are multiple combinations that meet the same requirements at
the same time.

Table 3 shows the combined wavelength, the combined ionospheric scale factor, and
the combined noise amplification factor of typical combinations under different groups. It
can be seen from the table that the characteristics of typical combinations under different
combination coefficients vary greatly, and the long combination wavelength, small combi-
nation ionospheric scale factor, and low combination noise amplification factor cannot be
uniformly satisfied.

Table 3. The combined wavelength, the combined ionospheric scale factor, and the combined noise
amplification factor of typical combinations under different groups.

Group k Combination λ (m) ∂c η

S−2

−14 (7,−4,−5) −10.47 −4.55 9.48
−6 (8,−8,−2) −24.43 −4.49 11.48
2 (9,−12,1) 73.31 −4.44 15.03

S−1

10 (0,13,−14) 14.66 −2.57 19.10
410 (5,1,−7) 0.35 −3.05 8.66
802 (9,−7,−3) 0.18 −3.59 11.78
1199 (8,6,−15) 0.12 −4.52 18.02

S0

8 (1,−4,3) 18.32 0.058 5.09
400 (5,−12,7) 0.36 −0.47 14.76
797 (4,1,−5) 0.18 −1.40 6.48
1189 (8,−7,−1) 0.12 −1.94 10.67

S1

−10 (0,−13,14) −14.66 2.57 19.10
416 (−3,9,−5) 0.35 1.44 10.72
808 (1,1,−1) 0.18 0.90 1.732
1208 (6,−11,6) 0.12 0.42 13.89

S2

−2 (−9,12,−1) −73.31 4.44 15.03
406 (−3,−4,9) 0.36 4.02 10.29
806 (2,−16,16) 0.18 3.54 22.71
1195 (0,1,1) 0.12 2.55 1.41

S3 1203 (−9,26,−14) 0.12 4.41 30.87
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In order to fix the ambiguity under three frequencies, three linearly independent
combination coefficients are required. From Figure 4, the appropriate combination is
generally selected in the group with small υ and a range close to the k− ∂c plane, such
as S0. However, in S0, the sum of combination coefficients is zero, so there are only two
linearly independent combinations at most. At this point, the last combination should be
selected from S±1. Due to the symmetrical distribution, S1 is analyzed in the next section.

According to the previous search results, all data in S0 and S1 are used as the dataset
to test the performance of the proposed algorithms.

5.2. Group of BDS-3 Triple-Frequency Combinations
5.2.1. The First Group S0

As mentioned earlier, there are only two linearly independent combinations in S0.
Firstly, the first combination selects the combination when the combined ionospheric scale
factor and the number of lanes are close to 0. The origin area is enlarged in Figure 5.
Additionally, Table 4 lists the specific information of all combinations in the figure.
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Table 4. Information of all combinations in Figure 5.

k Combination λ (m) ∂c η

−69 (−3,11,−8) −2.13 −0.08 13.93
−24 (−3,12,−9) −6.11 −0.17 15.30
−61 (−2,7,−5) −2.40 −0.02 8.83
−16 (−2,8,−6) −9.16 −0.12 10.20
−53 (−1,3,−2) −2.77 0.04 3.74
−8 (−1,4,−3) −18.33 −0.06 5.10
37 (−1,5,−4) 3.96 −0.15 6.48
−45 (0,−1,1) −3.26 0.10 1.41
45 (0,1,−1) 3.26 −0.10 1.41
−37 (1,−5,4) −3.96 0.15 6.48

8 (1,−4,3) 18.33 0.06 5.10
53 (1,−3,2) 2.77 −0.04 3.74
16 (2,−8,6) 9.16 0.12 10.20
61 (2,−7,5) 2.40 0.02 8.83

As can be seen from Figure 5 and Table 4, (1,−4,3) and (−1,4,−3) have longer combined
wavelengths, smaller combined ionospheric scale factor and lanes. The two combinations
are symmetrical to each other. In this paper, (1,−4,3) is selected as the first combination.
At the same time, all points on the straight line in Figure 5 are linearly correlated, so the
second combination is selected at the adjacent points.
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When using the matrix change method to solve the ambiguity, the ionospheric delay
error can be ignored in the short baseline scenario, and the influence of observation noise
is very important. In the long baseline scenario, the data smoothing method must be
adopted, and the influence of the ionospheric delay error and observation noise is very
important. Considering the symmetry, in the short baseline scenario, the combination
that the number of lanes is close to 0 is preferred. As can be seen from Table 4, the noise
amplification factor of (0,1,−1) is small and can be selected as the second combination in
the short baseline scene. Similarly, in the long baseline scenario, the combination that the
combined ionospheric scale factor is close to 0 is preferred. As can be seen from Table 4, the
noise amplification factor of (1,−3,2) is small and can be selected as the second combination
in the long baseline scene.

5.2.2. The Second Group S1

Clustering Research

The present section is divided into two parts: the clustering results of the original
FCM and the three proposed variants of the PSO-FCM method with varied inertial weight
will be compared, and better clustering results will be employed for selecting the optimal
combination of triple frequency.

The dataset includes 688 available samples with three attributes, respectively, i.e.,
wavelength, ionospheric delay coefficient, and noise amplification factor. The involved
algorithms are performed with 300 iterations and 1000 iterations to survey the effect of the
iterations.

The populations for the three variants of the PSO-FCM algorithms are set to 100 uniformly,
and other parameters are regulated following previous equations.

The iteration curves are shown in Figures 6 and 7.
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The Y-axis is the fitness function J, while the X-axis is the iterations. In the beginning
phase of the four kinds of algorithms, the fitness values are very large, which uniformly
indicates the initial cluster centers derived from the graph theory still possess the potential
to promote. As mentioned before, the graph theory model is an auxiliary approach to
determine the very coarse initial cluster centers, aiming mostly to help the subsequent
algorithms to obtain better results than the traditional FCM algorithm where the initial
value is calculated randomly.

What is intuitive is that the initial fitness values for the three variants of the PSO-FCM
algorithms are the same, which differ from the FCM. Meanwhile, what is non-intuitive is
that even though FCM has a relatively lower fitness value, i.e., better clustering results, it is
finally defeated by the other three algorithms after about 200 iterations. The present paper
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concludes that the proposed approach to use the graph theory for initiation is feasible,
which plays a more feasible role in the initiation process.
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Moreover, the fitness value of FCM descends very quickly within the first 20 iterations,
whereas in the later iterations, it holds the same level, indicating there is no improvement
change of the cluster centers. It can be concluded that the FCM falls into the local minimum
trap after about 20 iterations. The update of the clustering prototype matrix and the fuzzy
partition matrix is invalid to eliminate the local optimum and thus unable to search better
cluster centers.

While the FCM’s velocity to find a better solution is much faster than the other three
algorithms in the early stage, the other three algorithms possess considerable ability to
search global optimum solutions.

The other three algorithms begin to exceed FCM after about 180 iterations, and during
most iterations, the LOG-PSO-FCM and L-PSO-FCM possess better results than the S-PSO-
FCM, while, finally, the S-PSO-FCM achieves the best fitness value after about 850 iterations,
as shown in Figure 7.

In order to evaluate the performance of the proposed methods, the clustering results
in terms of several indices are listed in Table 5. As mentioned before, J is the objective
function value, while the PBM and CV are synthesized indices with effective clustering
validity ability.

Table 5. Clustering indices of different algorithm results (best results are highlighted in bold).

Algorithm Iterations PBM CV J

S-PSO-FCM
300 186.2225 0.2086 165.2535
1000 224.5406 0.1944 143.6415

L-PSO-FCM
300 179.3561 0.2156 157.2448
1000 220.9347 0.1961 145.7575

LOG-PSO-FCM
300 207.1792 0.2049 155.1127
1000 212.6527 0.2009 150.2784

FCM
300 33.5642 0.3600 168.1527
1000 33.5644 0.3600 168.1527

Larger values of PBM indicate better clustering results, while smaller values of CV
mean better results. All algorithms are tested over 300 iterations and 1000 iterations, and
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the involved results are consistent with the fitness curves above. It can be seen that the
FCM is defeated by all the proposed methods.

The best scores are marked in bold, namely the S-PSO-FCM, achieving the lowest
J, smallest CV, and largest PBM. Investigating the results in terms of the indices listed
in Table 5 strongly verifies the correctness of the clustering results for the consistency in
indices and avoids misjudgments as much as possible.

It can be concluded that the three variants of the proposed algorithms have better
performance than the traditional FCM method in terms of comprehensive clustering indices.
Not only the PSO strategy but also the initialization method, i.e., the graph theory, are
responsible for the good results. Note that the coordination of these two parts contributes
to the proposed algorithm. Thus, the two parts are both indispensable and important.

Clustering Results for S1

In order to ensure the linear independence of the three combinations, the third com-
bination needs to be selected in S1. In this paper, the improved PSO-FCM algorithms are
selected to cluster all combinations in the range −98 ≤ k ≤ 1499. The clustering results are
shown in Figure 8. For comparison, the clustering results of the FCM algorithm are also
given.
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300 186.2225 0.2086 165.2535 
1000 224.5406 0.1944 143.6415 

L-PSO-FCM 
300 179.3561 0.2156 157.2448 
1000 220.9347 0.1961 145.7575 

LOG-PSO-FCM 300 207.1792 0.2049 155.1127 
1000 212.6527 0.2009 150.2784 

FCM 300 33.5642 0.3600 168.1527 
1000 33.5644 0.3600 168.1527 

Clustering Results for 1S  

In order to ensure the linear independence of the three combinations, the third 
combination needs to be selected in 1S . In this paper, the improved PSO-FCM algo-
rithms are selected to cluster all combinations in the range − ≤ ≤98 1499k . The cluster-
ing results are shown in Figure 8. For comparison, the clustering results of the FCM al-
gorithm are also given. 

  

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 24 
 

  

Figure 8. Clustering results with respect to different algorithms. (The data samples in different 
classes and the corresponding cluster centers are shown. The existing differences in Table 4 will be 
embodied through this figure—not very fiercely though. The overall clustering results are very 
close). 

Corresponding to the clustering results under different algorithms in the figure, all 
combinations are classified according to the following characteristics. 
(1) The combined wavelength is long, and the combined noise amplification factor is 

small, which is suitable for ambiguity resolution under short baseline. 
(2) The combined wavelength and the combined ionospheric scale factor are relatively 

moderate, and the combined noise amplification factor is small, which belongs to the 
optional combination in a specific scene. 

(3) The combined wavelength is short, but the combined ionospheric scale factor and 
the combined noise amplification factor are small, which is suitable for ambiguity 
resolution under long baseline. 

(4) The combined wavelength is long, but the combined noise amplification factor is too 
large, which is different from the first kind and belongs to the bad cluster. 

(5) The combined wavelength and the combined ionospheric scale factor are relatively 
moderate, but the combined noise amplification factor is large, which belongs to the 
bad cluster. 

(6) The combined ionospheric scale factor is small, but the combined noise amplifica-
tion factor is large, which is different from the third kind and belongs to the bad 
cluster. 
Among the above six categories, the first category is preferred in the short baseline 

scenario, and the third category is preferred in the long baseline and ultra-long baseline 
scenarios. The centers of the six categories are indicated by five pointed stars in Figure 8. 

5.3. Algorithm Performance under Different Baselines 
In order to study the performance of optimal combinations under different algo-

rithms, the measured data under the short baseline, the long baseline, and the ultra-long 
baseline scenarios are selected to carry out ambiguity resolution. The data under the 
short baseline scene are provided by the China University of Mining and Technology 
(Xuzhou). The data under the long baseline scenario are from the fixed station under the 
above short baseline scenario and the WUH2 station. The data under the ultra-long 
baseline scenario are from the SGOC and WUH2 stations. The specific information un-
der the three scenarios is listed in Table 6. In order to eliminate the influence of the re-
ceiver clock error, satellite clock error, and other errors, the triple-difference data of 
BDS-3 C27 and C39 at B1I, B3I, and B2a are used in the short baseline and long baseline 

Figure 8. Clustering results with respect to different algorithms. (The data samples in different classes
and the corresponding cluster centers are shown. The existing differences in Table 4 will be embodied
through this figure—not very fiercely though. The overall clustering results are very close).



Remote Sens. 2022, 14, 3713 17 of 23

Corresponding to the clustering results under different algorithms in the figure, all
combinations are classified according to the following characteristics.

(1) The combined wavelength is long, and the combined noise amplification factor is
small, which is suitable for ambiguity resolution under short baseline.

(2) The combined wavelength and the combined ionospheric scale factor are relatively
moderate, and the combined noise amplification factor is small, which belongs to the
optional combination in a specific scene.

(3) The combined wavelength is short, but the combined ionospheric scale factor and
the combined noise amplification factor are small, which is suitable for ambiguity
resolution under long baseline.

(4) The combined wavelength is long, but the combined noise amplification factor is too
large, which is different from the first kind and belongs to the bad cluster.

(5) The combined wavelength and the combined ionospheric scale factor are relatively
moderate, but the combined noise amplification factor is large, which belongs to the
bad cluster.

(6) The combined ionospheric scale factor is small, but the combined noise amplification
factor is large, which is different from the third kind and belongs to the bad cluster.

Among the above six categories, the first category is preferred in the short baseline
scenario, and the third category is preferred in the long baseline and ultra-long baseline
scenarios. The centers of the six categories are indicated by five pointed stars in Figure 8.

5.3. Algorithm Performance under Different Baselines

In order to study the performance of optimal combinations under different algorithms,
the measured data under the short baseline, the long baseline, and the ultra-long baseline
scenarios are selected to carry out ambiguity resolution. The data under the short baseline
scene are provided by the China University of Mining and Technology (Xuzhou). The
data under the long baseline scenario are from the fixed station under the above short
baseline scenario and the WUH2 station. The data under the ultra-long baseline scenario
are from the SGOC and WUH2 stations. The specific information under the three scenarios
is listed in Table 6. In order to eliminate the influence of the receiver clock error, satellite
clock error, and other errors, the triple-difference data of BDS-3 C27 and C39 at B1I, B3I,
and B2a are used in the short baseline and long baseline scenarios, respectively, while the
triple-difference data of BDS-3 C37 and C40 are studied in the ultra-long baseline scenario.
Cycle slips are eliminated from the measured data in the three scenarios.

Table 6. Information under different baseline scenarios.

Baseline Type Station Position Sampling Interval/s Date Location

short —— ~40.31◦N,
~116.63◦E 1 15 July 2021 Beijing, China

long —— ~40.31◦N,
~116.63◦E 1 15 July 2021 Beijing, China

WUH2 114.36◦N, 30.53◦E Wuhan, China

ultra-long WUH2 114.36◦N, 30.53◦E
1 27 August 2021 Wuhan, China

SGOC 6.89◦N, 79.87◦E Sri Lanka

5.3.1. The Short Baseline Scenario

As mentioned above, according to the optimal combination under the short baseline
scene given by the S-PSO-FCM, L-PSO-FCM, LOG-PSO-FCM, and FCM algorithms, the
combined triple-difference ambiguities under different epochs are calculated, as shown
in Figure 9. By comparing the proportion of epochs with the differencing values over
0.5 cycles, the success rate of the combined triple-difference ambiguity repair can be obtained.
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Table 7 lists the success rates of the combined triple-difference ambiguity repair
calculated by the four algorithms in the short baseline scenario. It can be seen from the table
that the success rate of (−5,9,−3) optimized by the S-PSO-FCM algorithm is the highest,
reaching 99.3%, which is better than 97.9% of the L-PSO-FCM algorithm and 94.7% of the
LOG-PSO-FCM algorithm. The three improved PSO-FCM algorithms are all better than the
FCM algorithm. This proves the superiority of the improved algorithms proposed in this
paper under the short baseline scenario.

Table 7. The success rates of the combined triple-difference ambiguity repair calculated by the four
algorithms.

Baseline Algorithm Combination λ (m) ∂c η Success Rate

short

S-PSO-FCM (−5,9,−3) 3.67 2.09 10.72 99.3%
L-PSO-FCM (−5,10,−4) 1.73 2.00 11.87 97.9%

LOG-PSO-FCM (−5,11,−5) 1.13 1.90 13.08 94.7%
FCM (−5,12,−6) 0.84 1.80 14.32 89.8%

long

S-PSO-FCM (−2,1,2) 0.60 1.89 3.00 94.9%
L-PSO-FCM (−1,1,1) 0.34 1.56 1.73 74.5%

LOG-PSO-FCM (−2,2,1) 0.51 1.79 3.00 68.6%
FCM (−1,0,2) 0.38 1.65 2.24 66.1%

ultra-long

S-PSO-FCM (3,−1,−1) 0.13 0.44 3.32 12.8%
L-PSO-FCM (3,0,−2) 0.13 0.35 3.61 14.3%

LOG-PSO-FCM (3,1,−3) 0.12 0.25 4.36 6.1%
FCM (3,2,−4) 0.12 0.15 5.39 2%

5.3.2. The Long Baseline Scenario

Figure 10 shows the combined triple-difference ambiguities calculated by the four
algorithms under different epochs. The success rates are also listed in Table 7. It can be
seen that the success rate of (−2,1,2) optimized by the S-PSO-FCM algorithm is the highest,
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reaching 94.9%, which is much higher than the other three algorithms. It illustrates that the
S-PSO-FCM algorithm can achieve the best effect in the long baseline scenario.
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5.3.3. The Ultra-Long Baseline Scenario

Under the ultra-long baseline scenario, due to the long distance between the observa-
tion stations, there are few effective epochs that can be observed by the two satellites at
the same time. Figure 11 shows the combined triple-difference ambiguity calculated by
the four algorithms in different epochs under the ultra-long baseline scenario. The success
rates are listed in Table 7 as well. It can be seen from the table that the success rates of the
four algorithms are all less than 15%. This indicates that the ultra-long baseline scenario
is not suitable for using the linear combination triple-difference method to repair and fix
the ambiguity.
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6. Discussion

Actually, once the combination is confirmed, it can be directly used without repeated
selection. However, it is essential to study the similarity of the many different combinations.
Moreover, on the one hand, GNSS is moving in the direction of frequency tunability, and
the frequencies can be changed according to the actual requirement. On the other hand,
embedding adaptive screening procedures in positioning programs can also help improve
program adaptability.

Obviously, a better application of the clustering method will be conducive for selecting
better triple-frequency observations. Consistent with the literature, this research found that
the improved versions of the cluster method can achieve better clustering indices than the
traditional FCM algorithm. We assume several reasons for the better performance of the
proposed methods.

The first and most important point is the outstanding global optimization ability
of the PSO algorithm, where the improvements underlying the present study expanded
this advantage. The good agreements found in Figure 7 and Table 5 will give a strong
support for the first point, where the fitness values of FCM remain constant during most
iterations, and the corresponding clustering indices are almost identical with respect to 300
and 1000 iterations, indicating that the implementation of the conventional FCM falls into
the local optimization at a very early stage and loses gradient to improve performance. A
possible explanation for these results may be the lack of sufficient gradient to eliminate the
local optimum trap.

In contrast, the three variants of PSO are able to achieve a better global search, thus
eliminating the local optimum trap. Observations of the fitness curves in Figures 6 and 7
may reveal a possible explanation for this; the unique global search strategy in PSO gives
the FCM the ability to escape from the local optimum trap, so that the fitness values will be
better updated compared to the traditional FCM approach.

Among the three variants of PSO, different inertial weights may reflect the ability to
adjust global and local search. It is not easy to find a suitable inertial weight value for
all generations. The present study provides three appropriate adjustment strategies to
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investigate the effect of inertia weights. The results demonstrate the S-PSO-FCM method is
best in terms of the fitness values and all clustering indices, which suggests that relatively
high inertial weights in the early stage and smaller values in the subsequent phase are
associated with better results.

The second point is the robust performance. To the best knowledge of the authors,
there is no corresponding study that has ever applied the graph theory in the initiation of
the clustering algorithm. Note that this study uses the Chebyshev distance to generate the
initiation vertices, and some specific details of this method are still worth further research.
This is a stride from the previous random initiation process, which uses none of the prior
knowledge of the dataset. To some extent, this method guarantees the robust performance
of the subsequent realization of the clustering algorithm.

The generalization ability was demonstrated in this study. For the results of the public
dataset, it can be seen from Figures 6 and 7 and Table 7 that the fitness of the FCM algorithm
in the early stage of the iteration is lower than that of the three improved algorithms, which
indicates a better clustering performance. However, with the increase in the number of
iterations, the clustering performance of the three improved algorithms is better.

Specifically, the PBM, CV, and J of the S-PSO-FCM algorithm are separately 224.54,
0.19, and 143.64 after iterating 1000 times, which is better than the other three algorithms.
Additionally, the PBM, CV, and J of the three improved algorithms are all better than the
FCM algorithm.

When the proposed method is applied to the BDS-3 measured data, it can be seen from
Table 7 that in the short baseline scenario, the success rates of the combined triple-difference
ambiguity repair of the S-PSO-FCM, L-PSO-FCM, and LOG-PSO-FCM algorithms are much
higher, which are separately improved by 9.5%, 8.1%, and 4.9% compared with the FCM
algorithm. In the long baseline scenario, they are improved by 28.8%, 8.4%, and 2.5%,
respectively. In the ultra-long baseline scenario, they are separately improved by 10.8%,
12.3%, and 4.1%, but the overall success rates are all less than 15%.

On the one hand, this shows that the baseline length significantly affects the ambi-
guity restoration and thus the differential localization accuracy. On the other hand, this
illustrates that the algorithm performance of the three improved algorithms and the impact
on the optimization of the triple-frequency combination are different. Furthermore, these
demonstrate the effectiveness of the three improved algorithms in optimizing the combi-
nations of triple-frequency observations and their superiority compared to the traditional
FCM algorithm.

7. Conclusions

This study reports some valuable concepts to boost the ability of the traditional FCM
method, i.e., the graph theory with Chebyshev distance and advanced variants of the
PSO method, and the improved versions of FCM show better performance in terms of
various clustering indices. To the best knowledge of the authors, few of these concepts were
found in the literature on the application to clustering methods, or the optimal selection
of triple-frequency combinations. So, it is also an advance in the application of intelligent
algorithms in satellite navigation.

In conclusion, the performance of the improved PSO-FCM algorithms proposed in this
paper is better than the FCM algorithm under the public dataset and the BDS-3 measured
data, which proves the superiority of the proposed algorithms. However, there still exist
some problems that should be further studied. Three scenarios are roughly selected in
this paper. The situation of slightly larger sampling time interval and higher ionospheric
activity should be considered in the following research.
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