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Abstract: High-precision habitat mapping can contribute to the identification and quantification
of the human footprint on the seafloor. As a representative of seafloor habitats, seabed sediment
classification is crucial for marine geological research, marine environment monitoring, marine
engineering construction, and seabed biotic and abiotic resource assessment. Multibeam echo-
sounding systems (MBES) have become the most popular tool in terms of acoustic equipment for
seabed sediment classification. However, sonar images tend to consist of obvious noise and stripe
interference. Furthermore, the low efficiency and high cost of seafloor field sampling leads to
limited field samples. The factors above restrict high accuracy classification by a single classifier.
To further investigate the classification techniques for seabed sediments, we developed a decision
fusion algorithm based on voting strategies and fuzzy membership rules to integrate the merits of
deep learning and shallow learning methods. First, in order to overcome the influence of obvious
noise and the lack of training samples, we employed an effective deep learning framework, namely
random patches network (RPNet), for classification. Then, to alleviate the over-smoothness and
misclassifications of RPNet, the misclassified pixels with a lower fuzzy membership degree were
rectified by other shallow learning classifiers, using the proposed decision fusion algorithm. The
effectiveness of the proposed method was tested in two areas of Europe. The results show that
RPNet outperforms other traditional classification methods, and the decision fusion framework
further improves the accuracy compared with the results of a single classifier. Our experiments
predict a promising prospect for efficiently mapping seafloor habitats through deep learning and
multi-classifier combinations, even with few field samples.

Keywords: seabed sediment classification; multibeam echo-sounding system; deep learning; random
patches network; decision fusion

1. Introduction

Ocean ecosystems provide a wide range of services to humans, including food, re-
sources, culture, climate control and provision of habitats. In recent years, as the demand
for ocean space and resources has gradually expanded, large-scale human activities have
put this system under enormous pressure [1,2]. Seafloor maps can provide essential in-
formation for ocean monitoring and management, mainly including seafloor topographic
and seafloor habitat information. Seafloor habitats are referred as a “spatially defined
area where the physical, chemical and biological environment is distinctly different from
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the surrounding environment” [3]. High-precision habitat mapping can contribute to the
identification and quantification of the human footprint on the seafloor, by providing data
for investigating the physical characteristics, spatial distribution, and ecological functions
of biological communities and seafloor habitats. As a representative of seafloor habitat
mapping, the classification of seafloor sediments has gradually drawn the interest of rel-
evant scholars. Seabed sediments mainly refer to the constituents of the seafloor surface,
consisting of the seafloor rocks and the surface sediments deposited during hydrodynamic
action [4,5]. High-quality and full-coverage investigation of the seafloor sediments can help
promote the application of marine scientific research, resource development, engineering
construction, environmental protection, and military security in many fields [6,7]. At
present, the exploration methods applied to the seabed sediments mainly include direct
seafloor field sampling and indirect optical and acoustic methods [8]. Seafloor field sam-
pling has the disadvantages of low efficiency and high cost, making it difficult to achieve
a large-scale rapid survey. Optical remote sensing is also applied to seabed sediment
mapping. However, because of the obvious attenuation of light in water, it can only be
carried out in shallow water inshore with good water quality [9]. In contrast, acoustic
waves have good water propagation properties and have been widely used for seabed
sediment exploration and seafloor topography measurements [10,11].

With the rapid development of sonar systems and signal processing technologies,
acoustic methods have shown great potential in seafloor habitat mapping. Researchers
have used many devices, such as a multibeam, side-scan sonar, and sub-bottom profiler, to
provide rich observational information for accurate exploration of seabed environments
and seafloor geological structures [12,13]. When the frequency and angle of incidence are
constant, the backscatter intensity depends on the seabed properties [14], which are closely
related to the sediment types. A multibeam echo-sounding system (MBES), which can
simultaneously acquire high-precision backscatter intensity information and corresponding
seafloor topographic information, is one of the primary devices applied to acoustic seabed
sediment classification studies currently [15,16].

To date, seabed sediment classification based on the MBES data is considered to be
an important method to characterize the seafloor habitats [17–19]. The classification meth-
ods utilized in seabed sediment evaluation mainly focus on supervised and unsupervised
classification. Among them, supervised classification methods mainly include K-nearest
neighbor (KNN) [20], support vector machine (SVM) [21], decision tree (DT) [22], random
forest (RF) [23], and back propagation neural network (BPNN) [24,25]. Unsupervised classifi-
cation methods mainly include K-means clustering [26,27] and self-organizing feature map
(SOM) neural networks [24]. However, sonar images have low contrast, high noise, obvious
stripes and are susceptible to environmental conditions. The aforementioned classifiers
mainly rely on the so-called “shallow structure” and cannot fully learn complex nonlinear
features, posing a dilemma in terms of improving seabed sediment classification accuracy.

Recent researches have shown that deep learning can produce highly representative
features through hierarchical learning, an advantage that s apparent when dealing with
more complex data relationships [28]. Deep learning has better generalization ability
and compatibility with the noise of images. Several recent studies have demonstrated
the effectiveness of deep learning methods for seabed sediment classification, even if
the MBES images have stripes and noises [9,29]. However, owing to the complex field
conditions and high costs, the seabed sediment samples obtained from field sampling
are very limited. To our knowledge, the existing deep learning networks usually require
a large quantity of training samples because of the many parameters that need to be
determined [30,31], which was hardly considered in previous MBES seabed mapping
studies. In 2018, a new deep learning method named random patches network (RPNet)
was proposed [32] and had been proven to be the most effective in hyperspectral image
(HSI) classification, compared to the many existing deep learning methods. RPNet utilizes
random projection for dimensionality reduction, which is beneficial for insufficient samples
in the training process of the classifier [33]. RPNet combines both shallow and deep features,
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thus facilitating the extraction of sediment features with lower noise and more reliable
information, while most deep learning methods only utilize the deepest feature [30,31,34].
Therefore, the RPNet may yield a good performance in seabed sediment mapping when
the samples are limited.

However, RPNet also demonstrates some deficiencies when the sediments are mixed.
The sediments are always small scale, with adjacent pixels often representing different
substrate types, especially in mixed sediments. Similar to the classical convolutional neural
networks, RPNet tends to have an over-smoothing phenomenon on small-scale sediments,
which may falsely erase small useful features and cause misclassification. Furthermore, for
seabed sediment acoustic classification, there is no strong statistical relationship between
most features extracted from sonar images and sediment classes [35], which restricts the
ability to extract useful information by a single classifier. In fact, different classifiers offer
different generalization abilities in sample learning. The decision fusion algorithm based
on voting strategies and fuzzy membership rules can inherit the advantages of every
single classifier and take advantage of the complementarity between various classifiers
through different fusion strategies. Thus, the misclassified pixels derived from RPNet with
a lower fuzzy membership degree can be rectified by other shallow learning classifiers
using the proposed decision fusion algorithm, which further improves the classification
accuracy [28,36]. Previous studies have verified the effectiveness of the decision fusion
method in remote sensing image classification [28,37], but it has not yet been introduced
into the seabed sediment classification of acoustic images.

In this paper, we mainly consider the following questions:

(1) The limited field samples and inevitable noise in acoustic images are obstacles for
high accuracy seabed sediment classification. Can we find a classification framework
that has good performance with small samples?

(2) Although deep learning has been proved to be effective for seabed sediment classifica-
tion, it may falsely erase small useful features and cause misclassification. In fact, any
classifier, regardless of the architecture, has limited abilities to mine effective features
and uncertainties in its predictions. Can we design an architecture to take advantage
of the complementarity between deep and shallow learning classifiers?

In summary, the main contributions of this research article are as follows:

(1) After feature extraction, we employ the RPNet algorithm for seabed sediment classifi-
cation, which only needs a small number of samples during the training stage. The
results are compared with several traditional machine learning methods (random
forest, K-nearest neighbor, support vector machine and deep belief network) to verify
the efficiency and effectiveness of RPNet. This algorithm may be a promising way to
reduce the impact of few samples and noise on classification accuracy.

(2) In order to take advantage of the complementarity between RPNet and other shallow
architectures to alleviate the problem of over-smoothness and misclassification, we
propose a deep and shallow learning decision fusion model based on voting strategies
and fuzzy membership rules, which combines the seabed sediment classification re-
sults of RPNet and several traditional shallow learning classifiers. Then, a benchmark
comparison is provided by the single classifier to evaluate the performance of our
proposed decision fusion strategy.

2. Study Sites and Experimental Data
2.1. Study Sites

Two study sites, S1 and S2, were selected to investigate the validity and universality of
the proposed method, both of which are in the sea around the United Kingdom. S1 is located
in the southern North Sea. The North Sea is located in the northwestern part of the European
continent and has a temperate maritime climate, whose average water depth is 91 m.
According to JNCC [38], the southern North Sea has a mix of sediments, mainly covered by
sandbanks and gravel beds. This site covers an area of approximately 44 km2, with a depth
of 19–51 m, and gradually shows a deepening trend from northwest to southeast (Figure 1).



Remote Sens. 2022, 14, 3708 4 of 22

S2 is situated in the southern Irish Sea, covering an area of 33,000 km2 [39]. Under the
influence of high tidal activity and energy exchange intensity, the physical conditions and
biological communities have varied significantly over these years, ranging from rocky reefs
to deep mud basins [40]. Our research area is near Mid St George’s Channel, covering
approximately 188 km2, and from west to east, the water depth gradually increases from
64 m to 124 m. S1 is next to the Straits of Dover and belongs to the Southern North Sea
Marine Protected Areas (MPA); S2 covers the area of the Habitat Mapping for Conservation
and Management of the Southern Irish Sea (HABMAP) surveys [40]. A growing number
of institutions and scholars have conducted scientific research programs in these areas,
aimed at understanding seafloor habitats and seafloor geology and providing support for
benthic ecosystem conservation, the assessment of biotic and abiotic seafloor resources,
and sustainable ocean development [40–44]. Hence, both of these two study sites make
sense for seabed mapping and marine surveys.
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Figure 1. The locations of two study sites S1 and S2. (a) The location of the study sites; (b) the
backscatter intensity image and field samples of S1; (c) the bathymetry map of S1; (d) the backscatter
intensity image and field samples of S2; (e) the bathymetry map in S2.

2.2. Experimental Data

The experimental datasets contain the backscatter intensity data, bathymetry data, and
ground-truth sediment samples. The samples were acquired via Hamon Grab. Multibeam
backscatter and sample data are available from the British Geological Survey (BGS) GeoIn-
dex Offshore [45], and the related bathymetry data are found in the Admiralty Marine
Data Portal (UK Hydrographic Office). In S1, both the backscatter and bathymetry data are
collected by Simrad/Kongsberg EM2040, using a frequency of 400 kHz. The manufacturer
is Kongsberg Maritime in Kongsberg, Norway. The multibeam survey collected backscatter
data from February to March 2012, and the bathymetry data were collected in January
2014 and processed by Caris HIPS. In S2, multibeam backscatter data and bathymetry data
were gathered in March 2012 by Reson Seabat 7125, using a frequency of 200 kHz. The
manufacturer is Teledyne Reson in Slangerup, Denmark. All the backscatter data were then
resampled to 4 m.

Many practitioners used a simplified classification of the Folk triangle. This classifica-
tion standard emerged at the request of UKSeaMap, i.e., a digital product more focused
on the hierarchical European Nature Information System (EUNIS) habitat classification
system [46]. Compared with the Folk triangle [47], the particle size criterion is changed
to cover a larger area and finally includes the following four classes: sand and muddy
sand, mud and sandy mud, mixed sediments, and coarse sediments (Figure 2). The mixed
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sediments correspond to mG, msG, gM, and gmS in Folk’s system, and coarse sediments
correspond to G, sG and gS. In our experiment, the samples are divided into the following
three classes: sand and muddy sand, mixed sediments, and coarse sediments.
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Figure 2. Ternary diagram showing (a) Folk and (b) EUNIS classification system [45].

Prior information on training samples was often matched manually based on ground
data obtained directly from in-situ sampling techniques (underwater grabs, photos or
videos, etc.) [9,48]. However, different positioning systems are utilized in the multibeam
mapping technology and in-situ sampling, which may cause position deviation between
the two data [49,50]. Therefore, we regard the 6 × 6 window centered on each sample as
one type (same as the center type), and then select 25 groups of sediment samples with the
highest Jeffries–Matsushita (J–M) separating degree. The J–M separating degree is a spectral
separability index based on conditional probability theory. It is widely employed to evaluate
the separability of different samples [51]. A higher separating degree is usually beneficial
for classifying the different sediment types. We finally obtain 900 and 1440 samples in S1
and S2, and randomly select training and test samples according to the ratio of 7:3 (Table 1).

Table 1. Number of training and test samples.

Study Sites Class Name Training Test

S1

Sand and muddy sand 103 41
Mixed sediments 370 170
Coarse sediments 157 59

Total 630 270

S2

Sand and muddy sand 279 117
Mixed sediments 219 105
Coarse sediments 510 210

Total 1008 432

3. Methods

A novel deep and shallow learning decision fusion model is proposed for the classi-
fication of seabed sediments. The method consists of the following steps. (1) Since both
the backscatter and bathymetry information reflect the distribution of seabed sediments,
we extract some features from the backscatter and bathymetry data as the input of the
classifiers. (2) To overcome the influence of obvious noise and the lack of training samples,
we build an RPNet model and compare it with traditional methods. (3) In order to alleviate
the over-smoothing phenomenon and misclassifications of RPNet, we propose a decision
fusion framework based on voting strategies and fuzzy membership rules, which combines
RPNet and traditional methods, and obtains the final classification maps.

The principles and major workflows are detailed hereafter.
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3.1. Feature Extraction

In order to construct a stable mapping relationship between the raw acoustic data
and the actual sediment type, feature extraction is the foundation for correct sediment
identification. To date, the multibeam backscatter intensity feature is the most widely used
feature in habitat mapping studies [35,52,53]. In addition, bathymetry and bathymetry-
derived variables are the most intuitive representation of seafloor topography. All of the
topographic features are derived from bathymetry, including aspect, slope, curvature,
bathymetric position index (BPI), roughness, etc. Since the distribution of different seabed
sediment types has a high correlation with the topography of the seafloor, it is demon-
strated that the combination of backscatter intensity features and topographic features
plays a more effective role in the seabed sediment classification [53,54]. By removing the
features with much noise and low separability between different classes, we finally choose
8 and 9 features for S1 and S2 (Table 2) as the input features.

Table 2. Backscatter and topographic characteristics extracted from MBES data.

Data Variable Description Layers

Backscatter intensity

A function of the absorption and
scattering of water and seabed

interface, the angle of incidence and the
seafloor topography [55].

Backscatter (1,2) *

Texture
Grayscale distribution of pixels and

surrounding neighborhoods based on
gray level co-occurrence matrix.

Mean (1,2);
correlation (2)

Bathymetry Depth (negative elevation) of the grid. Bathymetry (1,2)

Mean depth The mean of all cell values in the focal
neighborhood of water depth value. Mean depth (1)

Aspect

The downslope direction of the
maximum rate of change in value from
each cell to its neighbors. Description

of the orientation of slope.

Aspect (1,2)

Slope

The maximum rate of change in depth
between each cell and its analysis

neighborhood (degrees from
horizontal) [56].

Slope (1,2)

Curvature
Seabed curvature defined as the

derivative of the rate of change in the
seabed.

Maximum curvature (1);
minimum curvature (1)

BPI

The vertical difference between a cell
and the mean of the local

neighborhood. Broad BPI and fine BPI
were calculated by 25/250 m and 3/25

m radii, respectively [57].

Broad BPI (2);
fine BPI (2)

Roughness
The difference between the minimum

and maximum bathymetry of a cell and
its 8 neighbors [58].

Roughness (2)

* The number 1 or 2 in the third column means the features are employed in S1 or S2.

3.2. RPNet Framework

In this section, we present a deep learning method, namely, RPNet. The RPNet is
based on the theory of random projection, which is exploited to achieve classification by
projecting data into a random low dimensional space. In random projection, the original
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d-dimensional data X ∈ RN×d are projected to a k-dimensional subspace through the origin,
using a random matrix R ∈ Rd×k [32].

XRP = XR ∈ RN×k (1)

Relevant researches have demonstrated that in low-dimensional space, only a small
number of samples are required in the training process. By regarding the random patches
as convolutional patches and feature fusion of different layers, the RPNet combines both
shallow and deep features, so as to obtain more useful features and obtain higher classifica-
tion accuracy. As shown in Figure 3, the RPNet consists of an input layer, several feature
extraction layers, a feature fusion layer, an SVM classifier, and an output layer.
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3.2.1. Input Layer

For the input image, r, c, n are the number of rows, columns, and bands, respec-
tively. Since the data ranges of each input layer are quite different, the first step is data
normalization, and the data are scaled in the range of (−1, 1). Then, principal component
analysis (PCA) is applied to project the high-dimension data to a lower dimension and
reserve the first p PCs so that the redundancy between different bands is reduced. In
order to decrease the correlation and obtain a similar variance between different bands, the
whitening operation is utilized [59].

3.2.2. Feature Extraction Layer

The feature extraction layer first extracts k w× w× p-sized random patches as con-
volution kernels. After convolving the whitening features, these k features are activated
by the rectified linear unit (ReLU) function. The moving stride is set as 1. Traditional
convolutional kernels are set manually at the beginning of the deep learning methods,
whereas RPNet extracts random patches from whitening features as kernels. There are
complete L feature extraction layers in the whole RPNet structure.
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The formula below denotes the feature map Ii calculated by the ith random patch.

Ii = f

(
p

∑
j=1

X(j) ⊗
(

P(j)
i × ∂i

))
, i = 1, 2, . . . , k, (2)

where Ii denotes the ith feature map and X(j) is the jth dimension of the data after PCA and
whitening. ⊗ is the convolution operator, P(j)

i means the jth dimension of the ith random
patch, and ∂i is the weight of the ith random patch. f ( ) represents the rectified linear unit
activation function.

f (x) =
{

x, x > 0
0, x ≤ 0

⇒ f (x) = max(0, x) (3)

The feature maps of the lth layer are shown by the following equation:

I(l) = f

(
p

∑
j=1

k

∑
i=1

X(j) ⊗
(

P(j)
i × ∂i

))
, l = 1, 2, . . . , L (4)

3.2.3. Feature Fusion Layer and SVM Classifier

After a series of feature extraction operations, the features from each feature extraction
layer I(l) and the original image In form the final classification data I. By stacking layers
of every feature extraction result, both shallow and deep features are utilized, including
multi-scale information of different objects. The stacking layer can be represented as follows:

I =
{

I(1), I(2), . . . , I(L), In
}

(5)

To increase the convergence efficiency, each dimension S of I is normalized to be ĩs,
which is as follows:

ĩs =
is −mean(is)

var(is)
, s = 1, 2, . . . , lk + n, (6)

where is denotes the Sth dimension of I and mean(is) and var(is) denote the mean and
variance value of is, respectively.

Finally, all the features are inputted into the SVM (with RBF kernels) classifier. SVM
can improve the performance in terms of training speed and classification accuracy.

The convolution operation contributes to a bigger receptive field. As the layer becomes
deeper, the receptive field in the RPNet will become larger. Generally, with the fixed kernel
size, the relationship between the receptive fields RF and the number of layers l is as follows:

RF = l × (w− 1) + 1, (7)

where (w − 1) represents the RF increment for every convolution operation.

3.3. Decision Fusion Method Based on Multi Classifiers

RPNet tends to have an over-smoothing phenomenon on small-scale sediments, which
may falsely erase small useful features and cause misclassification. In fact, any classifier,
regardless of the architecture, has limited abilities to mine effective features and uncertain-
ties in its predictions. Therefore, we propose a decision fusion method based on the voting
strategy and fuzzy membership to rectify the misclassifications of RPNet by other shallow
learning methods. Traditional voting methods include hard voting and soft voting. The
former directly outputs class labels and the latter outputs class probabilities. Hard voting
selects the class with the largest number by different classifiers, while soft voting calculates
the weighted average of the class probabilities of each class and selects the class with the
highest value. Our proposed decision fusion method combines the hard voting and soft
voting strategy (Figure 4). Hard voting is first utilized to carry out preliminary classifica-
tion, and then the fuzzy membership algorithm as soft voting is introduced to estimate the
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unknown types. Using the proposed decision fusion algorithm, the misclassified pixels
with a lower fuzzy membership degree can be rectified by other classifiers. The flowchart
of deep and shallow learning decision fusion is shown as follows.
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In this framework, the deep and shallow learning classification results Cn[i, j] and
Cm[i, j] are combined as the input. In this experiment, RPNet is used as the deep architecture;
RF, KNN and SVM are chosen as the shallow structure. The final type O[i, j] in the [i, j]
location is calculated pixel by pixel. After the hard voting method is applied for some
pixels, other pixels are decided by the fuzzy membership degree.

Pi = 0.5 +

{
n

∑
j=1

[Wj(Pm
n − 0.5)

]α
} 1

α

, (8)

where Pi is the membership degree of type n. Wj denotes the weight of each classifier,
which depends primarily on the classification accuracy. In our experiments, if one supposes
that the classification accuracy of the two classifiers is a and b, respectively, W1 = a/(a + b),
W2 = b/(a + b), Pm

n is the membership degree of Cm[i, j], belonging to the type n. One

must note that
n
∑

j=1
Wj = 1 and α is an odd number. In this experiment, we set α as 3, mainly

based on past experience [37] and the principle of reducing computational expense. In the
end, the type with the maximum membership degree is set as the best result.

4. Experiments and Results
4.1. Parameter Setting of RPNet

In the experiments, the optimal parameters of classifiers were adjusted by five-fold
cross-validation. Generally speaking, as the number of pc layers p and feature extraction
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layers L increases from 3, the computational expense increases, with no obvious promotion
in classification accuracy [32]. We evaluate the classification accuracies of different p and L.
Figure 5 shows that as p and L grows, the accuracies of both datasets have a trend of rising
first; after the number reaches 3, the accuracies fluctuate around 94%. Therefore, we set p
and L as 3. Although the size of kernels w usually is beneficial for the classification task,
too large w also leads to the over-smoothing phenomenon because of the small scale of the
sediments. Thus, we set the parameter w as 5. As for the number of patches k, the RPNet
becomes more time-consuming as k grows (Figure 6), so we initially set k to be less than 20.
In S1, when k is 5 or 10, the overall accuracy (OA) is relatively high. In S2, classification
with 5 or 20 random patches is highly accurate. We finally set k as 5 as a tradeoff between
time cost and accuracy for both datasets.
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To better understand what RPNet learns in the different layers, the feature extraction
results of each layer are displayed in Figures 7 and 8. From these figures, we can find that
the first layer has more obvious distribution characteristics, while in deeper layers, the
extracted features tend to be more abstract and have fewer details.

The experiments were implemented on a computer equipped with an Intel i7-8700
3.20-GHz processor with 16 GB of RAM and an Intel (R) UHD Graphics 630 graphic card.



Remote Sens. 2022, 14, 3708 11 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 23 
 

 

  
(a) (b) 

Figure 6. The performance of the RPNet with different numbers of patches. (a) S1; (b) S2. 

 
(a) (b) (c) 

Figure 7. Feature extraction results for each layer in S1. (a–c) show results from the first to the 
third layer. 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Feature extraction results for each layer in S2. (a–c) show results from the first to the 
third layer. 

Figure 7. Feature extraction results for each layer in S1. (a–c) show results from the first to the third layer.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 23 
 

 

  
(a) (b) 

Figure 6. The performance of the RPNet with different numbers of patches. (a) S1; (b) S2. 

 
(a) (b) (c) 

Figure 7. Feature extraction results for each layer in S1. (a–c) show results from the first to the 
third layer. 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Feature extraction results for each layer in S2. (a–c) show results from the first to the 
third layer. 

Figure 8. Feature extraction results for each layer in S2. (a–c) show results from the first to the third layer.

4.2. Classification Results of RPNet

Based on the backscatter and topographic features, we constructed an RPNet model to
classify the sediment types in the research field. In the experiments, the values of user’s
accuracy (UA), producer’s accuracy (PA), overall accuracy, and Kappa coefficient [60,61]
were adopted as evaluation indicators.

PA =
xii
xi+

(9)

UA =
xii
x+i

(10)

OA =

n
∑

i=1
xii

S
(11)
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Kappa coe f f icient =
S

n
∑

i=1
xii −

n
∑

i=1
(x+ixi+)

S2 −
n
∑

i=1
(x+ixi+)

(12)

where n is the number of sediment types, xii denotes the number of diagonals along the
confusion matrix, x+i denotes the statistical results of different classes by prediction, and
xi+ indicates the statistics of different classes of ground truth samples. S is the number of
all the samples.

Due to the unbalanced seabed sediment samples, we also introduced the F1 score
to demonstrate the classification capacities of classifiers. F1 score represents a weighted
average of precision and recall, thus is commonly used as a reliable evaluation indicator
for the classification of unbalanced datasets [62].

F1 score =
2× (precision× recall)
(precision + recall)

, (13)

where precision = tp/(tp + fp), recall = tp/(tp + fn), tp is the number of true positives, fp
is the number of false positives and fn is the number of false negatives.

From Tables 3 and 4, it can be observed that in S1, the mixed sediments obtain the
highest accuracy (over 96%); whilst although the coarse sediments have the lowest accuracy,
it still reaches around 88%. In S2, sand and muddy sand exhibit the highest accuracy (over
98%), whereas the accuracy of mixed sediments with the smallest number is lower than the
other classes. In order to further verify the effectiveness of the RPNet, the RPNet results are
reported along with three shallow learning classification methods, including RF, KNN, and
SVM. RPNet is also compared with the deep belief network (DBN), which is a typical deep
learning algorithm utilized in seabed sediment classification recently [9].

Table 3. Confusion matrix of RPNet in S1.

Ground Truth

Predicted Labels
PA (%) OA (%)

Kappa
Coefficient

F1
ScoreSand and

Muddy Sand
Mixed

Sediments
Coarse

Sediments

Sand and muddy sand 38 0 3 92.68

94.07 0.890 0.941
Mixed sediments 2 164 4 96.47
Coarse sediments 3 4 52 88.13

UA (%) 88.37 97.62 88.14 –

Table 4. Confusion matrix of RPNet in S2.

Ground Truth
Predicted Labels

PA (%) OA (%) Kappa
Coefficient

F1
ScoreSand and

Muddy Sand
Mixed

Sediments
Coarse

Sediments

Sand and muddy sand 115 0 2 98.29

94.91 0.919 0.949
Mixed sediments 1 96 8 91.43
Coarse sediments 0 11 199 94.76

UA (%) 99.14 89.72 95.22 –

Figure 9 shows the results of seabed sediment classification performed by the aforemen-
tioned classifiers. As shown in Figure 9, RPNet consistently reports the best classification
OA, with up to 94.07% for S1 and 94.91% for S2, higher than that of RF (85.56% and 90.51%,
respectively), KNN (83.70% and 87.26%, respectively), SVM (73.70% and 67.13%, respec-
tively), and DBN (87.78 and 81.02%, respectively). Moreover, the F1 score also demonstrates
that a significant increase has been achieved by RPNet over the RF, KNN, SVM, and DBN,
with F1 scores of 0.854, 0.840, 0.712 and 0.877 for S1 and F1 scores of 0.905, 0.872, 0.635
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and 0.810 for S2, respectively. As for time expense, although the operating time of KNN
is significantly less than the other classifiers, the accuracy of KNN is remarkably lower
(10.37% for S1 and 7.65% for S2) than that of RPNet. With an accuracy of over 85%, the RF
method is very time-consuming. DBN outperforms other classifiers in S1, but has a lower
performance than RF, KNN and RPNet in S2, which may indicate poorer robustness and
universality than RPNet. As a tradeoff between accuracy and time, the most appropriate
method is RPNet.
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The accuracy of each sediment type was also summarized (Figure 10). It can be illus-
trated that their classification accuracies are ordered as follows: SVM < KNN < RF < RPNet.
RPNet outperforms other classifiers for almost all the classes at both study sites in terms of
accuracy. For RF, the largest increase is up to 26.83% and 5.13% for the class of sand and
muddy sand in S1 and S2. Similarly, for KNN, the greatest increase in accuracy is up to
22.31% for the class of sand and muddy sand in S1 and S2. For the class of mixed sediments
and coarse sediments, the accuracy of the RPNet is also larger than that of the RF, up to
5.29% and 4.76% for S1 and S2. SVM fails to perform well, whose accuracy of sand and
muddy sand is only 12.2% in S1 and 41.88% in S2. The accuracies of the other sediments
are slightly lower than that of KNN.
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These classification methods were also visually evaluated to obtain the sediment maps
(Figures 11 and 12). From northwest to southeast, mixed sediments, coarse sediments, and
sand and muddy sand are mainly distributed along these areas. Except for SVM, these
different classification maps generally have consistent distributing patterns. The results
of RPNet seem to consist of fewer omission and commission errors, which reflects the
impressive capability and stability of the classifier. However, some undesirable noises in
the RPNet results still remain, such as some misclassifications in detail and over-smoothness
to some degree.
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network; (e) DBN = deep belief network.
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4.3. Decision Fusion Results

Based on the seabed sediment classification results of RPNet and several shallow
learning classifiers (RF, KNN, and SVM), a deep and shallow learning decision fusion
framework was then proposed. With this method, the misclassified pixels in RPNet with a
lower fuzzy membership degree can be rectified by other shallow learning classifiers. As
we can observe from Tables 5 and 6, the RPNet-RF has the best performance, which enables
an increase in accuracy compared with RPNet (up to 2.97% and 1.15% respectively). The
greater improvement occurs in study site 1, where the accuracies of all of the three classes
are over 2.4% larger than the RPNet. All of the decision fusion methods have noticeable
improvements compared with the shallow learning methods. RPNet-KNN reveals the most
significant increase of 11.86% and 6.72%, followed by RPNet-RF with 11.48% and 5.55%
for S1 and S2. RPNet-SVM has minimal improvement, with up to 6.67% for S1 and 1.16%
for S2. In S1, RPNet-RF and RPNet-KNN have a similar pattern, where sand and muddy
sand exhibit the highest increase of 31.71% (in S1) and 24.75% (in S2), respectively; mixed
sediments and coarse sediments have a 7–10% increase compared with the single classifier.
However, for RPNet-SVM, the classes with low accuracy only show a slight increase or
remain steady in terms of classification accuracy over SVM, which may be attributed to the
too poor classification of sand and muddy sand. It can be estimated that decision fusion is
sensitive to the poor classification performance of the input and cannot effectively obtain
the desired results in this case.

Table 5. Comparison of accuracies of traditional methods and decision fusion methods (S1).

RPNet RF RPNet-RF Variation KNN RPNet-KNN Variation SVM RPNet-SVM Variation

Producer’s
accuracy

Class1 * 92.68 65.85 97.56 31.71 70.37 95.12 24.75 12.20 12.20 0.00
Class2 96.47 91.18 98.82 7.64 88.24 98.23 9.99 87.06 97.06 10.00
Class3 88.13 83.05 91.53 8.48 79.66 88.14 8.48 77.97 79.67 1.70

Overall
accuracy

OA (%) 94.07 85.56 97.04 11.48 83.70 95.56 11.86 73.70 80.37 6.67.
Kappa 0.890 0.727 0.944 0.217 0.701 0.916 0.215 0.498 0.606 0.108

F1 score 0.941 0.854 0.970 0.116 0.840 0.955 0.115 0.712 0.765 0.053

* Class1, Class2 and Class3 represent sand and muddy sand, mixed and coarse sediments, respectively.
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Table 6. Comparison of accuracies of traditional methods and decision fusion methods (S2).

RPNet RF RPNet-RF Variation KNN RPNet-KNN Variation SVM RPNet-SVM Variation

Producer’s
accuracy

Class1 * 98.29 93.16 96.58 3.42 84.62 90.60 5.98 41.88 44.44 2.56
Class2 91.43 86.67 89.52 2.85 80.00 87.62 7.62 30.48 31.43 0.95
Class3 94.76 90.95 99.05 8.10 92.38 99.05 6.67 99.52 100.00 0.48

Overall
accuracy

OA (%) 94.91 90.51 96.06 5.55 87.26 93.98 6.72 67.13 68.29 1.16
Kappa 0.919 0.849 0.937 0.088 0.794 0.903 0.109 0.410 0.432 0..022

F1 score 0.949 0.905 0.960 0.055 0.872 0.940 0.068 0.635 0.649 0.014

* Class1, Class2 and Class3 represent sand and muddy sand, mixed and coarse sediments, respectively.

The result maps after decision fusion show a similar distribution pattern with RPNet
(Figures 13 and 14). However, the RPNet-RF appears to remove undesirable noises and
alleviate the over-smoothing phenomenon, especially in mixed areas with various classes.
In S1, compared with the RPNet result, a small area in the north with sand and muddy
sand has a noticeable change, with an area reduction in sand and muddy sand and more
coarse sediments scattering within the area. In short, the RPNet with deep architecture and
the classifiers with a shallow structure can provide complementary information, resulting
in the rectification of the losses and errors in detail and better classification performance
than any classifier alone.
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5. Discussion

In this research, a deep and shallow learning decision fusion method was proposed
for seabed sediment classification based on MBES backscatter and topographic data. This
method inherits the advantages of deep and shallow learning classifiers and obtains a
desirable classification result.

The results show that the RPNet method consistently reports the best classification
accuracy and has good robustness against noise data. The performance of RPNet is better
than that of RF and SVM, especially for SVM (with an accuracy of about 70%). However,
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in previous comparative studies for seabed mapping, SVM and RF tended to show good
performance [21]. Cui et al. implemented an SVM classification method based on an Askey–
Wilson polynomial kernel function in New Zealand and obtained an accuracy of 90.02% [50],
but the universality still needs further validation because the study area was small. RF
has become increasingly popular in recent years [18,22,52,53]. Diesing et al. compared the
classification results of several classical models and performed model ensembling with an
accuracy of only 84% [53]. Ji et al. proposed a selecting optimal random forest (SORF) and
compared the accuracy with SVM and RF in Jiaozhou Bay [18]; the results showed that SORF
produced the highest accuracies (85.00%), followed by RF and SVM. However, the number
of samples per class reached several thousand, so the practicality of the method when
lacking field samples needs to be explored. Wang et al. established a two-stage model using
the XGBoost algorithm and the grain size parameters, which outperformed other classifiers,
while grain size parameters are needed in this method [63]. In the aforementioned studies,
RF tends to achieve higher accuracy than SVM. Our proposed algorithm performs better
than RF and SVM may be because these classifiers are sensitive to noises in sonar images
and their shallow structures are unable to learn enough useful characteristics. As for DBN,
such deep learning methods have been applied in sediment classification recently, but
methods applicable to small samples have hardly been specifically considered [9].

5.1. Effect of Sample Size on Classification Performance

To further explore the influence of sample size on classification performance, we
reduced the number of samples to test the performance stability of RPNet and compared it
with other classifiers. As is shown in Figures 15 and 16, for RF and KNN, fewer training
samples lead to a noticeable decrease in accuracy in S1, especially for coarse sediments
(from about 0.8 to 0.7). For S2, when the sample size decreases, the accuracies of KNN and
RF show a decrease, up to 3.57% (OA) and 0.035 (F1 score). Similar patterns are found,
meaning that the DBN algorithm with more training samples is more accurate in both of
the two areas. For both of the two sites, the SVM classification results are not significantly
related to sample size, whose precision remains at a low level. In contrast, when the number
of training samples decreases, the classification accuracy of RPNet remains steady in S1 and
shows a slight downtrend in S2. The reason may be that the RPNet uses random patches to
form the random matrices in random projection, which is employed to project data to a
lower dimension space [32,33]. This property provides the possibility for high precision
classification when samples are limited. When train: test = 7:3, the PA of coarse sediments
is 88.13% and 94.76%, while the PA is 92.31% and 91.06% when train: test = 5:5 in S1 and
S2, respectively. The reason may be that when the number of training samples decreases,
some of the training samples that are not beneficial to the classification are reduced in S1.
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The proposed decision fusion method takes advantage of the merits of the two classi-
fiers and overcomes their individual shortcomings, thus demonstrating better performance
than any classifier alone. As can be observed from the Tables 5 and 6, the classification accu-
racy of a single shallow learning classifier is low for classes that are relatively less abundant,
while the decision fusion method can substantially improve the accuracy of these classes.
This phenomenon indicates the potential for application in unbalanced datasets. However,
for classes with less than 50% accuracy (e.g., sand and muddy sand in the results of SVM),
the proposed framework appears to be ineffective. It can be estimated that decision fusion
is sensitive to the poor classification performance of the input and cannot obtain the desired
results in this case.

5.2. Distribution of Topographic Features for Different Sediment Types

Numerous studies have indicated that combining backscatter and topographic infor-
mation is more effective for multiple habitats characterization than only using backscatter
intensity information [64]. In order to intuitively show the influence of topographic factors
on the sediment distribution, this paper uses boxplots for the statistics of sediment distri-
bution in topographic features (taking S1 as an example). As is shown in Figure 17, these
selected topographic features all show a noticeable distinction between different types,
which means that these features may contribute to the classification task. For instance, sand
and muddy sand and coarse sediments can be easily distinguished in the bathymetry, mean
depth, and minimum curvature features. The distributing aspect of mixed sediments is
relatively concentrated, mainly floating at 100–280 degrees. Moreover, mixed sediments are
widely distributed throughout the study area, mainly concentrated in relatively shallow
water areas. Sand and muddy sand and coarse sediments are primarily distributed at
depths of 40–50 m. These results are generally consistent with the east-west partition of
sediment types shown in the classification results. Whilst some studies have demonstrated
the correlation between topographic factors and sediment types [22,65], more experiments
and in-depth analyses are still needed to draw general patterns.

5.3. Other Considerations

To a certain extent, our decision fusion method proposes a novel idea for the classifica-
tion of seabed sediment on the premise of a single machine learning algorithm. However,
the MBES images utilized in this paper tend to have noticeable stripe effects, which may
be due to inadequate image mosaic processing of multibeam backscatter images in the
pre-processing procedure. Even though we used the median filter and feature selection
and found a proper classifier to reduce the noise, some striping noise can still be found in
the results. Unsuitable network parameters and inappropriate feature selection may also
lead to the loss of details, so it is better to find a more efficient way to optimize the feature
selection and the model parameter setting method. In the future, we will investigate more
feasible data pre-processing methods to solve this problem from the originally acquired
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multibeam backscatter intensity data, and extend the proposed method in more areas.
Furthermore, except for the fusion of different classifiers, multisource data fusion can be
considered for seabed sediment classification.
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6. Conclusions

In this paper, a deep and shallow learning decision fusion method was proposed for
seabed sediment classification based on MBES backscatter and topographic data. First,
by combining both backscatter and topographic features, a deep architecture suitable for
small samples, namely RPNet, was employed for classification; the results of which are
statistically more accurate than the other existing traditional classifiers (RF, KNN, SVM
and DBN). Then, a decision fusion method was proposed based on deep and shallow
learning classifiers, which helps to compensate for the loss and errors of details, as well
as alleviate the over-smoothing phenomenon on small-scale sediments. The effectiveness
of the algorithm was tested in two areas in Europe using MBES images. This algorithm
acquires the OA of 97.04% for S1 and 96.06% for S2, and consistently outperforms all of
the individual classifiers. Our method takes advantage of the merits of deep learning
and shallow learning methods. This study provides the possibility of high-precision
classification with few training samples, which indicates a broad prospect for detailed
mapping of seabed habitats and has important implications for estimating the long-term
effects of human activities on the seafloor. In the future, more feasible data pre-processing
methods and appropriate model parameter setting strategies are needed to alleviate the
stripe noises and misclassifications.
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