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Abstract: Diffuse solar radiation is an essential component of surface solar radiation that contributes
to carbon sequestration, photovoltaic power generation, and renewable energy production in terres-
trial ecosystems. We constructed a 39-year (1982–2020) daily diffuse solar radiation dataset (CHSSDR),
using ERA5 and MERRA_2 reanalysis data, with a spatial resolution of 10 km through a developed
ensemble model (generalized additive models, GAM). The validation results, with ground-based
measurements, showed that GAM had a high and stable performance with the correlation coefficient
(R), root-mean-square error (RMSE), and mean absolute error (MAE) for the sample-based cross-
validations of 0.88, 19.54 Wm−2, and 14.87 Wm−2, respectively. CHSSDR had the highest consistency
with ground-based measurements among the four diffuse solar radiation products (CERES, ERA5,
JiEA, and CHSSDR), with the least deviation (MAE = 15.06 Wm−2 and RMSE = 20.22 Wm−2) and
highest R value (0.87). The diffuse solar radiation values in China range from 59.13 to 104.65 Wm−2,
with a multi-year average value of 79.39 Wm−2 from 1982 to 2020. Generally, low latitude and low
altitude regions have larger diffuse solar radiation than high latitude and high altitude regions, and
eastern China has less diffuse solar radiation than western China. This dataset would be valuable for
analyzing regional climate change, photovoltaic applications, and solar energy resources. The dataset
is freely available from figshare.

Keywords: diffuse solar radiation; ensemble model; reanalysis data; machine learning; China

1. Introduction

Diffuse solar radiation, as an important ingredient of surface solar radiation, is highly
sensitive to solar elevation angle, aerosols, cloud, water vapor, surface conditions, and so
on [1,2]. Previous studies revealed that diffuse solar radiation contributes to the ecosys-
tem’s carbon uptake and regional radiation usage by increasing the canopy light use
efficiency [3–5]. When the proportion of diffuse solar radiation to solar radiation increases,
it improves the photosynthetic efficiency of plants to increase productivity [2,6]. Addition-
ally, diffuse solar radiation is a necessary input for simulating the productivity of terrestrial
ecosystems, such as the forest biomass, assimilation, allocation, and respiration (FöBAAR)
model [7]. In addition, the distribution and intensity of diffuse solar radiation are necessary
for both the location selection of solar photovoltaic power and further estimation of power
generation [8].

Ground-based observation sites can provide stable and accurate measurements of
diffuse solar radiation, but the observation equipment is usually expensive to construct
and maintain. At present, only 17 of the Chinese 119 ground-based observation stations
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can provide diffuse solar radiation observations, and these stations have different starting
times, thus making it difficult to capture the distribution of diffuse solar radiation in
detail. In contrast, satellite remote sensing provides a unique perspective [9] and has
been demonstrated to be a reliable method for monitoring geographical and temporal
fluctuations in diffuse solar radiation at global and regional scales [10]. The Heliosat
model [11,12], cloud index methods [13], Meteonom database [14], and EU-PVGIS [14]
are now the most commonly used approaches for retrieving diffuse solar radiation from
satellite remote sensing. However, the satellite data quality is vulnerable to spurious vari-
ations, due to satellite variations, sensor calibration, and undetected low clouds. Using
atmospheric and surface products of satellite remote sensing or their observed radiant
brightness signals to retrieve diffuse solar radiation can be achieved independently of
landmark circumstances [15], thus enabling the capture of large-scale simultaneous and
continuous diffuse solar radiation data [16], for example, multi-functional transport satel-
lites (MTSAT) [17–19], moderate-resolution imaging spectro-radiometer (MODIS) [18,20],
meteosat [21–23], advanced very high-resolution radiometer (AVHRR) [24], landsat [25],
Himawari-8 [26], etc.

Numerous algorithms have been proposed to derive diffuse solar radiation from
satellite products using ancillary data (e.g., atmospheric parameters and reanalysis data).
The empirical statistical models [27–29] assume that diffuse solar radiation and meteo-
rological variables such as sunshine duration, temperature, precipitation, and relative
humidity have a mathematical relationship. For example, Sabzpooshani and Moham-
madi [30] examined the applicability of 16 empirical models in Iran, thus concluding
that the sunshine duration was more essential than the clear-sky index in predicting
diffuse solar radiation. Zhou et al. [31] found that adding precipitation as the input
parameters of the diffuse solar radiation model could significantly enhance prediction
accuracy. The physical models [32,33] relate diffuse solar radiation to various atmo-
spheric processes using radiative transfer theory, which can be separated into broadband
and spectral models. Leckner [34] developed a spectral model for estimating diffuse
solar radiation, considering the major spectral transmittances of solar radiation in the
atmosphere, such as Rayleigh scattering, ozone absorption, absorption by uniformly
gases, aerosol extinction, and water vapor absorption. Gueymard [35,36] proposed the
REST2 model, which was based on the SMARTS spectral model. Results showed that
REST2 performed well in predicting solar radiation. Machine learning (ML) [37–39],
as a subset of artificial intelligence, can automatically learn and handle nonlinear and
complex problems, thus showing superior performance [40,41]. Recently, various ML
algorithms have been used to estimate diffuse solar radiation for improving prediction
accuracy, such as artificial neural network (ANN) [15,18,37], deep learning [17,38,42],
gradient boosting decision tree (GBDT) [15,24], eXtreme gradient boosting (XGB) [43,44],
random forest (RF) [45,46], support vector machine (SVM) (named SVR when used for
regression) [23,45,47], adaptive network-based fuzzy inference system (ANFIS) [48,49],
etc. For example, Jiang et al. [17] combined convolutional neural network (CNN) and
multi-layer perceptron (MLP) to estimate diffuse solar radiation using MTSAT data, with
an R value of 0.89. Shamshirband et al. [47] developed an SVM-wavelet transform (WT)
model for predicting daily diffuse solar radiation by coupling the SVM with the WT. The
results revealed that the SVM-WT outperformed SVM, ANN, and third-order empirical
models, with an R value of 0.963. Ouarda et al. [22] employed generalized additive
models (GAM) to assess the diffuse, and global solar components in the United Arab
Emirates using Meteosat data. Results showed that GAM outperformed the ANN-based
model and the bagging ensemble.

On this foundation, numerous diffuse solar radiation datasets/products have been
proposed for further studies. For example, Sanchez-Lorenzo et al. [50] developed a new
dataset of surface solar radiation records (including diffuse solar radiation) and analyzed
the characteristics of the radiation from 1985 to 2010 in Spain. Jiang et al. [17] constructed
a 12-year (2007–2018) hourly diffuse solar radiation dataset, with a spatial resolution of
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5 km, via a deep learning algorithm. These dataset’s time series, however, are too short to
satisfy the needs of climate change study. In addition, SARAH-E, PV-GIS, ERA5, Solcast,
and CERES all supply diffuse solar radiation data at different scales. However, these
diffuse solar radiation products are subject to large uncertainties, with root-mean-square
error (RMSE) of the instantaneous inversions under all-weather conditions ranging from
60 to 140 Wm−2, depending on the local cloudiness [51–53]. Meanwhile, the application of
multi-source products in studying “solar brightening/dimming” and changes in regional
climate characteristics over long time series may be hampered by the occurrence of poor
spatial and temporal continuity in these products. Recently, there is a growing interest in
constructing surface solar radiation datasets, but the research to generate a diffuse solar
radiation dataset with long time series, high-resolution, and spatio-temporal continuity in
China has yet to be completed.

The primary objective of this study is to construct a high-resolution (10 km) grid-
ded and gapless diffuse solar radiation dataset (CHSSDR) for China spanning 39 years
(1982–2020), using ERA5 and MERRA_2 reanalysis data through a developed ensemble
model aimed at helping the solar industry’s development in China. Meanwhile, we com-
pared the diffuse solar radiation dataset generated in this study with the existing diffuse
solar radiation products using ground-based observations for validation. Finally, the spatial
and temporal variation characteristics of diffuse solar radiation were examined, based on
the CHSSDR dataset in China. Section 2 summarizes the data sets used, processing meth-
ods, and ML models. Section 3 presents the validation and comparison results. Section 4
summarizes this study. This dataset would be valuable for investigating the geograph-
ical characteristics and temporal cycles of solar radiation, as well as radiation-related
applications, such as climate change and solar energy consumption.

2. Materials and Methods
2.1. Study Region and Data
2.1.1. Ground-Level Daily Diffuse Solar Radiation Measurements

The ground diffuse solar radiation measurements used in this study were collected
from 17 stations owned and maintained by the China Meteorological Administration
(CMA). The records from 2011 to 2015 were utilized to train and validate the model. The
main quality control principles were as follows: daily diffuse solar radiation should not
exceed the daily total solar radiation, and their ratio should be larger than 0, and less
than 1; daily total solar radiation should be less than extraterrestrial radiation in the same
geographic location. Figure 1 shows the spatial distribution of all related stations [2].
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2.1.2. Reanalysis Data

ERA5 meteorological data, proposed by the European Centre for Medium-Range
Weather Forecasts, is a reanalysis data suitable for assimilation of historical data spanning
the last 40–70 years. At a resolution of 0.25◦ × 0.25◦ on a regular latitude/longitude grid,
ERA5-single datasets deliver a wide variety of global atmospheric, ocean wave, and surface
parameter estimates at frequencies up to 1 h [54]. With a spatial resolution of 0.1◦ × 0.1◦ and
temporal coverage of 1950-present, the ERA5-land dataset has a better resolution than the
ERA5-single.

Additionally, we selected the MERRA_2 products, provided by the Global Modeling
and Assimilation Office (GMAO) in NASA, as input parameters. The MERRA_2 dataset
has good spatial and temporal continuity with a temporal range (1980–present) across
China [55]. Detailed information about the input variables from MERRA_2, ERA5-single,
and ERA5-land datasets used in this study are shown in Table 1.

Table 1. Basic information of input variables from three reanalysis data: MERRA_2, ERA5-single,
and ERA5-land.

Dataset Parameters Used in This Study Spatial Resolution Temporal Resolution

ERA5-single

TOA incident solar radiation (TISR), surface solar radiation
downward clear sky (SSRDC), boundary layer height (BLH),
total column ozone (TCO), low cloud cover (LCC), high cloud
cover (HCC), medium cloud cover (MCC), total column cloud
ice water (TCCIW), total column cloud liquid water (TCCLW),
total cloud cover (TCW), total column water (TCW)

0.25◦ × 0.25◦ Hourly

ERA5-land
2m Temperature (T2m), forecast albedo (FA), total
precipitation (TP), surface solar radiation downwards (SSRD),
surface pressure (SP)

0.1◦ × 0.1◦ Hourly

MERRA-2 Aerosol optical depth (AOD) 0.625◦ × 0.5◦ Hourly

2.1.3. Existing Diffuse Solar Radiation Products

Three commonly used diffuse solar radiation products were chosen for comparison
and analysis with CHSSDR. (1) The synoptic fluxes and clouds (SYN1deg) is a Clouds
and the Earth’s Radiant Energy System (CERES) level 3 product that is based on satellite-
derived data on the Earth’s radiation revenue and expenditure [56]. CERES-SYN1deg
(referred to as CERES) offers information on atmospheric, surface, cloud, and aerosol fluxes.
The surface shortwave diffuse flux of the CERES-SYN1deg level 3 product was chosen as
one of the diffuse products. (2) Two variables in the ERA5-single dataset, i.e., surface solar
radiation downwards and total sky direct solar radiation at the surface, were subtracted
to obtain the diffuse solar radiation values as one of the diffuse products [57]. (3) JiEA is
a radiation dataset developed by Jiang et al. [17] using MTSAT data and deep learning
algorithm. The daily average diffuse solar radiation data of JiEA was used as one of the
diffuse products for subsequent comparison. Table 2 illustrates the specific information for
the four diffuse solar radiation products.

Table 2. Details of surface diffuse solar radiation products used in this study. CHSSDR is the surface
diffuse solar radiation dataset constructed in this study.

Products Parameters Spatial Resolution Temporal Resolution

CERES-SYN1deg Surface shortwave diffuse flux 1◦ × 1◦ Daily
JiEA Diffuse solar radiation 0.05◦ × 0.05◦ Daily

ERA5 Surface solar radiation downwards, total sky direct solar
radiation at surface 0.25◦ × 0.25◦ Hourly

CHSSDR Diffuse solar radiation 0.1◦ × 0.1◦ Daily
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2.2. Methodology
2.2.1. Data Processing

Due to the varying temporal and spatial resolution of distinct reanalysis data, all input
variables were resampled using cubic convolution interpolation to a spatial resolution of
0.1◦ × 0.1◦ and temporal resolution of daily. We validated that each input variable was
available across China after filling in the missing values and interpolation. For model train-
ing, validation, and evaluation, we created a five-year sample dataset based on matching
latitude, longitude, and input variables using observation data from 2011 to 2015.

2.2.2. Base Learners and Ensemble Model
Deep Learning

Deep learning utilizes a sequence of nonlinear layers to extract or transform features,
analyze patterns, and classify images [58]. Convolutional neural networks (CNN) [59]
can hierarchically extract powerful low- and high-level characteristics. Convolutional,
nonlinear, and pooling layers make up a standard CNN. Each layer’s input and output are
feature maps, which are collections of arrays [19]. Deep neural networks (DNN) is a kind
of artificial network composed of many neurons with strong universality. The extensive
connection between neurons can simulate the structure and function of the nervous system.
A standard DNN typically consists of the input layer, hidden layer, dropout layer, and
output layer.

Boosting Algorithm

Boosting algorithm pays more attention to the error samples in the previous model.
The GBDT method employs the negative gradient of the loss function as the residual ap-
proximation in the boosting tree algorithm and gradually reduces the residual to minimize
the loss function [60]. In comparison to GBDT, extreme gradient boosting (XGB) imple-
ments greater decision tree integration [61]. XGB successively generates numerous trees
and bases all subsequent trees on the residuals of the prior tree, hence increasing the overall
forecast. Furthermore, to limit the risk of over-fitting, XGB employs a more normalized
model form.

Others

Random forest (RF) is advantageous in manipulating complex nonlinear relationships.
Using bootstrapped samples randomly selected from the training data with replacement,
the RF creates a preset number of simple decision trees. The best among a sample of
predictors randomly chosen at that node was used to split each node of the decision
tree [62]. Apart from the above five models, support vector regression (SVR) was also
applied. The SVR estimates regression based on a series of kernel functions, which can
transform the low-dimensional input data into high-dimensional feature space, in order to
maximize the distance between points and surface [63].

Generalized Additive Models

Generalized additive models (GAM) establish the nonlinear relationship between a
response variable and series of explanatory variables through smooth functions [22,64].
The additive structure of GAM makes it easy to interpret how each explanatory variable
affects Y [65]. GAM can be expressed by:

g[E(Y|X)] = α+
r

∑
j=1

fj
(
Xj
)

(1)

where g is the link function, and fj are smooth functions of Xj. Y is a random variable
called response variable, and X is a matrix whose columns are a set of r explanatory
variables Xmodel.
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Xmodel can be expressed by:

Xmodel = f(AOD, BLH, FA, HCC, LCC, MCC, SP, SSRD, SSRDC, T2m, TCC,
TCCIW, TCCLW, TCO, TCW, TISR, TP)

(2)

where f() represents the base ML learners used to estimate diffuse solar radiation in this
study: CNN, DNN, GBDT, RF, SVR, and XGB.

A smooth function fj can be represented linear combination of basis functions.

fj
(
Xj
)
=

qj

∑
i=1

θjibji
(
xj
)

(3)

where bji
(
xj
)

is the ith basis function of the jth explanatory variable evaluated at xj, qj is
the number of basis functions for the jth explanatory variable, and θji are unknown pa-
rameters [22]. In this study, the generalized cross-validation score (GCV) was selected to
minimize the smooth function fj, which is based on the leave-one-out method. This method
ends up being less computationally expensive [66].

GAM is used for the ensemble stage, which is appropriate for scenarios where complex,
nonlinear, and possibly interacting relationships need to be predicted. This method allows
for greater flexibility in the weights assigned to each model as they fluctuate in space, as
well as applying higher weights to a model that performs better in specific locations.

2.2.3. Model Development

Here, 3-h AOD data from the MERRA-2 dataset, TISR, SSRDC, BLH, TCO, LCC,
MCC, HCC, TCCIW, TCCLW, TCC, and TCW from the ERA5-single dataset, and TP,
SSRD, SSRD, T2m, and SP from the ERA5-land dataset were used as input variables to
develop the ML model for estimating diffuse solar radiation with a 0.1◦ × 0.1◦ spatial
resolution. The six base learners were tuned using GridSerachCV to find the optimum
performance over the complete sample set based on the R metric, which was used to
adjust different parameters.

All six ML models attempted to model the complex relationship between the input
and dependent variable with different approaches. The ensemble model (GAM) aimed
to generate an improved diffuse solar radiation estimation, compared to the estimations
from each base ML learner (CNN\DNN\GBDT\RF\SVR\XGB). The GAM used the cross-
validated diffuse solar radiation estimations from six base ML models as predictors, in order
to achieve the final diffuse solar radiation predictions. The cross-validated estimations
were used, as opposed to estimations in the testing data, because they better approximated
the predictive performance of the models in locations without data. Then we tuned the
hyperparameters for GAM using GridSearchCV. After multi-perspective cross-validation
(CV) of the GAM, we constructed a daily diffuse solar radiation dataset for the Chinese
region, a specific integration process, as shown in the following Figure 2.

The 10-fold CV approach is commonly used to verify the model’s robustness and
overfitting problems. The dataset is randomly divided into 10 subsets, each with ~10% of
the dataset. That is, 9 subsets are used to train the model, while the remaining subset is
used for validation. This process is repeated for each subset held out in turn. In this study,
we applied three 10-fold CV approaches, such as sample-based CV, site-based CV, and
by-year CV, to evaluate the estimation performance of the base ML and ensemble models.
The sample-based CV was used to evaluate the overall performance of the models. The
site-based and by-year CV assessed how the model performs in areas without monitoring
sites and years without monitoring data, thus allowing for predictions to be made using
the model developed over other regions and years. The correlation coefficient (R), root-
mean-square error (RMSE), mean bias error (MBE), and mean absolute error (MAE) were
used to quantitatively evaluate the model performance.
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3. Results
3.1. Evaluation of the Model Performance

Figure 3 presents the density scatterplots between the observed and estimated diffuse
solar radiation using the GAM and the six base ML models. Overall, the ML models
perform well, with R values ranging from 0.77 to 0.88, RMSE values ranging from 19.54 to
26.32 Wm−2, and MAE values ranging from 14.87 to 20.64 Wm−2. The sample-based CV
R values are in the order of GAM (0.88) > RF (0.87) = XGB (0.87) = GBDT (0.87) > SVR
(0.86) > DNN (0.84) > CNN (0.77). The RMSE and MAE values presented opposite trends,
suggesting that GAM outperforms the six individual models in diffuse solar radiation
prediction (RMSE = 19.54 Wm−2 and MAE = 14.87 Wm−2). Of the three ML algorithms,
the model performance of the boosting algorithm (GBDT and XGB) and others (RF and
SVR) were quite close and better than deep learning (CNN and DNN). The overall model
performance from GAM outperforms any single algorithm. It is worth noting that all
models have some low-value overestimation and high-value underestimation, but GAM
has improved on this issue. While the R value from GAM, compared to the single ML
models, is not large overall, it affects the linearity of the association between the predictor
variables and diffuse solar radiation.

Table 3 depicts the CV results for GAM at different CMA stations. In the site-based
CV, the dataset was randomly split, according to the monitoring sites, and each subset
contains different monitoring stations. The site-based CV R (0.84) is slightly lower than the
sample-based CV R (0.88), whereas the RMSE and MAE values (21.60 and 15.74 Wm−2 for
the site-based CV) are significantly higher than the sample-based CV result. The higher R
values are in most eastern and northern areas of China. R varies from 0.65 to 0.92, with a
mean and a standard deviation of 0.84 and 0.06, respectively, and ∼76% of the stations have
R greater than 0.80. The RMSE at each station ranges from 17.71 to 26.06 Wm−2, with a mean
and a standard deviation of 21.60 and 2.63 Wm−2, respectively. About 53% of the stations
have RMSE values smaller than 22 Wm−2. A total of ∼29% of the stations have MAE
values bigger than 17 Wm−2, with values ranging from 12.83 to 18.81 Wm−2. The mean and
standard deviation of MAE for all stations were 15.74 and 1.94 Wm−2, respectively.
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Table 3. Cross-validation for ensemble model (GAM) at different stations.

Stations R RMSE (Wm−2) MAE (Wm−2)

Sanya 0.65 24.11 18.81
Guangzhou 0.84 19.77 15.17

Kunming 0.80 23.24 16.71
Lhasa 0.83 26.06 18.55

Wuhan 0.87 23.09 17.01
Chengdu 0.84 22.97 17.91
Shanghai 0.89 18.51 13.90

Zhengzhou 0.92 18.50 13.73
Lanzhou 0.83 21.17 15.46
Golmud 0.87 21.40 16.18

Kashi 0.84 20.49 15.25
Beijing 0.91 18.04 13.03

Shenyang 0.84 24.20 16.08
Ejinaqi 0.77 25.13 18.37

Urumchi 0.79 19.53 14.79
Harbin 0.90 17.71 12.83
Mohe 0.85 23.21 13.86

Overall 0.84 21.60 15.74

The dataset was randomly split according to the monitoring years in the by-year CV,
using the same processes as the sited-based CV. The scatterplot of by-year CV, based on
GAM, is shown in Figure 4, with the best estimation performance in 2012 and worst in 2013.
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The by-year CV R (0.86) is slightly lower than the sample-based CV R (0.88), whereas the
RMSE and MAE values (21.71 and 15.73 Wm−2 for the by-year CV) are significantly higher
than the sample-based CV result. R varies from 0.83 to 0.87, with a mean and standard
deviation of 0.86 and 0.02, respectively, and∼80% of the years have R greater than 0.85. The
RMSE at each year ranges from 20.50 to 23.42 Wm−2, with a mean and standard deviation
of 21.71 and 1.24 Wm−2, respectively. About 60% of the stations have RMSE values smaller
than 22 Wm−2. A total of ∼40% of the years have MAE values higher than 16 Wm−2,
with values ranging from 14.98 to 16.79 Wm−2. The mean and standard deviation of MAE
for all years are 15.73 to 0.74 Wm−2, respectively. Overall, the GAM estimates diffuse
solar radiation well. Both the site-based and by-year CV approaches illustrate satisfactory
predictive capability, with no apparent overfitting, implying the reliability of GAM in
predicting diffuse solar radiation spatial and temporal variability.
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3.2. Comparison with Other Diffuse Solar Radiation Products
3.2.1. Validation between Diffuse Solar Radiation Products and Ground Observation Data

Figure 5 presents density scatterplots between the daily diffuse solar radiation values
of four diffuse solar radiation products, including CERES, ERA5, JiEA, and CHSSDR, and
ground-based observation data at 17 CMA stations in 2010. The R values for validation
results are in the order of the CHSSDR (0.87) > JiEA (0.81) > CERES (0.80) > ERA5 (0.73).
With the least deviation (MAE = 15.06 Wm−2 and RMSE = 20.22 Wm−2), CHSSDR has
the highest consistency with the observation data. JiEA and CERES have MAE values of
19.14 Wm−2 and 26.97 Wm−2, respectively, as well as RMSE values of 24.77 Wm−2 and
36.63 Wm−2. ERA5 diffuse solar radiation data has the lowest correlation with observation
data, with an MAE value of 24.54 Wm−2 and RMSE value of 32.44 Wm−2. It is suggesting
that the CHSSDR outperforms the three individual products in correlation with observed
diffuse solar radiation. The red solid line in Figure 5 is the 1:1 line, and the black dashed
line is the best-fit line from linear regression. As illustrated in the figure, all four diffuse
solar radiation products suffer from the common problem, in that the lower diffuse solar
radiation values are overestimated. This phenomenon is quite clear in the ERA5 and JiEA
products, whilst CERES shows an overall overestimation. Higher diffuse solar radiation
values are underestimated in ERA5, JiEA, and CHSSDR, and this is particularly noticeable
in ERA5 and JiEA products. The ERA5 diffuse solar radiation value demonstrates a
significant underestimation, and this analysis agrees with the findings of Jiang et al. [57].
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CHSSDR products contain fewer errors and more concentrated scattering points, despite
CHSSDR’s slight overestimation of low values and underestimating of high values.
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To effectively evaluate the four diffuse solar radiation products, we chose the daily
average of ground-based observations and diffuse solar radiation products for each day
of 2010 to verify and compare the mean bias. As illustrated in Figure 6a, the median bias
and standard deviation of CERES are all greater than 0. Figure 6b contrasts with Figure 6a,
showing that ERA5 performs the worst, with all median bias and standard deviations
less than 0. The CERES is overestimated, while the ERA5 is significantly underestimated,
when compared to the observation data. For each day of 2010, JiEA outperforms CERES
and ERA5, as shown in Figure 6c. In the summer, the JiEA diffuse solar radiation dataset
deviates even more from the observation data. Figure 6d compares the results of CHSSDR
to observation data. In terms of accuracy within each time node, CHSSDR surpasses CERES,
ERA5, and JiEA. CHSSDR’s median bias and standard deviation both fluctuate, by a minor
magnitude, above and below zero.

3.2.2. Intercomparison Analysis of Multiple Diffused Radiation Products

Figure 7 depicts the spatial distribution of the CV R values of four diffuse solar ra-
diation products. The R values among JiEA, ERA5, and CERES products are generally
higher in Northeast, Northwest, Inner Mongolia, and North China than in Middle and
Lower Yangtze River, South China, Sichuan-Chongqing, and the surrounding areas. The
gap in accuracy is due to southeastern proximity to the ocean, plenty of water, and fre-
quent cloud and rain activities, all of which result in inferior quality diffuse radiation
products. For example, in Northeast China, the R values of ERA5&CERES, ERA5&JiEA,
and CERES&JiEA are 0.87, 0.85, and 0.85, respectively, whereas the R values in South China
are 0.76, 0.74, and 0.77, respectively. In Northeast, Northwest, Inner Mongolia, and North
China, the correlation coefficients R values between CHSSDR&JiEA, CHSSDR&ERA5, and
CHSSDR&CERES are generally higher. In the Middle and Lower Yangtze River, South
China, Sichuan-Chongqing, and the surrounding areas, the correlation coefficient R values
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of CHSSDR&JiEA are lower than those of CHSSDR&ERA5 and CHSSDR&CERES, with R
values of 0.75, 0.68, and 0.60, respectively. In the Southeast, these four products are poorly
correlated, which is linked with high cloud activity and overall cloudiness throughout
the year.
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3.2.3. Error Comparison under the Different Conditions

The accuracy of four diffuse solar radiation products under different cloud cover
conditions is compared, with the variation of each validation index presented in Fig-
ure 8. Total cloud cover data were derived from the ERA5-single dataset and separated
into five intervals, based on maximum and minimum values: 0~0.2, 0.2~0.4, 0.4~0.6,
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0.6~0.8, and 0.8~1.0. The R value of each diffuse solar radiation product varies with
the amount of cloud. The R values in the range 0~0.2 are in the order of the CHSSDR
(0.91) > CERES (0.78) > JiEA (0.77) > ERA5 (0.70). The R values are in the order of the
CHSSDR (0.85) > CERES (0.81) > JiEA (0.80) > ERA5 (0.75), in the range 0.8~1.0. As such, the
higher the cloud cover, the lower the accuracy of the diffuse solar radiation products. The
MBE values of CERES are all positive and rise with increasing cloud cover, thus resulting in
larger overestimation (MBEmax = 30.83 Wm−2). All the MBE values in ERA5 are negative,
indicating significant underestimation (MBEmin = −22.65 Wm−2). The MBE value of JiEA
is positive only in the interval 0~0.2 and then becomes negative as the cloud cover increases.
The MBE values of CHSSDR are all positive, with the highest MBE value of 3.29 Wm−2

in the five intervals. The CERES has the highest deviation under different cloud cover
conditions, with MAEmax = 30.83 Wm−2 and RMSEmax = 40.05 Wm−2. CHSSDR has
the least deviation, with MAEmax = 17.91 Wm−2 and RMSEmax = 17.91 Wm−2. Over-
all, CHSSDR has the highest R value and lowest deviation among the four diffuse solar
radiation products.
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In addition, we also compared the accuracy of four diffuse solar radiation products
under different aerosol concentrations conditions, with the variation of each validation
index presented in Figure 9. Aerosol optical depth data were derived from the MERRA-2
dataset and separated into six intervals, based on maximum and minimum values: 0~0.5,
0.5~1.0, 1.0~1.5, 1.5~2.0, 2.0~2.5, and 2.5~3.0. The R values in the range 0~0.5 are in the
order of the CHSSDR (0.86) > JiEA (0.82) > CERES (0.80) > ERA5 (0.78). The R values
are in the order of the CHSSDR (0.94) > CERES (0.85) > ERA5 (0.79) > JiEA (0.55), in the
range 2.5~3.0. One obvious phenomenon is that the R value of JiEA falls dramatically
with increasing aerosol concentration. Aerosol has a complex chemical makeup; because
of the atmospheric environment, it is prone to secondary chemical changes, which can
affect product accuracy [67]. The MBE values of CERES are all positive, indicating large
overestimation (MBEmax = 30.83 Wm−2). ERA5 still reveals significant underestimation
(MBEmin = −23.06 Wm−2). The highest MBE values of CHSSDR and JiEA are 13.84 and
22.03 Wm−2. The ERA5 has the highest deviation under different aerosol concentrations,
with MAEmax = 36.48 Wm−2 and RMSEmax = 46.44 Wm−2. CHSSDR has the least
deviation, with MAEmax =16.01 Wm−2 and RMSEmax =21.51 Wm−2. For a variety of
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aerosol concentration conditions, the deviations (MAE and RMSE) of all four diffuse solar
radiation products rise with increasing aerosol concentration. In general, CHSSDR has the
highest R value and lowest deviation among the four diffuse solar radiation products.
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3.3. Spatial and Temporal Distribution of Diffuse Solar Radiation
3.3.1. Dataset Availability

The 39-year (1982–2020) daily diffuse solar radiation dataset (CHSSDR) constructed in
this study has been uploaded to figshare; users can link to specific data entities for each
year through https://doi.org/10.6084/m9.figshare.19352036.v1. Each data file is named
“DIF data xxxx,”, with xxxx signifying the year. The latitude and longitude ranges for
CHSSDR are 73.45◦W, 53.55◦N, 134.55◦E, 17.95◦S, with 356 × 611 ranks in Wm−2. The
filename suffix.nc denotes that the data was saved in NetCDF format; users can visit
http://www.unidata.ucar.edu/software/netcdf (last access: 25 July 2022) for additional
information regarding NetCDF.

3.3.2. Annual Average Spatial Distribution of Diffuse Solar Radiation

Figure 10 shows the spatial distribution of multi-year average diffuse solar radia-
tion in China from 1982 to 2020. The diffuse solar radiation values range from 59.13 to
104.65 Wm−2, with a 39-year average value of 79.39 Wm−2. Generally, low latitude and
low altitude regions have larger diffuse solar radiation than high latitude and high alti-
tude regions, and eastern China had less diffuse solar radiation than western China. The
highest value of diffuse solar radiation is located in South China, with an average value of
85.16 Wm−2. The higher value of diffuse solar radiation around the Qinghai-Tibet Plateau,
with an average value of 82.02 Wm−2, owing to the high altitude of the Qinghai-Tibet
Plateau region and weak scattering effect of air molecules. Due to the presence of sand
and dust particles with enhanced scattering effects, the diffuse solar radiation values in the
northwest are relatively high, with an average value of 77.04 Wm−2. The average value of
diffuse solar radiation in the Sichuan-Chongqing and surrounding areas is 75.97 Wm−2.
The diffuse solar radiation values in the Sichuan basin are higher than in the surrounding
areas because the topographical features of the enclosed basin cause an accumulation of
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pollutants and water vapor in the air, as well as a reduction in atmospheric transparency,
which increases solar radiation absorption and scattering.
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Figure 10. Validation of surface diffuse solar radiation products under different aerosol concentra-
tions conditions.

3.3.3. Interannual Variation Trend of Diffuse Solar Radiation

The interannual variation trend of diffuse solar radiation in China from 1982 to 2020 is
shown in Figure 11. In general, diffuse solar radiation shows a slight decrease tendency
(−0.127 Wm−2yr−1), with annual average values ranging from 75.80 to 84.28 Wm−2. From
1982 to 1990, diffuse solar radiation decreases with a trend of −0.722 Wm−2yr−1; from
1992 to 1998, the decreasing trend increases significantly (−1.191 Wm−2yr−1); from 1998 to
2008, diffuse solar radiation has a slightly increasing trend (0.223 Wm−2yr−1); and from
2008 to 2020, diffuse solar radiation decreases with a trend of −0.227 Wm−2yr−1. Since
1980, the global solar radiation has changed from a decreasing to increasing trend (also
known as “global brightening”), but this change has only occurred locally (in Europe and
the United States), and the “brightening” trend is not visible in areas such as China and
India, which is consistent with the decreasing trend calculated in this study for 1982–1990.
By evaluating the trend of solar radiation from 1961 to 2000, several studies concluded
that solar radiation across China showed a declining tendency [68], which also proves the
decreasing trend of diffuse solar radiation from 1982 to 1990 from the side. In 1982, a high
value of diffuse solar radiation (80.95 Wm−2) occurred in China, which was caused by the
eruption of Mexico’s El Chichón volcano [69]. Additionally, in 1992, another peak of diffuse
solar radiation (84.28 Wm−2) appearred, due to the eruption of the Pinatubo volcano
in the Philippine Islands in 1991 [70]. Large volumes of smoke and ash were released
into the atmosphere during volcanic eruptions, thus resulting in a substantial increase in
aerosol particle concentrations. After 2000, diffuse solar radiation gradually increased in
China, owing to rapidly growing sulfur emissions in Asia, exceeding those in Western
countries [71]. However, the increasing trend did not last and turned into a decreasing
trend in 2008, which was linked to the country’s promotion of energy conservation and
emission reduction efforts [72].
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4. Conclusions

In this study, we used the ensemble model (GAM), which integrated six base learn-
ers, such as CNN, GBDT, RF, SVR, XGB, and DNN, to construct a 39-year (1982–2020)
daily surface diffuse solar radiation dataset (CHSSDR) across China. Predictor variables
were derived from ERA5 and MERRA_2 reanalysis data. The GAM showed satisfactory
performance with sample-based, site-based, and by-year CV R values of 0.88, 0.84, and
0.86, respectively. After model training, the model produced daily diffuse solar radiation
predictions at 10 km × 10 km grid cells.

The validation results between the four diffuse solar radiation products (CERES, ERA5,
JiEA, and CHSSDR) and ground-based measurements revealed that CERES showed an
overall overestimation, while ERA5 demonstrated a significant underestimation. CHSSDR
had the highest consistency, with observations with an R value of 0.87, MAE value of
15.06 Wm−2, and RMSE value of 20.22 Wm−2. The accuracy of diffuse solar radiation
products was influenced by clouds and aerosols. Increases in the cloud and aerosol con-
centrations within a given range of values would result in the overestimation of CERES
and CHSSDR, as well as a more significant underestimating of ERA5, and change JiEA
from overestimation to the underestimation of diffuse solar radiation. The diffuse solar
radiation values in China ranged from 59.13 to 104.65 Wm−2, with a multi-year average
value of 79.39 Wm−2 from 1982 to 2020. South China, Yunnan, adjacent areas, the Middle
and Lower Yangtze River, North China, the Qinghai-Tibet Plateau, and the Sichuan Basin
are the higher-value areas of diffuse solar radiation distribution, while the Northeast Plain
and Inner Mongolia have lower values. The interannual variation trend of diffuse solar ra-
diation in China from 1982 to 2020 showed a slight decrease tendency (−0.127 Wm−2yr−1),
with annual average values ranging from 75.80 Wm−2 to 84.28 Wm−2.

We have preliminarily constructed a diffuse solar radiation dataset for a long time
series in China, but we cannot expand the dataset to a longer period, due to a lack of AOD
data. In the future, we will further seek solutions to data deficits by applying the ensemble
model (GAM) to generate global diffuse solar radiation datasets for a more thorough
spatial and temporal investigation of diffuse solar radiation. In addition, this study did
not compare the gain in accuracy and computational cost with other GAM-based methods.
These works will be further carried out in the future.
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