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Abstract: Forest carbon sinks (FCS) play an important role in mitigating global climate change, but
there is a lack of more accurate, comprehensive, and efficient forest carbon stock estimates and
projections for larger regions. By combining 1980–2020 land use data from the Northeast China
Forestry (NCF) and climate change data under the Shared Socioeconomic Pathway (SSP), the land use
and cover change (LUCC) of NCF in 2030 and 2050 and the FCS of NCF were estimated based on the
measured data of forest carbon density. In general, the forest area of NCF has not yet recovered to the
level of 1980. The temporal change in the FCS experienced a U-shaped trend of sharp decline to slow
increase, with the inflection point occurring in 2010. If strict ecological conservation measures are
implemented, the FCS of the NCF is expected to recover to the 1980 levels by 2050. We believe that
the ecological priority (EP) scenario is the most likely and suitable direction for future development
of the NCF. We also advocate for more scientific and stringent management measures for NCF natural
forests to unlock the huge potential for forest carbon sequestration, which is important for China to
meet its carbon neutrality commitments.

Keywords: forest carbon stocks; simulation; LUCC; climate change; spatiotemporal evolution

1. Introduction

Terrestrial ecosystems, especially forests, play an important role in the global carbon
cycle and in climate change mitigation [1]. Both the IPCC and Paris Agreement concur
that the substantial contribution of forests is key to achieving the Nationally Determined
Contribution (NDC) goals [2]. Previous studies have shown that the increase in the forest
carbon stock (FCS) in China mainly results from forest restoration and afforestation [3,4].
Carbon sinks caused by ecological projects, such as afforestation, decline as forest vegetation
matures and reaches the late successional stage [5]. However, within the period of China’s
carbon neutrality target, forest ecosystems, especially natural forests, can still maximize
their carbon sequestration effects through forest management and restoration. Therefore, it
is necessary to further clarify the carbon sink capacity of forest ecosystems and accurately
account for the FCS.

China has conducted extensive research in the field of FCS assessments and fore-
casting of future trends [1,6–10]. Current measurement methods for FCS mainly include
(1) inventory-based estimation, (2) satellite-based estimation, and (3) process-based es-
timation. The carbon stock results calculated using different forest types, data sources,
and estimation methods are significantly different [11]. The Chinese land spans a wide
range of latitudes (from 18◦N to 53◦N). Based on natural and environmental characteristics,
China’s forest ecosystems can be divided into seven types [12]. The variability in the
carbon sequestration capacity and carbon cycles of different types of forests makes it more
difficult to accurately estimate the overall carbon stock. Large-scale FCS measurements are
necessary; however, they weaken due to the spatial heterogeneity of natural environmental
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elements. The uncertainty in the estimation results of the FCS can be further reduced if the
large-scale area is subdivided into intermediate areas with the same climatic, hydrological,
and soil backgrounds for the study. Forest inventory data are considered the most reliable
data source for forest carbon flux studies. Owing to its authority and comprehensiveness,
most current carbon stock accounting studies, including in China, are based on national
inventory data [13]. However, the national forest resources verification cycle is long, the
published data have a lag, and the classification of forest types is vague, which cannot
meet the requirements of real-time monitoring and rapid assessment of regional FCS [14].
In addition to natural factors, the estimation method is a key factor contributing to the
uncertainty of FCS estimation [15]. Current estimation methods lack adequate response
to the evolution of forest ecosystems caused by climate change. In particular, the inter-
conversion processes between different forest stands under the stress of changing natural
environmental factors need to be further clarified, which is crucial for accurate estimation of
FCS. Simultaneously, the successful implementation of any CO2 removal method requires
careful consideration of other land use requirements [16]. Land use and cover change
(LUCC) is a major driver of a range of ecological problems that cause carbon cycling by
altering the ecosystem structure [17,18]. Therefore, it is necessary to clarify the trends of
future climate change and LUCC-induced changes in forest ecosystem structure and to
perform simulations and predictions of FCS to reveal its dynamic evolution pattern.

The Northeast China Forestry (NCF) is the largest natural forest area in China and is
the key implementation area of China’s Natural Forest Protection Project (NFPP). Com-
pared to planted forests, natural forests can better support biodiversity conservation and
achieve ecosystem services, such as surface carbon storage, soil conservation, and water
conservation [19]. Over the past few decades, NCF has been an important producer of
timber and forestry by-products [20]. However, if forest conservation involves timber pro-
duction, policymakers must weigh environmental and production outcomes [21]. Owing
to the specificity of the administrative system, the vast majority of NCF’s forest resources
are state-owned under the jurisdiction and development of different forestry bureaus and
forest industry groups, which facilitates more efficient forest management. The main status
of food production cannot be changed, and the implementation of long-term afforestation
projects has resulted in very limited forest suitable land in NCF. Forest ecosystem restora-
tion is mainly based on forest nurturing and degraded forest restoration. This indicates that
the evolution of forest ecosystems in the NCF is more focused on the mutual transformation
between different forest stands. Although the forest area will not expand on a large scale,
the FCS may undergo significant changes.

Forest ecosystems contain four carbon pools: above ground biomass, belowground,
soil, and deadfall carbon pools. Among them, the aboveground biogenic carbon pool and
soil carbon pool account for the largest proportion of the total carbon stock and are the
focus of research. Although deadfall only accounts for approximately 5% of the total carbon
stock, it is the link between the aboveground vegetation carbon pool and the soil carbon
pool [22], and is especially important for NCF, which is dominated by natural forests. Over
the past few decades, researchers have made many effective attempts to estimate the FCS of
the NCF [10,23–27]. However, from the results of the study, the lack of overall calculation
of the four carbon pools of the forest and simulation of the process of spatial and temporal
evolution of the carbon stock hinders further assessment of the ecological and economic
values generated by the FCS of the NCF.

In this study, we quantified the temporal variability and spatial heterogeneity of the
FCS in the NCF by specifying the interactive processes between the interior and exterior of
the forest caused by LUCC in the context of future climate change. The main objectives
of this study were to clarify (1) the evolutionary trends of land use in the NCF from
2030 to 2050, (2) the evolution between different forest stands within the forest, and (3) the
evolutionary trends and spatial heterogeneity of the FCS.
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2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

The National Forest Management Plan (2016–2050) prepared by China’s National
Forestry and Grassland Bureau divides the country into eight management zones, tak-
ing into account the status of forest resources, geographical location, forest vegetation,
management status, and development direction of each region. The NCF (38◦43′–53◦23′N
and 118◦50′–135◦05′E) includes the Greater-Khingan-Mountains cold temperate coniferous
forest management area and the northeast middle temperate coniferous and broad-leaved
mixed forest management area, involving Heilongjiang, Jilin, Liaoning, and four provinces
and autonomous regions of Inner Mongolia, 244 counties (districts) (Figure 1). The NCF
straddles the mid-temperate and cold temperate zones from south to north and has a
temperate monsoon climate with an average annual temperature of 4.8 ◦C to 11.5 ◦C,
annual precipitation of 300–1000 mm, and a large area of black soil. The total area of
the existing forest land is 53.22 million hectares, the forest accumulation is 1.087 billion
cubic meters, and the forest area accounts for approximately 37% of the country’s total
area [28]. The forests are mainly concentrated in the three major topographical areas of
Greater-Khingan-Mountains, Lesser Khingan Mountains, and Changbai Mountains, and
the vegetation types are mainly deciduous broad-leaved forest and coniferous forest.
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2.1.2. Data Acquisition and Preprocessing

To explore the impact of LUCC on FCS in the context of future climate change, it
is crucial to clarify its impact mechanism and screen the driving factors affecting LUCC
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(Figure 2). The research support data mainly include land use, economic, social, climate, and
soil data (Table 1). The land use data is a multi-period set from 1980 to 2020, constructed by
manual visual interpretation using Landsat remote sensing images as the main information
source. The dataset covers 6 major categories and 25 subcategories, and the data resolution
is 30 m. Because the focus is on the interconversion between different forest stands, the land
use data classifies forested land into four types according to the degree of density and tree
height: closed forest land (Cl, natural and planted forests with density > 30%), shrubland
(Shr, short stands and scrubland with density > 40% and height below 2 m), sparse forested
land (Sp), forested land with density 10–30% and other forested land (Oth, non-forested
plantations, trails, nurseries, and various types of gardens). Other land use types were
reclassified as Cropland (Cult), Grassland (Gr), Water (Wat), Construction Land (Constr),
and Unused Land (Un), data from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (DOI: 10.12078/2018070201).
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Economic and social data are the main factors influencing land use change based on pre-
vious research results of 10 datasets including transportation, GDP, and population [29–31].
To eliminate the randomness of single-year climate data, we used the average values of
temperature and precipitation from 1970 to 2000. Future climate change data were used
under three Shared Socioeconomic Pathways (SSPs) (SSP126, SSP245, and SSP585), with
19 bioclimatic variables based on the BCC-CSM2-MR model. The DEM is derived from
SRTM data measured jointly by NASA and the National Mapping Agency (NIMA) of
the Department of Defense with a data resolution of 3 arc-second (~90 m). Slope and
aspect data were obtained by processing DEM data using ArcGIS Pro 2.8 software. Soil
is an important factor influencing changes in forest ecosystems [32], and we wanted to
show the characteristics of water content, water retention, permeability, nutrients, and
physicochemical properties of soil using nine indicators. A series of data preprocessing
was performed in ArcGIS Pro2.8 software, including projection transformation, Euclidean
distance, resampling, and clipping, and all of the above data were converted to raster data
with the same projection coordinate system and 30 m spatial resolution.
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Table 1. The spatial driving factors of the land use change in this study.

Category Data Year Original Resolution Data Resource

Land Land cover 1980–2020 30 m https://www.resdc.cn/,
accessed on 28 December 2021

Soil factors

Soil water capacity 2017 250 m https://data.isric.org/,
accessed on 21 October 2021

Soil pH
Depth to bedrock

Cumulative probability of
organic soil

Soil organic carbon stock
Sand content
Clay content
Texture class

Soil type 1995 1000 m http://www.resdc.cn/,
accessed on 25 December 2021

Population 1990–2020 1000 m www.worldpop.org, accessed
on 28 December 2021

Socioeconomic
factors

GDP 1990–2020 1000 m http://www.geodoi.ac.cn/,
accessed on 28 December 2021

Proximity to city 2015 30 m
Proximity to rural settlement

Proximity to railway
https:

//www.openstreetmap.org/,
accessed on 15 October 2021

Proximity to highway
Proximity to primary road

Proximity to secondary road
Proximity to tertiary road

Proximity to quaternary road

Climatic and
environmental

factors

DEM 2016 90 m NASA SRTM1 v3.0, accessed
on 25 December 2021

Slope
Aspect

Temperature 1970–2000 30 arc-sec http://www.worldclim.org/,
accessed on 26 October 2021

Precipitation
Bioclimatic variables 2040–2060

2.2. Methods
2.2.1. Patch-Generation Land Use Change Simulation (PLUS) Model

Cellular automata (CA) are widely used to simulate the dynamics of complex LULC
systems [33]. However, most CA models focus on the optimization of simulation techniques
and the correction of transformation rules, and relatively little research has been conducted
on how to deepen the analysis of potential drivers of land use, especially on the strategies
of transformation rule mining and simulation of landscape dynamics, which require further
clarification. The PLUS model is based on raster image data and uses a new land expansion
analysis strategy (LEAS) combined with a CA model based on multiclass random patch
seeding (CARS) to better simulate multiclass land use patch-level changes [34,35].

LEAS incorporates a transformation analysis strategy (TAS) and pattern analysis
strategy (PAS). By extracting the parts of each type of land use expansion between the
two periods of land use change and sampling, the random forest algorithm was used to
mine the factors of each type of land use expansion and the corresponding driving force.
Thus, the conversion probability of each type of site and the contribution of drivers to the
expansion of each type of site in that period can be obtained with a better interpretation.
CARS combines random seed generation and a threshold decreasing mechanism, and the

https://www.resdc.cn/
https://data.isric.org/
http://www.resdc.cn/
www.worldpop.org
http://www.geodoi.ac.cn/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://www.worldclim.org/
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PLUS model can simulate the automatic generation of patches in a spatiotemporal dynamic
manner under the constraints of transformation probability and conversion constraint
(Figure 3). For the 2030 land use simulation, we used 1970–2000 data for climate factors,
and for the 2050 simulation, we used SSP future climate projection data and SSP126, SSP245,
and SSP585 pathways corresponding to the EP, NG, and RD scenarios, respectively.
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2.2.2. InVEST Model and Forest Carbon Density Settings

Accuracy verification is key to the land use simulation process, and we used the Kappa
coefficient and Figure of merit (FoM) to estimate the accuracy of the simulation results.
Usually, a Kappa coefficient greater than 0.6 indicates that the results are usable, and greater
than 0.8 indicates that the simulation results are relatively accurate.

Although most of the previous studies on the PLUS model have used the Kappa
coefficient to verify the accuracy of the model, the reliability of the Kappa coefficient is
currently subject to many controversies [36,37]. Therefore, we introduce the FoM coefficient
to further verify the accuracy of PLUS.

FoM coefficients only focus on where it has changed. FoM coefficients are superior for
measuring goodness of fit in simulations of changes in landscape composition. Theoretically,
FoM values range from 1% to 100%, with larger FoM values corresponding to higher
simulation accuracy, but values less than 30% have been shown to be common [38]. The
formula for calculating the FoM coefficient is:

FoM = B/(A + B + C + D)

where B represents the actual area that has changed and the simulation results have also
changed. A indicates that the actual area has changed, but the simulation results have not
changed. C indicates that both the actual area and the simulation results have changed, but
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the direction of change is not consistent. D represents the actual area that has not changed,
but the simulation results have changed [39].

2.2.3. InVEST Carbon Storage and Sequestration Model

The InVEST carbon storage and sequestration model uses land use raster data and
stocks in four carbon pools (aboveground biomass, belowground biomass, soil, and dead
organic matter) to estimate the amount of carbon currently stored in the landscape or
sequestered over time. The model operates by mapping the carbon density of the carbon
pools to the LUCC raster to calculate the carbon stock of each land type. Therefore, the
accuracy of the InVEST model depends on the land use data and forest carbon pool data.
In order to improve the accuracy of land use simulation, we refined the soil data that
affect the forest evolution, involving factors such as soil physical and chemical properties,
water retention, air permeability, nutrition, and root growth space, so that the simulation
accuracy of closed forest land can reach more than 95%. The closed forest accounts for
about 90% of the forest area in NCF, which will optimize the accuracy of the InVEST model
calculation. Meanwhile, many previous studies involving the calculation of forest carbon
stocks by InVEST model have classified forests as one type or included only part of the
carbon pool. Obviously, the carbon density of forests with different degree of density is
different. Therefore, to further improve the accuracy of the InVEST model for estimating
forest carbon stocks, we divided the forest into four types of stands and included carbon
density data of all carbon pools of the forest.

The InVEST model used carbon density data from four carbon pools, all of which were
derived from actual measurements conducted by researchers at the NCF. Aboveground
biomass carbon density measurements include the carbon density of the tree layer and
carbon density of understory vegetation. Belowground biomass carbon density refers to
root carbon density. Soil carbon density was replaced by a mean value of 0–100 cm in the
uniform adoption.

The forested sites mainly included Larix gmelinii, Pinus koraiensis, Pinus camphorata,
Pinus tabulaeformis, Picea abies, Quercus mongolica, Betula platyphylla, Betula davurica, and
other dominant vegetation-building species in the northeast. The shrublands included
vegetation of Caragana korshinskii, Prunus sibirica, Ostryopsis decne, and Spiraea salicifolia. The
open woodlands contained Ulmus pumila, Populus simonii, and P. davidiana. In this study, we
defined other forested lands as trails and unstocked lands to determine carbon density. All
four forest stands involved the carbon density of four carbon pools, which were weighted
and summed based on the area of tree species mentioned in the literature (Table 2)

Table 2. The carbon density of each stand used in the InVEST model (Mg/hm2).

C_above C_below C_soil C_dead

Cl 68.049 1.104 129.395 5.652
Shr 6.3325 0.733 115.73 1.23
Sp 17.57 0.765 58.67 0.62

Oth 1.288 0.688 6.15 0.643

3. Results
3.1. Model Validation

To verify the reliability of the model, we combined the Markov chain (M-C) and
simulated land use data for 2010 and 2020, respectively (Figure 4). The results of our
random sampling (sampling rate of 0.1 and number of samples of 9,199,472), compared
with the real data, show that the kappa coefficients of the simulated data in 2010 and 2020
are greater than 0.8 (Table 3). The 1990 and 2000 land use maps were selected as the initial
states of the landscape pattern in 2010 and 2020, respectively. The results show that the
FoM coefficients of the two simulated data are both 0.174. This study focuses on simulating
the evolution of forest land in the northeastern forest region. Therefore, we reclassified the
data and set other land types other than forest land to the same class. The 2010 data was
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selected as the initial state of the 2020 landscape pattern to validate the FoM coefficient of
the 2020 simulated data. The results show that A = 0.1247442, B = 0.10471363, C = 0.469294,
D = 0.4283501, FoM = 0.635722. It shows that the PLUS model has a relatively reliable
accuracy for the forest land simulation in the northeast forest area.
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Table 3. PLUS model validation results for the NCF.

Land Use Type User’s Accuracy Overall Accuracy Kappa Coefficient

2010 2020 2010 2020 2010 2020

Closed forest land 0.976457 0.956521 0.971922 0.896424 0.960604 0.853745
Shrub forest land 0.912785 0.729021
Sparse forest land 0.818204 0.615643
Other forest land 0.523307 0.664626
Cultivated land 0.990825 0.918858

Grass land 0.989463 0.850062
Water area 0.990503 0.452974

Construction land 0.966698 0.787961
Unused land 0.98088 0.884863

3.2. Multiple Scenario Settings Based on the Amount of Land Demand

The PLUS model requires setting target values for future land use patches and as-
signing the changing patches to appropriate spaces according to the future land area by
combining LEAS and CARS. The PLUS model provides both linear regression and Markov
chain (M-C) for forecasting future land use demand. The M-C can complete the forecast
using two periods of data but is more suitable for short-term forecasting. The M-C predic-
tion results vary widely when using data from different time periods (Table 4). Our linear
regression projections using NCF land used data for 10 periods from 1980 to 2020 yielded
results that appear to be more in line with the NCF development expectations.

To improve the reliability of the simulation results, we set up three future development
models: the ecological priority scenario (EP), natural growth scenario (NG, baseline sce-
nario), and regional development scenario (RD). The 2030 and 2050 land use areas obtained
from the linear regression projections were used as the baseline scenarios. Regarding the
setting of land use areas for the two scenarios of EP and RD, two key factors need to be
considered: the continuation of current RD trends and future development plans. NCF
has the important task of supplying forest products and food; therefore, the area of forest
and arable land should be protected first in a future development process. Construction
land is the most active land type in the process of land use change and is the most direct
factor affecting LUCC. It is worth noting that the northeast region has encountered a de-
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velopment bottleneck in the past 10 years (Figure 5). Although the Chinese government
has been promoting a northeast revitalization plan, the northeast region has not met the
development expectations of the central government owing to cold climate and deformed
industrial structure. Owing to the early start of development and large rural population
loss, the urbanization rate in the northeast is higher than the national average. It should
be clear that the population loss and the decline in birth rate, as well as the late stage of
urbanization development, do not imply a reduction in total urban construction land area
in the future, but rather a reduction in demand [40]. Although current development trends
suggest that the probability of the RD scenario is likely to be low, we set up this scenario to
address possible future scenarios (Table 5).
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Table 4. Predicted area of land calculated by Markov chain and linear regression (km2).

Year Cl Shr Sp Oth Cult Gr Wat Constr Un

Current 2020 391,734 30,785 23,168 4455 298,416 99,040 16,810 24,832 50,248

M-C (2010–2020)
2030 399,589 27,308 18,205 4422 298,167 94,962 13,757 27,733 55,347
2050 409,589 22,601 13,059 4356 297,974 88,148 10,889 31,782 61,091

M-C (2015–2020)
2030 374,833 37,365 29,642 5583 303,196 109,299 12,431 26,080 40,666
2050 362,820 38,135 31,030 6016 312,674 111,450 10,378 27,684 38,907

Linear regression 2030 393,992 28,049 20,529 4670 304,200 95,762 17,793 25,797 48,698
2050 402,772 22,099 12,649 4851 311,245 89,759 15,128 29,003 51,984

Table 5. Area setting of future scenarios and their changes in 2020 (km2, %).

Scenario Time Cl Shr Sp Oth Cult Gr Wat Constr Un

2020 391,734 30,785 23,168 4455 298,416 99,040 16,810 24,832 50,248

NG
2030 393,992

(0.58%)
28,049

(−8.89%)
20,529

(−11.39%)
4670

(4.83%)
304,200
(1.94%)

95762
(−3.31%)

17,793
(5.85%)

25,797
(3.89%)

48,698
(−3.08%)

2050 402,772
(2.82%)

23,066
(−25.07%)

17,731
(−23.47%)

3826
(−14.1%)

303,334
(1.65%)

93,759
(−5.33%)

15,128
(−10.0%)

29,003
(16.80%)

50,869
(1.24%)

EP
2030 395,363

(0.93%)
27,738

(−9.90%)
20,614

(−11.02%)
4505

(1.12%)
303,010
(1.54%)

98,694
(−0.35%)

19,294
(14.78%)

25,682
(3.42%)

44,590
(−11.2%)

2050 410,689
(4.84%)

30,329
(−1.48%)

20,343
(−12.19%)

4296
(−3.57%)

301,181
(0.93%)

89,829
(−9.30%)

19,261
(14.58%)

26,220
(5.59%)

41,342
(−17.7%)

RD
2030 392,892

(0.30%)
27,485

(−10.72%)
20,428

(−11.83%)
4345

(−2.47%)
302,019
(1.21%)

95,404
(−3.67%)

16,481
(−1.96%)

27,605
(11.17%)

51,519
(2.53%)

2050 403,027
(2.88%)

22,601
(−26.58%)

15,922
(−31.28%)

4314
(−3.16%)

305,692
(2.44%)

88,150
(−11.0%)

15,087
(−10.3%)

31,782
(27.99%)

52,913
(5.30%)

The National Forest Management Plan has specific development requirements for NCF
forest development in 2020–2050, which we followed in the setting of forest land area in
the EP scenario. The RD scenario reflected more productive attributes. Rural depopulation
may accelerate large-scale land-intensive production so that there are priority growth
opportunities for building land and cultivated land. The grassland area would decrease to
different degrees under all three scenarios. After the Third National Land Survey (2021),
the central and local governments became stricter in their attitudes toward arable land
protection. As a result, forestland expansion is mainly achieved through grassland and
unused land conversion.

3.3. NCF Land Use Evolution Analysis
3.3.1. Historical Land Use Evolution Analysis

We used the computational change raster tool of ArcGIS Pro2.8 to comparatively
analyze the quantitative relationships between land use conversions at different time
periods. From 1980 to 2000 (Tables 6 and 7), there was a significant decline in closed
forest land and grassland from 21.36% and 6.52% of the total area to 20.38% and 5.48%,
respectively (Figure 6a). The decrease in forested land was mainly concentrated in the
south-central part of Lesser Khingan Mountains and the southern part of the Sanjiang Plain,
and the degradation of shrub forests in the Changbai Mountains was more obvious. The
northern part of the NCF has experienced a certain expansion of forested land, which was
more scattered (Figure 7a). Most of the lost forest and grassland were transformed into
arable land and construction land, and the area of arable land expanded by 17.46%.
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Table 6. Conversion of Land Types from 1980 to 2000 (km2).

Cl Shr Sp Oth Cult Gr Wat Constr Un

Cl 376,673.1 4660.43 1846.63 1422.39 13,858.13 2048.26 70.12 210.76 610.24
Shr 910.2 27,379.15 231.95 8.53 4618.52 390.24 94.45 72.51 270.6
Sp 139.94 30.82 26,721.09 15.22 1126.78 336.68 2.9 11.14 20.19

Oth 841.39 1418.53 374.15 2585.75 100.32 2157.42 0.11 1.46 2.86
Cult 1301.78 296.4 405.13 118.66 246,914.2 854.56 397.26 1913 744.18
Gr 2850.89 561.54 720.34 44.32 19,375.76 95,403.31 620.97 323.07 2639.85

Wat 11.42 42.86 12.96 0.01 608.65 228.91 20,076.5 6.93 203.48
Constr 4.03 0.89 0.73 0.06 82.26 35.81 4.25 18207.91 1.31

Un 185.1 643.1 191.78 1.1 10,392.48 1564.01 855.15 78.62 39,302.12

Table 7. Conversion of Land Types from 2000 to 2020 (km2).

Cl Shr Sp Oth Cult Gr Wat Constr Un

Cl 363,634.6 1956.55 2000.83 1156.92 7929.7 4131.44 889.67 412.75 805.53
Shr 3920.37 24,872.14 189.6 92.14 2209.96 2162.83 315.38 95.89 1175.43
Sp 7932.75 552.03 18,575.2 184.86 2081.31 774.25 68.56 175.24 160.57

Oth 1061.34 64.68 59.98 2745.78 154.4 68.52 7.25 19.38 14.71
Cult 8301.44 1573.53 912.24 107.58 27,2192.7 3315.28 1703.5 6855.78 2115.61
Gr 5600.76 1191.31 1310.58 126.6 4682.17 86,612.52 375.62 454.01 2665.66

Wat 356.83 356.31 21.81 2.29 1663.76 362.93 12,908.92 131.72 6315.43
Constr 232.88 68.58 36.79 7.41 3615.5 174.24 98.03 16,509.32 82.67

Un 693.08 149.48 60.64 31.26 3887.31 1438.61 443.68 178.01 36,912.84
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The LUCC of NCF was relatively stable from 2000 to 2020. The area of closed forest
land started to increase steadily, the growth rate of cropland and the decay rate of grass-
land both started to slow down, and the area of construction land grew at a faster rate
(Figure 6b). Spatially, the Changbai Mountain region was accompanied by a relatively
dramatic closed forest land evolution, but it was generally increasing. In the northern part
of the Greater-Khingan-Mountains and the eastern part of the Sanjiang Plain, there was a
more pronounced decrease in the area of closed forest land and shrubland (Figure 7b).

3.3.2. Simulation of Future Land Use Evolution

We simulated NCF land use under three scenarios in 2030 and 2050, calculated the
expansion of each category based on 2020 (Figure 8), and selected three regions with more
significant LUCC in A, B, and C for comparison (Figure 9). The relevant parameters of the
PLUS model were set as follows. In the LEAS module, the number of regression trees was
50, and the sample rate was 0.01. In the CARS module, the patch-generation threshold
was 0.7, the expansion coefficient was 0.3, the percentage of seeds was 0.001, and the
neighborhood weights were 3.

1. Changes in the areas of the main land types

Forest conservation, food security, and urbanization are the three main developments
in the NCF. Therefore, we mainly explored the changes in forest land, cultivated land, and
construction land in future scenarios. All three major land types maintained growth, with
closed forest land growing faster in the EP model, but cultivated land grew slightly less
than in the other scenarios. Under the RD model, built-up land grew faster than in the
other scenarios. Cropland and closed forest land did not grow significantly in the area in
2030 but exceeded that of the NG model by 2050 (Table 8).

Table 8. Change in area increase of major land types compared to 2020.

Time Scenarios Cl Cult Constr

2030
NG 0.58% 1.94% 3.88%
EP 0.93% 1.54% 3.42%
RD 0.30% 1.21% 11.17%

2050
NG 2.82% 1.65% 16.80%
EP 4.84% 0.93% 5.59%
RD 2.88% 2.44% 27.99%
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2. Intensity of conversion between land classes.

We believe that the EP scenario was the most suitable and probable development
scenario for the NCF; here, we compared the conversion relationships between the two
time periods, 2020–2030EP and 2020–2050EP. Tables 9 and 10 show the converted area
between land use categories at different stages, with 2020 as the base year.

Table 9. Conversion of Land Types from 2020 to 2030EP (km2).

Cl Shr Sp Oth Cult Gr Wat Constr Un

Cl 383,252.2 45.37 141.3 353.05 1482.82 1308.46 13.52 53.53 190.5
Shr 916.5 27,396.88 35.14 5.19 1214.73 225.88 22.36 22.47 381.8
Sp 1988.78 19.68 20,111.64 45.25 644.18 152.24 8.7 9.9 85.97

Oth 521.78 3.31 11.07 3649.02 208.11 30.76 0.5 3.21 10.66
Cult 5549.88 146.03 66.06 354.81 285,028 173.65 19.97 2090.29 1968.61
Gr 2362.87 108.99 242.17 90.86 1339.2 92,655.55 54.09 88.11 1319.92

Wat 186.3 97.98 8.3 1.21 496.13 141.46 19,879.74 55.34 236.3
Constr 168.53 11.24 3.93 1.4 864.54 30.11 4.76 23366.41 97.31

Un 602.09 6.28 3 5.24 6670.99 116.95 81.8 48.55 40,535.08

Table 10. Conversion of Land Types from 2020 to 2050EP (km2).

Cl Shr Sp Oth Cult Gr Wat Constr Un

Cl 376,941.9 515.61 74.16 284.3 4127.84 4854.85 50.62 27.19 248.59
Shr 321.41 28,882.61 11.11 14.78 682.76 184.08 13 8.15 117.83
Sp 1934.06 60.85 20,055.05 135.48 590.46 368.51 10.3 12.18 34.93

Oth 138.67 14.82 38.18 4295.95 3.34 70 0.21 7.26 8.06
Cult 6425.12 487.42 60.68 56.43 284,934.9 1237.56 111.78 1000.01 1139.77
Gr 22,647.28 304.62 130.7 129.49 3577.53 70,436.31 232.07 37.34 895.91

Wat 166.21 110.79 6.69 1.18 2913.05 128.31 15,474.72 112.33 2180.17
Constr 321.3 32.81 6.24 0.65 2846.75 115.81 17.39 21,095.38 112.55

Un 1950.38 44.5 4.04 0.45 4415.82 2630.77 192.48 40.11 38,791.88

NCF land use conversion will be relatively stable, with closed forest land and culti-
vated land being the most actively evolving land types. Grassland and construction land
were the main sources of arable land expansion (Figure 10). The change in construction
land in northeast China was unique. The analysis of remote sensing images and population
movement data reveals that the NCF had a large rural to urban population movement,
and many rural construction lands have disappeared and transformed into grassland and
cropland in the past 10 years. This situation is likely to persist. Cultivated land was the
main source of land for urban expansion. Although this is strictly restricted in China,
the mechanism of linking land increases and decreases solves the problem. The capacity
of rural construction land to be converted into cultivated land is transferred to the pro-
cess of urban expansion. Although grassland has important ecological and production
value, its conservation priority may be lower than that of forests and cultivated land.
Therefore, in the process of future land use change, we set the grassland area to a state of
continuous reduction.
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3.4. Spatial and Temporal Changes in Forest Carbon Stocks
3.4.1. FCS Evolution in a Historical Period

Based on future land use raster data simulated by the PLUS model and historical
raster data, we estimated the overall carbon stock of NCF forests from 1980 to 2050 using
the InVEST model (Figure 11). In 2020, the FCS of NCF was 8564.76 Mt, and the carbon
stocks of the four forest stands accounted for 93.40%, 4.46%, 2.10%, and 0.05% of the total,
respectively. The proportions of the four carbon pools were 31.83%, 0.56%, 64.96%, and
2.65%, respectively, and soil carbon pools were the most important components of the
NCF forest ecosystem carbon stocks. In terms of spatial distribution, the FCS shows the
following characteristics: Changbai Mountains > Greater Khingan Mountains > Lesser
Khingan Mountains. Owing to the production attributes, the evolution of woodlands in
the Lesser Khingan Mountains was more frequent, which led to the instability of FCS.

In terms of temporal trends, the change in FCS from 1980 to 2020 was roughly divided
into three phases. The first phase was the rapid decline phase from to 1980–1995. During
this period, the high-intensity forestry exploitation in the NCF led to a rapid decline in
FCS. The second phase was the gradual slowdown phase from 1995 to 2010, when the
rate of forest area decay began to slow down owing to the implementation of a series of
ecological protection projects. The third stage was the rapid recovery period from 2010 to
2020. Through these efforts, the stability of the NCF ecosystem was further strengthened
and the forested land area gradually recovered to the level of the 1990s.

The spatial evolution of the FCS in the NCF showed a trend from dispersion to
concentration and an overall improvement. The FCS reduction had a tendency to transition
from Changbai Mountains to Greater-Khingan-Mountains. From 1980 to 2000, the FCS
of the three major regions decreased to varying degrees and was mainly concentrated in
the Lesser Khingan Mountain area. From 2000 to 2010, it was generally stable; however,
from 2010, the FCS in the Changbai Mountain area began to increase steadily, and the
Lesser Khingan Mountain area became stable. The FCS in the northern part of the Greater
Khingan Mountains began to decline because a large area of forest land in Mohe City was
degraded to grassland (Figure 12).
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3.4.2. Characteristics of Future Changes in FCS

Compared to 2020 and 2030, the FCS evolution trend of the NCF will be basically the
same. The northern part of the Greater Khingan Mountains and the eastern part of the
Sanjiang Plain were the main areas where the FCS decreased. The vast area south of the line
from Changchun City to Yanbian Prefecture showed a relatively clear trend of increasing
carbon storage. By 2050, this trend will intensify further. Areas with relatively concentrated
cities, such as the western Songnen Plain and the northern Changbai Mountains, also
began to experience a decrease in FCS to varying degrees, whereas the Greater Khingan
Mountains will replace Changbai Mountains as the area with the most significant increase in
FCS (Figure 13). If strict natural forest protection measures are implemented, it is expected
that by 2050, the FCS of the NCF will return to 1980 levels.
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4. Discussion
4.1. Limitations, Uncertainties, and Prospects

The main limitations of this study are related to the accuracy of the data and the
model. Although we divided the forest into more detailed types according to the degree
of density to reflect the carbon density changes caused by different tree ages, the data
accuracy directly affects the accuracy of the final carbon stock estimation, which is an
unavoidable drawback of using remote sensing images for ecosystem service valuation.
Another critical point is the selection of land use impact factors, which is worth discussing.
The LUCC is a combination of multiple influences and complex evolutionary processes.
This study focuses on the spatial evolution process of forests, but there are many factors
that affect changes in forest ecosystems, such as nitrogen deposition, climate change, and
CO2 fertilization [41,42]. Although some factors are widely debated [43], for larger scale
regions, scientifically available and accessible data sources remain an important support for
assessing ecosystem sustainability. The PLUS model, although capable of obtaining more
reliable simulation results in different future scenarios, presupposes the setting of land use
target values, which gives rise to many uncertainties. Many studies have been conducted
on the simulation of land use under multiple pathways of SSP, and, in general, ecological
land, especially forest land, is basically reduced under the fossil-fueled development (ssp5)
pathway [44–46]. Various organizations and institutions, such as the IPCC, World Bank,
and IIASA, have set different development factors for different paths. However, these
assessment results are for regional analyses at the national or even continental level, and
the accuracy of the study results is questionable if such parameters are set at the local level
without considering regional specificity. Although the InVEST model can estimate carbon
stocks with less information, it assumes that none of the LULC types in the landscape are
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gaining or losing carbon over time. Therefore, in this study, forests with different canopy
cover levels were set up instead of forests with different age classes to minimize the error,
but this may be imperfect.

Simultaneously, the InVEST model is overly reliant on the carbon density values of
individual land types. In this study, as much as possible, we refer to the measured values of
forest ecosystem carbon stocks by many scholars, but limited to a large study area, which
cannot fully take into account the variability of vegetation carbon density owing to different
tree species, latitudes, and climates. For forest biomass carbon estimates, forest type and
tree species have a strong influence on carbon stock estimates. Forest LULC types can be
stratified by elevation, climate zone, or time interval since major disturbance. Of course,
this more detailed approach requires data describing the carbon stocks in each carbon
pool for each of the finer LULC categories. For soil organic carbon (SOC) and apoplastic
carbon estimates, total soil C increased significantly with altitude [47]. This is because
the key processes of SOC are temperature dependent. To improve SOC and apoplastic
carbon estimation, surveys by biomes, climatic zones, vegetation groups, and soil groups
are needed and are regularly measured with inventories such as stem volume. Thus, forest
carbon stocks are closely linked to environmental conditions and the effects of seasonal
and climatic variables need to be considered.

The coupled PLUS and InVEST models are process-based ecosystem models, and the
approach describes the effects of forest management and human activities on the forest
carbon cycle in a single way, except for the uncertainties in the model structure, parameters,
and drivers. For example, we can only generalize the effects of afforestation and forest
restoration on forest carbon stocks by setting different forest area. Related studies have
shown that the effect of forest restoration on soil carbon varies significantly by tree species
and soil properties [48], and management activities that may reduce SOC content, such
as thinning or harvesting, should also be considered [49]. Considering that the recovery
of forest carbon stocks in northeastern forest areas in the past decades was mainly due
to ecological projects such as afforestation and forest conservation, the development of
human-natural coupled ecosystem carbon cycle models is crucial to accurately assess the
carbon sequestration potential of forests.

Forest carbon stock estimation methods need to be more comprehensive and accurate.
With the development of technology, the integration of LiDAR and VHR satellite imaging is
a good combination for better biomass mapping and spatial accuracy. With the availability
of higher resolution remote sensing imagery at various scales, this integration of multisen-
sory techniques can improve the accuracy of regional forest carbon sink estimation [50].
In particular, with further developments in the field of deep learning, some convolutional
neural network algorithms (CNN) may have the ability to estimate forest carbon stocks
in combination with remotely sensed images. However, optimizing and validating the
accuracy of long-duration forest carbon cycle simulation models remains a great challenge
and biogeochemical processes, including photosynthesis, carbon uptake, allocation and
release, should be incorporated into the models.

The atmospheric inversion method has the advantage of near real-time assessment of
the extreme response of large-scale terrestrial carbon sinks to climate change. However,
the current limitation of atmospheric inversion of terrestrial carbon sinks in China is the
lack of long-term atmospheric CO2 concentration observation data, let alone regional-
scale carbon flux estimation with high spatial resolution [51]. The main reason is the
current lack of domestic scientific observation satellites to provide advanced remote sensing
CO2 column concentration data, and only TANSat satellites are currently used for this
purpose. Therefore, the development of a new generation of domestic high spatial and
temporal resolution greenhouse gas concentration satellites, the establishment of high-
resolution radiative transfer models and molecular spectral databases, the improvement of
CO2 column concentration observation accuracy, and the enhancement of our inversion
capability effectively on the calculation of our forest carbon sink.
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4.2. Carbon Effects from Natural Forests

Afforestation and adaptive forest management to increase forest biomass are con-
sidered to be the most direct and effective ways to reduce atmospheric CO2. However,
with the implementation of forest ecological conservation projects in the past 30 years,
the space for suitable afforestation in the NCF is extremely limited. Related studies have
shown that restored primary forests can maximize biomass and capture more carbon in the
long term while conserving biodiversity [52,53]. Therefore, strengthening forest tending
and restoring degraded forests is an inevitable choice to significantly improve the carbon
effect of NCF. Intact old-growth forests are a major long-term carbon sink because of their
complex structure, over-mature forests, stable soils, and resilience to fire, drought, pests,
and diseases [54]. Although governments at all levels have been strengthening NCF natural
forest conservation efforts, the loss of natural forests cannot be easily compensated for by
human intervention [55,56]. Most forest ecosystems require up to 100 years to recover to
their original levels of ecological services after destruction [57]. Therefore, it is crucial to
protect the remaining natural forests. However, NCF needs to achieve trade-offs between
timber production goals and forest conservation, justifying trade-offs based on sound
science and best practices to achieve the highest and best outcomes [58]. The basic principle
of not harming local communities, native ecosystems, and vulnerable species should be
followed to achieve synergistic production and ecological goals [59]. Natural forest conser-
vation requires the selection of appropriate natural restoration methods for different areas,
which can be broadly classified as no intervention or passive restoration, low intervention
(including prevention of further damage), intermediate intervention (selective planting of
missing species and auxiliary natural regeneration), and high intervention (including the
framework species method and application of the nucleation method) depending on the
degree of human intervention. In the northeast region, the protection and management
of the original natural forests must be strictly enforced. In the key development areas of
the state-owned forest area, natural over-cutting forests are protected by enclosures, and
for different vegetation levels, operation methods such as strip-shaped gradual cutting,
group-shaped selective felling, and single-tree selective felling are adopted to maintain
continuous forest coverage and a continuous supply of wood.

4.3. Value Transformation of Forest Carbon Sequestration

Reducing emissions from deforestation and forest degradation in developing countries,
coupled with sustainable forest management and the protection and enhancement of FCS
(REDD+), is an important part of global efforts to mitigate climate change. The sustainability
of forest restoration lies in the fact that the value of ecological services generated by forest
restoration is greater than the economic and social value generated by changing forest
cover. However, there are still many problems with the process of realizing ecosystem value
services, but this does not change their role in achieving the UN Sustainable Development
Goals (SDGs) and their bright future prospects [60]. REDD+ has made some attempts to
monetize forest carbon sinks, but there have been barriers to applying REDD+ to incentivize
forest restoration because of regional differences in development levels, especially the
instability of carbon trading prices [61]. China has already established a national carbon
emissions trading market [62], but it is still in its infancy and many trading mechanisms
are still imperfect; trading is mainly focused on the energy sector and does not involve
forestry. Nevertheless, it provides an opportunity to realize the economic value of forest
carbon sequestration in the future. In this study, we do not hide our concern about the
future economic and social development situation of NCF, and this deteriorating trend
seems to show no signs of improvement. However, the practice of carbon forestry seems
to offer new options for the future development of NCF [63]. At present, for NCF and
even China, the main obstacle to realizing the value of forest carbon sink is the lack of
a unified and perfect forest carbon trading market and a relatively controllable trading
price. Many scholars have explored the relationship between forest carbon sequestration
and carbon prices by drawing on international experience and related practices [64,65],
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but there are still some challenges that may hinder the successful implementation of these
techniques. This study attempts to comprehensively estimate the FCS of the NCF, but the
results obtained cannot be used as the final carbon stock of the NCF. We ignored the carbon
release from wood products, harvest residues, litter, and other components, and carbon
fluxes from soils are often difficult to specify. These factors contribute to the instability in
forest carbon sequestration. At the same time, the FCS may have been overestimated in this
study because of the uncertain effects of drought-induced tree mortality, natural disasters,
insect infestation, fire, or changes in existing forest areas.

5. Conclusions

From 1980 to 2000, there was a significant decline in forested land and grasslands in
the NCF. The decrease in forested land is mainly concentrated in the south-central Lesser
Khingan Mountains and Changbai Mountain areas. The arable land area grew more rapidly.
From 2000 to 2020, the decreasing trend in forested land was alleviated and began to show
slow growth, mainly concentrated in the Changbai Mountain area. The transformation
between the various land types was relatively stable. Through the simulation of future
land use, it was found that the expansion preference areas of various land types in the NCF
were relatively concentrated. Forest expansion was mainly concentrated in the Greater
Khingan Mountains, and the probability of partial forest land conversion to cultivated land
in the Lesser Khingan Mountains is relatively high. The growth of cultivated land was
mainly concentrated in the Sanjiang and Songnen plains. The expansion of construction
land is mainly concentrated around the three provincial capital cities, accompanied by the
transformation of a large amount of rural construction land into urban construction land.
Forest land and cropland in the NCF were the most active land types, and the two land
types were most closely interconverted. Owing to the mandatory food production and
forest conservation attributes of NCF, the grassland area was in a state of reduction in all
three models. Combining the current and future development trends of NCF, we believe
that the EP scenario is the most suitable and likely development model.

The FCS of NCF was mainly contributed by closed forest land, and the aboveground
and soil carbon pools accounted for 96.79% of the forest carbon pool. The time change
showed a U-shaped trend of decline to growth, with an inflection point occurring in 2010.
The loss of FCS was mainly concentrated in the south-central Lesser Khingan Mountains
and northern Greater Khingan Mountains regions, mainly resulting from forestry exploita-
tion and forest degradation, respectively. The FCS in the Changbai Mountain region
remained relatively stable and grew faster after 2010. Under the EP scenario, the FCS is
expected to recover to 1980 levels in NCF by 2050. By implementing a series of natural
forest conservation measures, the NCF’s forest carbon sequestration capacity will be greatly
enhanced, which can help the Chinese government meet its carbon neutrality commitments.
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