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Abstract: Change detection (CD) is one of the most important topics in remote sensing. In this
paper, we propose a novel higher-order clique conditional random field model to unsupervised
CD for remote sensing images (termed HOC2RF), by defining a higher-order clique potential. The
clique potential, constructed based on a well-designed higher-order clique of image objects, takes the
interaction between the neighboring objects in both feature and location spaces into account. HOC2RF
consists of five principle steps: (1) Two difference images with complementary change information
are produced by change vector analysis and using the spectral correlation mapper, which describe
changes from the perspective of the vector magnitude and angle, respectively. (2) The fuzzy partition
matrix of each difference image is calculated by fuzzy clustering, and the fused partition matrix is
obtained by fusing the calculated partition matrices with evidence theory. (3) An object-level map is
created by segmenting the difference images with an adaptive morphological reconstruction based
watershed algorithm. (4) The energy function of the proposed HOC2RF, composed of unary, pairwise,
and higher-order clique potentials, is computed based on the difference images, the fusion partition
matrix, and the object-level map. (5) The energy function is minimized by the graph cut algorithm
to achieve the binary CD map. The proposed HOC2RF CD approach combines the complementary
change information extracted from the perspectives of vector magnitude and angle, and synthetically
exploits the pixel-level and object-level spatial correlation of images. The main contributions of
this article include: (1) proposing the idea of using the interaction between neighboring objects in
both feature and location spaces to enhance the CD performance; and (2) presenting a method to
construct a higher-order clique of objects, developing a higher-order clique potential function, and
proposing a novel CD method HOC2RF. In the experiments on three real remote sensing images, the
Kappa coefficient/overall accuracy values of the proposed HOC2RF are 0.9655/0.9967, 0.9518/0.9910,
and 0.7845/0.9651, respectively, which are superior to some state-of-the-art CD methods. The
experimental results confirm the effectiveness of the proposed method.

Keywords: remote sensing change detection; unsupervised; object clique; higher-order clique poten-
tial; fuzzy C-means; evidence theory

1. Introduction

The change information on the earth surface is of great importance due to its extensive
uses in various practical applications, such as urban studies, environmental monitoring,
resource management, and damage assessment [1]. Change detection (CD) from remote
sensing images provides a powerful tool to detect the land cover changes. Generally, CD
involves the analysis of multitemporal remote sensing images taken on the same ground
area. Over the past several decades, a number of techniques to CD have been proposed
and developed for different types of remote sensing images [1,2].
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The techniques can be grouped into two categories according to whether they require
training samples, i.e., supervised and unsupervised [3]. The former is able to provide
the “from–to” types of land cover transitions. However, it is often difficult and laborious
to gain sufficient training samples in real applications. In contrast, the latter performs
CD by comparing two temporal remote sensing images directly, without need for any
additional information. As a consequence, unsupervised CD is easier to implement and
more popular [4,5].

Unsupervised CD is typically realized by two key steps: (1) produce a difference image
(DI) and (2) analyze the DI to discriminate the no-change and change pixels. In the first
step, different comparison algorithms can be employed to generate DI, including image
differencing, change vector analysis (CVA), and spectral correlation mapper (SCM). For the
second step, many machine learning techniques have been adopted to produce the binary
CD map, such as thresholding [3,6], fuzzy C-means clustering (FCM) [7,8], and information
fusion [9].

Some unsupervised CD methods assume that the pixels in remote sensing images are
independent of each other, and only use the spectral information of images. This often leads
to “salt and pepper” noises in the generated CD map and thus reduces the CD accuracy. To
address the problems, several methods have been presented to integrate spatial information
into CD, such as neighboring windows [10], local histogram-based analysis [11], active
contour model [12], and random field theory [4,13].

The Markov random field (MRF), as a classical model to utilize the spatial-context
information in the labeling field, has been widely applied to the CD studies [3,13,14]. In
MRF-based CD, the joint probability distribution of the observed DI and an initial CD map
is first modeled using a Bayesian generative framework [15]. Then, the final CD map is
obtained by an inference algorithm, such as graph cuts, simulated annealing, and iterated
conditional modes. However, for computational tractability, MRF generally assumes that
the observed image is conditional independent [16], which is not appropriate for some real
applications and may result in the over-smoothing problem of CD maps.

To overcome the shortcomings of MRF, the conditional random field (CRF) model was
applied to remote sensing image CD [15,17]. CRF, which takes spatial-context information
into account without assuming the conditional independence of the observed image, is an
improved version of MRF. It was first given by [18] to segment and label the 1-D natural
language sequences, and then was extended by [19] to deal with the labeling task of 2-D
images. From then on, CRF has been extensively applied to image analysis and classification
because of its effectiveness and flexibility. The pairwise CRF is the most commonly used
CRF model in the analysis of remotely sensed imagery.

Recently, the higher-order CRF (HOCRF) was introduced into the CD task [20,21].
HOCRF incorporates a higher-order potential function (object term) into the pairwise CRF,
and can make better use of the spatial correlation of images. Experimental results showed
that HOCRF could obtain higher CD accuracy than pairwise CRF. However, the HOCRF
CD methods in [20,21] have two main limitations: (1) they only consider a single object and
ignore the dependence of neighboring objects when computing higher-order potentials.
This limits the methods’ ability to utilize the spatial contextual information of images for
CD. (2) They only use the magnitude change of spectral vectors while ignoring the spectral
angle (direction) difference, which is also crucial for CD [22].

In order to overcome the above two limitations and enhance the CD performance, in
this study, we propose a novel higher-order clique CRF model (HOC2RF) for the unsu-
pervised CD of remote sensing images. For the first limitation, HOC2RF defines a novel
higher-order clique potential based on a properly designed clique of objects to utilize the
interaction of neighboring objects in both feature and location spaces. For the second limi-
tation, HOC2RF considers two complementary DI images in both observed and labeling
fields. The two DI images describe change information from the perspective of vector
magnitude and angle, respectively.
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The proposed HOC2RF CD method is made up of five main steps. Two DI images
providing complementary change information are generated first using CVA and SCM.
Second, the fuzzy partition matrix for each DI is estimated by FCM, and the fused partition
matrix is achieved by combining the estimated partition matrices with evidence theory.
Third, an adaptive morphological reconstruction (AMR)-based watershed algorithm is
used to segment the DI images for creating an object-level map. Then, the HOC2RF energy
function with three potentials is calculated based on the DIs, the fused fuzzy partition
matrix, and the object-level map. Finally, the CD map is obtained by minimizing the
HOC2RF energy function with the graph cut algorithm. The main contributions of the
paper are as below:

(1) The basic idea of using the interaction between neighboring objects in both feature
and location spaces to enhance CD performance.

(2) The method to construct a higher-order clique of objects, the novel higher-order clique
potential function, and the novel CD method HOC2RF.

The rest of this paper is organized as follows. Section 2 presents related works in
the literature. Section 3 describes the proposed HOC2RF CD method in detail. Section 4
evaluates the performance of HOC2RF by three experiments. Finally, the discussion and
conclusions of this paper are presented in Sections 5 and 6, respectively.

2. Related Work

Recently, CRF has been applied to remote sensing CD, and some CRF-based CD
techniques have been proposed and developed [15,17,20,21,23,24]. These techniques can
be divided into three classes according to the types of CRF models they used: pairwise
CRF-based, fully connected CRF-based (FCCRF), and HOCRF-based methods.

The pairwise CRF-based CD methods [15,23,24] include two potential functions, unary
and pairwise. The former models the relationship between the labeling and observed fields
and describes the cost of a single pixel being assigned to the change or no-change class.
The latter models the spatial contextual information between the adjacent pixels in a local
neighborhood. Cao et al. [23] applied pairwise CRF to unsupervised CD. The method uses
FCM to compute unary potentials and uses a scaled squared Euclidean distance to define
pairwise potential.

Lv et al. [15] proposed a multi-feature probabilistic ensemble CD method based on
pairwise CRF. It combines the DI’s spectral and morphological features in order to obtain
more accurate unary potential. To improve the accuracy of CD, Shao et al. [24] first fused
three-scale DI images to compute the unary potential, and then used a spatial attraction
model to improve the pairwise potential. Although the pairwise CRF-based methods can
obtain effective CD results, they still have a common limitation: they do not fully exploit
the spatial contextual information of images since their pairwise potentials only consider a
small local neighborhood.

Different from the pairwise CRF, the FCCRF model establishes pairwise potentials
based on all pairs of pixels in the whole image, which can enhance the ability to model
the dependence of pixels in an image. Cao et al. [17] adopted FCCRF to perform CD to
utilize the long-range dependence of pixels. Their experimental results demonstrate that
FCCRF can yield more accurate CD results than pairwise CRF. However, the FCCRF CD
method [17] (with five parameters) requires much more parameter tuning than the pairwise
CRF methods (with only one parameter).

In order to utilize the spatial correlation of pixels in a higher-order neighborhood (i.e.,
an image object), HOCRF was introduced into the CD task by [20,21]. The HOCRF CD
methods add an object term (i.e., a higher-order potential) into the pairwise CRF to capture
rich statistics and contextual information in an object and can take advantage of the spatial
correlation of pixels more effectively.

However, the HOCRF CD approaches in [20,21] have the following two drawbacks:
(1) their higher-order potentials only consider a single object, ignoring the interaction
between neighboring objects. (2) They only use the magnitude change of spectral vectors
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and ignore the spectral angle difference, which is also crucial for CD [23]. Table 1 summaries
the unsupervised CD methods based on CRF in the literature.

Table 1. The comparison of unsupervised CD methods based on CRF.

Category References Advantages Limitations

Pairwise CRF

Cao et al. [23]
• Easy to implement
• Having only one parameter • Only considering a small local

neighborhood and therefore failing to
fully use the spatial-context
information of images

• Only using the magnitude change of
spectral vectors

Lv et al. [15]

• Combining three features of DI
for unary potential

• Having only one parameter

Shao et al. [24]

• Fusing three-scale DIs for
unary potential

• Improving pairwise potential
with a spatial attraction model

• Having only one parameter

FCCRF Cao et al. [17]
• Considering all pairs of pixels in

the whole image

• Demanding much more parameter
tuning

• Only using the magnitude change of
spectral vectors

HOCRF

Zhou et al. [20] • Utilizing the spatial-context
information in both local
neighborhoods and
image objects

• Only considering a single object and
ignoring the dependence between
neighboring objects

• Only using the magnitude change of
spectral vectors

Lv et al. [21]

In addition, CRF has also been introduced into supervised CD [25,26]. Li et al. [25]
used the supervised support vector machine (SVM) to compute the unary potential, and
utilized the statistical distribution of DI image to enhance the performance of pairwise CRF.
Shi et al. [26] proposed a class-priori CRF models for binary and multiclass CD tasks, which
used the class posterior probabilities obtained by SVM to improve the CD accuracy.

This study follows the HOCRF CD methods [20,21], which can utilize the spatial
contextual information in a local neighborhood and an image object and has less parameters
than FCCRF. In order to maintain the advantages of these methods and overcome their
two main limitations mentioned above, this paper proposes a novel HOC2RF model for
unsupervised CD of remote sensing images. The details of the proposed CD method are
described in the next section.

3. Proposed HOC2RF CD Method

This section details the proposed HOC2RF CD approach. HOC2RF maintains the
advantages of the existing HOCRF CD methods and overcomes their two main limitations.
First, HOC2RF defines a novel higher-order clique potential by constructing a higher-
order clique of objects, to utilize the interaction between the neighboring objects in both
feature and location spaces. Then, HOC2RF makes comprehensive use of the magnitude
and angle change of spectral vectors in both observed and labeling fields to enhance the
CD performance.

3.1. Procedure and Organization of HOC2RF

The proposed HOC2RF model involves two types of fields: observed and labeling,
and includes three potentials: unary, pairwise, and higher-order clique. This study uses
two complementary DIs computed by CVA and SCM to define the observed field. For
the labeling field, an initial CD map is yielded by fusing the two DI images with FCM
and evidence theory. In the process of fusing the two DIs, a fusion fuzzy partition matrix
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is also obtained, which will be used to compute the unary potential. In addition, in
order to compute the proposed higher-order clique potential, an object-level map needs to
be generated.

Specifically, the proposed HOC2RF CD method is achieved by the following steps
(Figure 1): (1) produce two complementary DI images using CVA and SCM; (2) combine the
two DIs with FCM and evidence theory to obtain the fused fuzzy partition matrix and an
initial CD map; (3) generate an object-level map using the AMR-based watershed algorithm;
(4) compute the unary, pairwise, and higher-order clique potentials for HOC2RF; and
(5) create the final CD map by optimizing the HOC2RF model with the graph cut algorithm.

Figure 1. The flowchart of the proposed HOC2RF CD method.

Steps 1–3 are the preparation steps for defining the HOC2RF model. The two DIs
obtained in Step 1 are used to define the observation field of HOC2RF. The fused fuzzy
partition matrix and initial CD map yielded in Step 2 are used to compute the unary
potential and define the labeling field, respectively. The object-level map generated in Step
3 is used for computing the higher-order clique potential.

The rest of Section 3 is organized as follows: Sections 3.2–3.4 present the details of Steps
1–3, respectively. Section 3.5 describes the proposed HOC2RF model and its implementation
in detail.

3.2. Generating Complementary DI Images

Let us consider two multispectral (or hyperspectral) remote sensing images X1 and X2
(with the same size of N pixels) acquired in the same geographical area at two different
dates, respectively, which have been radiometrically corrected and coregistered. Both X1
and X2 are composed of B spectral bands (B > 1); Xtb is the bth band of image Xt, t = 1, 2;
b = 1, 2, . . . , B.

Generally, different land cover types have their own typical spectral characteristics
represented by peculiar spectral curves, although there are the phenomena of “same
object with different spectrum” and “different objects with same spectrum” in some cases.
Accordingly, various features could be extracted from remote sensing images. For the CD
task, the differences between multitemporal remote sensing images can reflect the changes
occurring on the corresponding area during the observation times to an extent, and thus can
provide hints to CD. Images with multiple spectral bands can constitute spectral vectors of
elements [22]. For the multispectral image CD, the DI image is generally produced based
on the multitemporal spectral vectors.

However, most unsupervised CD techniques mainly take the vector magnitude change
into account, failing to utilize the vector angle (or direction). The vector magnitude and
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angle can provide complementary change information [22], and can be described by CVA
and spectral angle mapper (SAM), respectively. SAM uses cosine correlation to compute
the vector angle, which is unable to detect negatively correlated data and sensitive to offset
factors [27]. In contrast, SCM uses Pearson’s correlation to calculate vector angles, and can
overcome the shortcomings of SAM to some extent. Given the above analysis, this study
uses CVA and SCM to produce the DI images.

The DI image defined by CVA is denoted by DICVA. CVA uses the Euclidean distance to
compute the differences between two temporal images. Specifically, DICVA can be computed
through the following equation:

DICVA(i) =

√√√√ B

∑
b=1

(X2b(i)−X1b(i))
2 (1)

where Xtb(i) is the ith pixel at the bth band of image Xt, t = 1, 2; b = 1, 2, . . . , B; and i = 1, 2,
. . . , N.

Denote the DI determined with SCM by DISCM. SCM utilizes the angle of spectral
vectors to model their difference. First, the Pearson’s correlation coefficient of X2 and X1 is
calculated by

SCMi(X2, X1) =

B
∑

b=1

(
X2b(i)− X2

(
i)) ·

(
X1b(i)− X1( i))√

B
∑

b=1

(
X2b(i)− X2(i))

2 ·
√

B
∑

b=1

(
X1b(i)− X1(i))

2
(2)

where Xtb(i) denotes the ith pixel at the bth band of image Xt, and Xt(i) represents the
average of the spectral bands of Xt at pixel i, t = 1, 2; b = 1, 2, . . . , B; and i = 1, 2, . . . ,
N. The correlation coefficient in (2) can be viewed as an angle if applying the arc-cosine
operation to it. Thus, SCM is the centered version of SAM by X1 and X2. The SCMi(X2,
X1) value varies in the interval [−1, 1]. SCMi(X2, X1) = 1 means that the two vectors are
completely positively correlated, and SCMi(X2, X1) = −1 means that the two vectors are
completely negatively correlated. Then, SCM(X2, X1) can be converted to the DI image
DISCM by Equation (3) or (4):

DISCM(i) = 1− SCMi(X2, X1) (3)

DISCM(i) = arcos(SC Mi(X2, X1)) (4)

Here, X1 and X2 represent the two considered remote sensing images (see the be-
ginning of this subsection). After obtaining the two DI images, their pixel values are
normalized to the interval [0, 1] in order to make different datasets have the same weight.

3.3. Combine DI Images with FCM and Evidence Theory

Evidence theory (also known as Dempster-Shafer theory) [28,29] is a popular decision-
level fusion framework and has been successfully applied to various applications. It can
deal with both single and composite hypotheses and allows the modeling of both uncer-
tainty and ignorance. Let us consider a frame of discernment Ω consisting of all possible
single hypotheses and its power set P(Ω). A mass function for the discernment frame Ω is
a mapping m from P(Ω) to the interval [0, 1] and satisfies the following properties: m(∅) = 0

∑
A∈P(Ω)

m(A) = 1 (5)

where ∅ represents the empty set, A represents a nonempty subset of Ω, and m(A) repre-
sents the mass value of A.
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In evidence theory, evidence from different sources is usually combined using the
orthogonal sum. Consider D mass functions (namely, mn, n = 1, 2, . . . , D) from D pieces of
evidence, respectively. Their fused mass function m can be determined as follows [30]:

m(A) =m1 ⊕m2 ⊕ · · · ⊕mD

=

 1
1−Ψ ∑

A1∩···∩AD=A

D
∏

n=1
mn(An) A 6= ∅

0 A = ∅

(6)

with

Ψ = ∑
A1∩···∩AD=∅

D

∏
n=1

mn(An) (7)

where Ψ represents the degree of conflict between evidence, called the conflict coefficient.
For the CD task, there are two single hypotheses in Ω—namely, Ω = {Cu, Cc}, where

Cu and Cc represent the no-change and change classes, respectively. Two pieces of evidence,
the two produced DI images, are available for Ω in our case. In order to fuse the DIs with
evidence theory, the first step is to define their mass functions.

Usually, there exists an overlap between the ranges of the DI pixel values from the
change and no-change classes [8]. This leads to the inherent uncertainty in the analysis of
DI. Fuzzy clustering provides an opportune tool for analyzing DI owning to its capability
to process uncertainty. In fuzzy clustering, the pixels are not assigned to either the no-
change or the change category but to both categories with a certain degree of membership.
Moreover, fuzzy clustering requires no prior assumption about the distribution of the no-
change and change classes. Given the above analysis, we use the popular FCM clustering
to analyze the DIs for estimating their fuzzy partition matrices (also called membership
functions). The mass functions for the two pieces of DI evidence are then derived from the
estimated fuzzy partition matrices. The FCM details can be found in [31].

Let Un = {uni(k)} represent the fuzzy partition matrix obtained by FCM based on the
nth DI image, n = 1, 2, and uni(k) stands for the membership of the ith pixel with respect to
class k, i = 1, 2, . . . , N; k ∈ {Cu, Cc}, satisfying{

0 ≤ uni(k) ≤ 1
uni(Cu) + uni(Cc) = 1

(8)

The mass function mn for the nth DI image can be determined according to the fuzzy
partition matrix Un. In particular, the mass values of a given pixel i for no-change and
change classes are obtained by

mni(k) =uni(k), k ∈ {Cu, Cc} (9)

where mni(k) represents the mass value of the ith pixel to class k obtained based on the nth
DI image. Then, the combined mass function m is computed through Equation (6), and an
initial CD map is yielded using the principle of maximum mass value. For a given pixel i,
its initial class label yi is obtained as follows:

yi =

{
Cc i f mi(Cc) ≥ mi(Cu)
Cu i f mi(Cc) < mi(Cu)

(10)

where mi(Cu) and mi(Cc) represent the combined mass values of pixel i to the no-change
and change classes, respectively.

3.4. Generate an Object-Level Map for HOC2RF

This subsection aims to generate an object-level map by segmenting the DI images,
which will be used for computing the proposed higher-order clique potential function.
Different segmentation techniques can be employed to produce object-level images, such
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as the spectral clustering and the seeded algorithm. Seeded segmentation algorithms have
been successfully applied to many image segmentation applications because of their good
performance [32]. The watershed algorithm is one of the most important seeded algorithms.
However, it often suffers from the problem of over-segmentation.

This is because the watershed algorithm gains seeds from the gradient image that
usually contains many seeds produced by unimportant texture details or noises. To solve
this problem, an advanced AMR technique was given recently in [32] to improve the seed
image. The AMR algorithm has the following advantages: (1) It is easy to implement;
(2) it can remove useless seeds while maintaining meaningful ones adaptively; (3) it uses
multiscale structuring elements of erosion and dilation operations and is robust to the
structuring element scale; and (4) it has two attractive properties—namely, the monotonicity
and the convergence, which help AMR-based algorithms obtain a hierarchical segmentation.
We refer to [32] for more details of AMR.

This study proposes to use the AMR-based watershed algorithm to segment the DIs for
producing an object-level map consisting of image objects. Specifically, a gradient image is
created first by applying the Sobel operator to the three-dimensional DI image, DI = {DICVA,
DISCM, DImean}, where DImean = (DICVA + DISCM)/2. Then, the AMR algorithm is employed
to reconstruct the gradient image adaptively. Finally, the reconstructed gradient image
is used as the seed image, and the watershed algorithm is adopted to yield an object-
level image.

In AMR, two parameters need to be set: the scale of the minimal structuring element s
and the positive threshold η used to control the convergent condition. Since the segmenta-
tion results are not sensitive to these two parameters, they are fixed in this work and set to
2 and 10−5, respectively—that is, s = 2 and η = 10−5. The obtained object-level map will be
used in the next subsection for computing the higher-order potential term of the proposed
HOC2RF.

3.5. HOC2RF Model

This subsection defines the proposed HOC2RF model based on the DIs, the fused fuzzy
partition matrix, the initial CD map, and the object-level map obtained in Sections 3.2–3.4.
HOC2RF integrates the complementary change information extracted from the perspective
of vector magnitude and angle, and synthetically utilizes the spatial correlation of images
at both the pixel and object levels. The details of the proposed HOC2RF are as follows.

Let the random variable sets X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yN} denote the
observation field and labeling field of an image, respectively, where N represents the total
number of the pixels in the used image. xi stands for the spectral features of pixel i, and
yi ∈ C denotes the class label of pixel i, where C = {C1, C2, . . . , CM} is the class label set and
M denotes the number of classes. For unsupervised CD, C = {Cu, Cc}.

In HOC2RF, X is defined based on the two complementary DIs, DICVA and DISCM (ob-
tained in Section 3.2). In particular, X = DI = {DICVA, DISCM, DImean}, DImean = (DICVA + DISCM)/2,
and xi = {DICVA(i), DISCM(i), DImean(i)}. The initial class label yi for the labeling field is ob-
tained by combining DICVA and DISCM (see Section 3.3). Then, the energy function of the
proposed HOC2RF is defined as follows:

E(X) =
N

∑
i=1

ψi(yi, X)+λ
N

∑
i=1

∑
j∈Ni

ψij(yi, yj, X) + ∑
o∈S

ψhigh(vo, X) (11)

where ψi(yi, X),ψij(yi, yj, X), and ψhigh(vo, X) represent the unary, the pairwise, and the
proposed higher-order clique potentials, respectively. Ni denotes the neighborhood of
pixel I, and j ∈ Ni denotes the neighboring pixel of pixel i. In this study, the widely used
second-order (i.e., the eight neighbors) neighborhood system is used to define Ni. S is
the set composed of the image objects from the object-level map produced in Section 3.4,
o represents an image object, vo represents the higher-order clique of objects for o (see
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Equation (15)), and the parameter λ is the weight coefficient used to control the weight of
the pairwise potential.

3.5.1. Unary and Pairwise Potentials

The unary potential function ψi(yi, X) is used to describe the relationship between the
labeling and observation fields. ψi(yi, X) denotes the cost of pixel i taking the class label yi
given the observed data and is usually defined as the negative logarithm of the probability
of pixel i belonging to class yi:

ψi(yi, X) = − log P(yi) (12)

where P(yi) represents the probability of pixel i to class yi, yi ∈{Cu, Cc}, and log is the
natural logarithm operator. P(yi) can be computed with different techniques, such as
FCM. In this study, P(yi) is defined using the joint mass function that is obtained by
combining the two complementary DIs DICVA and DISCM with FCM and evidence theory
(see Sections 3.2 and 3.3). This is

P(yi) =

{
mi(Cu) yi = Cu
mi(Cc) yi = Cc

(13)

where mi(Cu) and mi(Cc) represent the combined mass values of pixel i to the no-change
and change classes, respectively (see Section 3.3).

The pairwise potential function ψij(yi, yj, X) is used to utilize the spatial correlation
of an image in local neighborhood, and to model the interaction between pixel i and its
neighboring pixels j in Ni. It imposes a label constraint on the image by constraining the
class labels to be consistent, by which the adjacent pixels with similar spectral values are
encouraged to take the same class label. Following [15], the pairwise potential term in (11)
is written as follows:

ψij(yi, yj, X) =

 0 i f yi = yj

1 + exp
(
− d(xi ,xj)

2σ2

)
otherwise

(14)

where d(xi, xj) is the Euclidean distance of xi and xj, respectively: xi = {DICVA(i), DISCM(i),
DImean(i)} and xj = {DICVA(j), DISCM(j), DImean(j)}. σ2 is the mean value of d(xi, xj) over the
neighborhood Ni.

3.5.2. Proposed Higher-Order Clique Potential

The higher-order potential (object term) was introduced into the CD task in [21] to
enhance CD performance. However, the higher-order potential in [21] only considers a
single object, ignoring the dependence between neighboring objects. To overcome this
shortcoming, this study proposes a novel higher-order clique potential by constructing a
higher-order clique of objects and by considering the dependence between neighboring
objects in both feature and location spaces. For a given object o, its higher-order clique vo is
defined as:

vo =
{

o, r1
(

o),r2
(

o),g1
(

o),g2(o)
}

(15)

where o denotes the object o; r1(o) and r2(o) denote the two neighboring objects that are
nearest to object o in the feature space; and g1(o) and g2(o) denote the two neighboring
objects nearest to object o in the location space. Figure 2a,b shows an example of the feature
space (location space) for a simple object-level image.
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Figure 2. (a) An example of the 2-D feature space for a simple object-level image and (b) an example
of the location space for a simple object-level image.

In order to determine the objects r1(o), r2(o), g1(o), and g2(o), we need to define the
distances between objects in the feature and location spaces. For two given objects o1 and
o2, their distance in the feature space is defined as the Euclidean distance of x(o1) and x(o2),
where x(o1) and x(o2) denote the mean values of the DI features of the pixels in objects o1

and o2, respectively. The distance between o1 and o2 in the location space is defined as the
Euclidean distance of the location coordinates of the center pixels of objects o1 and o2.

The clique vo is made up of three parts: the object o, its two nearest neighboring objects
in feature space, and its two nearest neighboring objects in location space. In general, there
is correlation between the neighboring objects—in particular for the over- segmentation
objects. The proposed higher-order clique potential function ψhigh(vo, X) is defined based
on the object clique vo and is used to utilize the correlation of the pixels within an object
and its nearest neighboring objects in both feature and location spaces. ψhigh(vo, X) takes
the following form:

ψhigh(vo, X) = N(vo

)
× fo (16)

where ψhigh(vo, X) is used to describe the cost of the label inconsistency in the clique vo.
N(vo) denotes the number of the pixels in the clique vo, and consequently, a large clique
will have a large weight. fo is used to define the cost coefficient, which takes both the
clique segmentation quality and the clique likelihood for change/no-change into account.
In particular, the cost coefficient fo is defined as:

fo= min
{

min
k

(
q(vo)× zk

(
vo) + (1− zk(vo))

)
, 1
}

(17)

where min represents the minimum operator, q(vo) represents the clique segmentation
quality of clique vo, and zk(vo) represents the clique likelihood of clique vo to class k,
k∈{Cu, Cc}.

In this study, the clique segmentation quality, q(vo), is defined as the weighted average
sum of the segmentation quality of the objects in clique vo:

q(vo) =
q(o) + 0.5q(r1(o)) + 0.5q(r2(o)) + 0.5q(g1(o)) + 0.5q(g2(o))

1 + 4× 0.5
(18)

where q(o), q(r1(o)), q(r2(o)), q(g1(o)), and q(g2(o)) stand for the segmentation quality of
objects o, r1(o), r2(o), g1(o), and g2(o), respectively.

Let ol denote a given object in clique vo. Then, the object segmentation quality of
ol is estimated based on the object consistency assumption, which encourages all the
pixels in an object to have the same class label. Specifically, we define q(ol) as follows:
q(ol) = (N(ol) − Nk(ol))/Q(ol), where N(ol) denotes the number of the pixels in object ol,
Nk(ol) denotes the number of the pixels assigned to class k in object ol, k∈{Cu, Cc}, and Q(ol)
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denotes a truncated parameter used to adjust the degree of rigidity of q(ol). This study sets
Q(ol) = 0.1 × N(ol). That means, if more than 90% of the pixels in ol are assigned to Cc or Cu,
the value of q(ol) is less than 1. Similarly, if 70% of the pixels in object ol are assigned to Cc
or Cu, the value of q(ol) is set to 3.

According to the definition of q(ol), the more pixels of an object have the same class
label, the better segmentation quality on this object and the smaller value of q(ol) will be.
As a result, the better the segmentation quality of the objects in clique vo is, the smaller
value of q(vo) will be (see Equation (18)).

The clique likelihood zk(vo) is defined based on the number of pixels in the objects
from clique vo and the objects’ joint mass values, taking the following form:

zk(vo) =
N(o)×mk(o) + 0.5N

(
r1(o))×mk(r1(o)) + 0.5N

(
r2(o))×mk(r2(o)) + 0.5N

(
g1(o))×mk(g1(o)) + 0.5N

(
g2(o))×mk(g2(o))

N(o) + 0.5N(r1(o)) + 0.5N(r2(o)) + 0.5N(g1(o)) + 0.5N(g2(o))
(19)

where N(o), N(r1(o)), N(r2(o)), N(g1(o)), and N(g2(o)) denote the number of the pixels in
objects o, r1(o), r2(o), g1(o), and g2(o), respectively. mk(o) denotes the joint mass value of the
object o to class k and is computed via mk(o) = ∑i∈o mi(k)/N(o), where mi(k) denotes the
joint mass value of pixel i to class k, k∈{Cu, Cc}. mk(r1(o)), mk(r2(o)), mk(g1(o)), and mk(g2(o))
have the similar definition of mk(o).

Generally, the center object in clique vo is more important than their neighboring
objects. Accordingly, when computing q(vo) and zk(vo), the weight of object o is set to 1,
whereas the weights of objects r1(o), r2(o), g1(o), and g2(o) are set to 0.5.

On the one hand, the proposed higher-order clique potential encourages all pixels in
clique vo to have the same class label. On the other hand, it uses the label consistency in a
clique as a soft constraint and, thus, enables some pixels in the clique to take different labels.
Accordingly, the higher-order clique potential can make effective use of the interaction of
the pixels within an object and its nearest neighboring objects in both feature and location
spaces and, thus, can improve the CD performance.

Different optimization algorithms, such as graph cuts and iterated conditional modes,
can be adopted to minimize (optimize) the CRF model. The graph cut algorithm [33] is
used to minimize the HOC2RF model for producing the final CD map.

4. Results

This section evaluates the performance of the proposed HOC2RF CD method. To
this end, experiments were conducted on three real remote sensing datasets acquired
by different sensors. Before performing CD, the relative radiometric correction and co-
registration have been done on the three datasets, in order to make the two-temporal remote
sensing images of each dataset to be comparable in both spectral and spatial spaces.

4.1. Dataset Description and Experimental Settings

The first experiment was conducted on the Neimeng dataset, which comprises a pair
of multispectral images taken by Landsat-5 Thematic Mapper sensor on 22 August 2006
and 17 June 2011 in the boundary area between the Neimeng and Heilongjiang Provinces,
China. This dataset covers an area with 1200 × 1350 pixels, and contains one main type of
land cover, forest. The changes occurred in this study area mainly due to a wildfire. Bands
1, 2, 3, 4, 5, and 7 were used for CD. Figure 3a–c shows the images of 2006 and 2011, and
their reference map, respectively. The reference map was produced according to a careful
visual interpretation of the two-temporal images.

The second dataset, the Texas dataset, consists of two multispectral images with
1534 × 808 pixels acquired by Landsat-5 Thematic Mapper sensor on August 26 and
September 11, 2011. The dataset covers a forest fire in Bastrop County, Texas. Bands
1, 2, 3, 4, and 5 were used for CD. Figure 4a–c shows the images of August and September,
and their reference map, respectively.
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Figure 3. (a) Image of 2006, (b) image of 2011, and (c) reference map.

Figure 4. (a) Image of August, (b) image of September, and (c) reference map.

The third dataset is the Poyang River dataset (463 × 241 pixels), which is made up of
two Earth Observing-1 (EO-1) Hyperion images acquired on 3 May 2013 and 31 December
2013, respectively, in Jiangsu province, China. The dataset has 198 bands available after
noisy band removal. The images of May and December are displayed in Figure 5a,b,
respectively; and their reference map is shown in Figure 5c.

The Texas and Poyang River datasets are provided by [34,35], respectively. These two
datasets are both offered in MAT format, and their location information is unavailable. As a
result, we cannot show the information regarding the north direction and detailed location
for these two datasets (Figures 4 and 5).

To assess the effectiveness of the proposed HOC2RF CD method, it was compared with
nine related approaches, CVA, SCM, the reformulated fuzzy local information C-means
(RFLICM) [36], MRF [3], the traditional pairwise CRF (CRF), the fully-connected CRF
(FCCRF) [37], the improved FCCRF (IFCCRF) [17], the higher-order CRF (HOCRF) [21],
and the improved nonlocal patch-based graph (INLPG) [38].
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Figure 5. (a) Image of May, (b) image of December, and (c) reference map.

Seven measures [39] were employed to conduct the performance evaluation: false
positives (FP), the number of the unchanged pixels that are wrongly detected as changed
ones; false negatives (FN), the number of the changed pixels that are wrongly detected as
unchanged ones; true positives (TP), the number of the correctly detected change pixels;
true negatives (TN), the correctly detected no-change pixels; overall errors (OE), the sum of
FP and FN, OE = FP + FN; the overall accuracy (OA), OA = 1 − OE/(TP + TN + FP + FN);
and the Kappa coefficient (KC), which is calculated by

KC =
N × (TP + TN)− ((TN + FN) × (TN + FP) + (TP + FP)× (TP + FN))

N2 − ((TN + FN) × (TN + FP) + (TP + FP)× (TP + FN))
(20)

For the CD task, FP and FN are also known as false alarms (FA) and missed detections
(MD), respectively. FA and MD are more widely used than FP and FN in CD literature.
KC involves more classification information, and thus it is more cogent than the other
indicators [39].

In addition, the consumption time of each algorithm is also an important criterion.
It was recorded for the comparison of time complexity of different algorithms. The nine
comparative methods and the proposed HOC2RF were all conducted in a computer with
Intel(R) Core(TM) i7-9750H 2.59 GHz processor and 16 GB RAM.

The parameter m used in FCM and RFLICM to adjust the fuzzy degree of membership
was set to 2. The other parameters used in the compared and our algorithms were obtained
by experiments, and only the results with the best parameters were given for performance
assessment. For the Neimeng, Texas, and Poyang River datasets, the weights of the pairwise
potentials about MRF, CRF, HOCRF and the proposed HOC2RF were set to 4/7/3, 5/8/2,
5/7/1, and 8/9/1, respectively.

The weights of the higher-order potential of HOCRF [21] were set to 3, 2 and 1. For
our method, there is no need to set the weight of the higher-order clique potential, which is
a fixed value, 1 (see Equation (11)). There are five parameters in FCCRF and IFCCRF: the
two weights of the Gaussian kernels (w1 and w2), and the control parameters of nearness,
similarity, and smoothness (θα, θβ, and θγ). The same as the two weights, the three control
parameters, θα, θβ, and θγ, are also dimensionless. The values of the parameters in FCCRF
and IFCCRF used in the experiments are shown in Table 2.
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Table 2. The values of the parameters of FCCRF and IFCCRF used in the experiments.

Dataset Method w1 w2 θα θβ θγ

Neimeng FCCRF 8 4 80 10 30
IFCCRF 2 1 50 50 80

Texas
FCCRF 6 1 5 20 20
IFCCRF 3 1 30 5 40

Poyang River FCCRF 1 1 80 10 10
IFCCRF 1 1 10 80 10

4.2. Result and Analysis

The CD results in this study are presented in two ways: the CD maps in a graphical
format and the quantitative indicators in a tabular format. Figures 6–8 demonstrate the
CD maps of different methods on the three datasets: (a)–(j) were produced by CVA,
SCM, RFLICM, MRF, CRF, FCCRF, IFCCRF, HOCRF, INLPG, and the proposed HOC2RF
approach, respectively. Black stands for the correctly detected no-change pixels, white
stands for the correctly detected change pixels, red stands for the MD pixels, whereas
yellow stands for the FA pixels. Tables 3–5 list the quantitative indicators of different CD
maps for the three datasets: The unit of time is the second (s), and the other indicators
are dimensionless.

Figure 6. CD maps produced by different methods for the Neimeng dataset.

Table 3. Quantitative indicators for CD maps on the Neimeng dataset.

Methods MD FA TP TN OE OA KC Time(s)

CVA 3400 877,835 77,790 1,450,975 91,235 0.9437 0.6037 10.39
SCM 12,280 1174 68,910 1,537,636 13,454 0.9917 0.9067 3.30

RFLICM 4356 53,102 76,834 1,485,708 57,458 0.9645 0.7099 37.94
MRF 2255 43,478 78,935 1,495,332 45,788 0.9718 0.7610 11.90
CRF 2384 24,634 78,806 1,514,176 27,018 0.9833 0.8450 14.85

FCCRF 10,425 9261 70,765 1,529,549 19,686 0.9878 0.8715 4.33
IFCCRF 7970 7362 73,220 1,531,448 15,332 0.9905 0.9002 7.22
HOCRF 4027 8375 77,163 1,530,435 12,402 0.9923 0.9216 21.62
INPLG 9557 2701 71,633 1,536,109 12,258 0.9924 0.9172 4058.78

HOC2RF 2181 3164 79,009 1,535,646 5345 0.9967 0.9655 26.93
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Figure 7. CD maps produced by different methods for the Texas dataset.
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Figure 8. CD maps produced by different methods for the Poyang River dataset.
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Table 4. Quantitative indicators for CD maps on the Texas dataset.

Methods MD FA TP TN OE OA KC Time(s)

CVA 24,823 31,056 107,046 1,076,547 55,879 0.9549 0.7677 4.86
SCM 59,124 2648 72,745 1,104,955 61,772 0.9502 0.6770 2.53

RFLICM 27,531 20,366 104,338 1,087,237 47,897 0.9614 0.7918 26.56
MRF 18,097 14,788 113,772 1,092,815 32,885 0.9735 0.8589 9.11
CRF 14,124 6457 117,745 1,101,146 20,581 0.9834 0.9104 8.01

FCCRF 16,890 5515 114,979 1,102,088 22,405 0.9819 0.9012 2.28
IFCCRF 12,338 6449 119,531 1,101,154 18,787 0.9848 0.9187 7.02
HOCRF 18,197 5053 113,672 1,102,550 23,250 0.9812 0.8968 15.00
INPLG 92,221 19,771 39,648 1,087,832 111,992 0.9096 0.3731 3553.57

HOC2RF 8664 2472 123,205 1,105,131 11,136 0.9910 0.9518 20.96

Table 5. Quantitative indicators for CD maps on the Poyang River dataset.

Methods MD FA TP TN OE OA KC Time(s)

CVA 347 8286 9351 93,599 8633 0.9226 0.6443 0.63
SCM 3169 930 6529 100,955 4099 0.9633 0.7416 0.62

RFLICM 434 6581 9264 95,304 7015 0.9371 0.6922 2.07
MRF 1222 6182 8476 95,703 7404 0.9336 0.6605 0.71
CRF 2144 3787 7554 98,098 5931 0.9468 0.6889 0.92

FCCRF 3479 945 6219 100,940 4424 0.9604 0.7167 0.23
IFCCRF 3489 862 6209 101,023 4351 0.9610 0.7200 1.81
HOCRF 1105 6244 8593 95,641 7349 0.9341 0.6653 3.54
INPLG 3840 23,738 5858 78,147 27,578 0.7528 0.1924 1317.21

HOC2RF 1727 2168 7971 99,717 3895 0.9651 0.7845 4.94

As shown in Figures 6–8, CVA and SCM provide complementary CD maps for all
three datasets: The change maps obtained by CVA contain a large number of FA errors
(yellow areas) but a small amount of MD errors (red areas), whereas the maps generated by
SCM have small yellow FA areas but large red areas of MD (Figure 6a,b, Figure 7a,b and
Figure 8a,b). This observation proves that CVA and SCM can yield complementary change
information and shows the potentials to enhance the CD performance by performing
fusion strategies.

In terms of the other seven comparative algorithms, for the Neimeng dataset, HOCRF
and INLPG yield better CD results than RFLICM, MRF, CRF, FCCRF, and IFCCRF (Figure 6c–i
and Table 3). However, the map of HOCRF still contains a few apparent yellow FA errors,
whereas the INLPG’s map includes some apparent red MD areas. For the Texas dataset,
CRF and IFCCRF generate better CD results than other comparative methods (Figure 7c–i
and Table 4).

However, some obvious red MD errors still exist at the boundary of the change regions
in their CD maps (Figure 7e,g). For the Poyang River dataset, FCCRF and IFCCRF perform
better than RFLICM, MRF, CRF, HOCRF, and INLPG (Figure 8c–i and Table 5). Nevertheless,
the maps of FCCRF and IFCCRF have many MD errors.

By integrating FCM, evidence theory, and the novel higher-order clique CRF model
(developed in this study), the proposed HOC2RF CD approach first combines the com-
plementary change information coming from the perspective of vector magnitude and
angle (direction) and then utilizes the spatial correlation of images at both pixel and object
levels to enhance the performance of CD. HOC2RF performs better than the nine bench-
mark algorithms and produces the most accurate change maps for all the three datasets
(Figures 6–8).

Tables 3–5 demonstrate the quantitative superiority of the proposed HOC2RF CD
method. It yields the lowest OE and highest KC for all three datasets. For example, for the
Neimeng dataset, its KC value is 0.9655, which is 36.18%, 5.88%, 25.56%, 20.45%, 12.05%,
9.4%, 6.53%, 4.39%, and 4.83% larger than CVA, SCM, RFLICM, MRF, CRF, FCCRF, IFCCRF,
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HOCRF, and INLPG, respectively. For the Texas dataset, its OE is 11136 pixels, which
decreases by at least 7600 pixels in compaction to the nine alternative methods.

For the computation time complexity, INPLG takes much more time than the other
methods as it has a complex process of generating DIs. The proposed HOC2RF has slightly
higher computation time requirement than the CVA, SCM, MRF, CRF, FCCRF, IFCCRF, and
HOCRF. For RFLICM, it takes more time than our method for the first two datasets but less
time for the third dataset.

5. Discussion

5.1. Enhancing Process of HOC2RF

As shown in Tables 3–5, for all the three datasets, the proposed HOC2RF method
outperforms the nine benchmark methods over both OE and KC. Furthermore, the similar
results for the three datasets demonstrate the robustness of HOC2RF to some extent.

In this subsection, the Neimeng and Texas datasets are taken as examples to analyze
and discuss the enhancing process of HOC2RF. To this end, Table 6 demonstrates the CD
results produced by evidence theory, SHOC2RF, CVA-HOC2RF and the proposed HOC2RF.
The CD results of evidence theory were obtained by combining the ones of CVA and SCM
with evidence theory. SHOC2RF and CVA-HOC2RF can be viewed as two special cases of
HOC2RF, which are used to analyze the effects of using the higher-order clique potential (16)
and using the two complementary DIs, respectively. In SHOC2RF, the higher-order clique
potential (16) is replaced with the higher-order potential (object term) in [21]. CVA-HOC2RF
only uses the DI produced by CVA, removing the DI from SCM.

Table 6. CD results obtained by evidence theory, SHOC2RF, CVA-HOC2RF and HOC2RF.

Methods
Neimeng Texas

MD FA OE KC MD FA OE KC

Evidence 5967 11,375 17,342 0.8910 29,200 6974 36,174 0.8342
SHOC2RF 1213 9436 10,649 0.9341 17,722 1738 19,460 0.9128

CVA-
HOC2RF 2497 9104 11,601 0.9276 14,908 1600 16,508 0.9267

HOC2RF 2181 3164 5345 0.9655 8664 2472 11,136 0.9518

Through comparing the CD results generated by CVA, SCM, evidence theory, and
the proposed HOC2RF in Tables 3, 4 and 6, it can be seen that HOC2RF enhances the CD
performance by two stages:

(1) Combining the CD results from CVA and SCM using evidence theory. For the
Neimeng dataset, the CD results of the evidence theory are better than those of CVA,
RFLICM, MRF, CRF, and FCCRF, which use only one DI (Tables 3 and 6). For the Texas
dataset, evidence theory performs better than CVA, SCM, and RFLICM (Tables 4 and 6).
Although the evidence theory’s CD results are slightly worse than those from SCM for
Neimeng dataset, the FA errors of CVA and the MD errors of SCM are both significantly
reduced by the fusion step. This results in more balanced FA and MD errors in the CD
result of evidence theory, and thus makes it easier to further improve the performance of
CD by using the CRF model. In addition, the advantages of using two complementary
DIs also can be seen by comparing the CD results of CVA-HOC2RF and HOC2RF (Table 6).
HOC2RF that fuses two DIs from CVA and SCM produces much better CD results than
CVA-HOC2RF that only uses the CVA DI. For example, for the Neimeng dataset, the value
of KC increases from 0.9276 for CVA-HOC2RF to 0.9655 for HOC2RF.

(2) Improving the fused CD results of evidence theory by utilizing the HOC2RF model.
For both Neimeng and Texas datasets, HOC2RF outperforms MRF, CRF, FCCRF, IFCCRF,
and HOCRF (Tables 3, 4 and 6), demonstrating the superiority of the HOC2RF model. In
addition, by comparing the SHOC2RF and HOC2RF rows in Table 6, we can see that, the
proposed higher-order clique potential (16) performs much better than the higher-order
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potential used in [21]. For instance, for the Texas dataset, the KC value increases from 0.9128
for SHOC2RF to 0.9518 for HOC2RF. This is mainly because the higher-order potential
in [21] only considers a single object, ignoring the dependence of the neighboring objects,
whereas the proposed higher-order clique potential (16) uses an object clique consisting of
an object and its neighboring objects in both feature and location spaces.

5.2. Parameter Comparison of Random Field Models

This subsection compares the parameters used in MRF, CRF, FCCRF, IFCCRF, HOCRF,
and the proposed HOC2RF. Only one parameter (λ) needs to be set for implementing of
the proposed HOC2RF, the same as MRF and the traditional pairwise CRF. The parameter
λ is used to tune the weight of the pairwise potential. In general, a small λ causes low MD
errors but leads to a large amount of noise, whereas a large one will remove some noise
but may miss some detailed changes. For HOCRF [21], it needs to set two parameters, the
weights of the pairwise potential and higher-order potential (object term). For both FCCRF
and IFCCRF, there are five parameters to be set: the two weights of the Gaussian kernels
(w1 and w2), and the control parameters of nearness, similarity, and smoothness (θα, θβ, and
θγ). Given the above analysis, the proposed HOC2RF needs much less parameter tuning
than FCCRF IFCCRF, and HOCRF.

6. Conclusions

In this paper, a novel, unsupervised CD method was proposed by developing a higher-
order clique CRF model, termed HOC2RF. For the observation field, HOC2RF further
introduces the vector angle change of two temporal images compared with the existing
CRF-based CD methods, which mainly utilize the vector magnitude change. For the
labeling field, HOC2RF uses FCM and evidence theory to fuse the two complementary
types of change information at the decision level to create an initial CD map.

Moreover, HOC2RF defines a novel higher-order clique potential based on a properly
designed clique of objects. The clique potential considers the interactions between neigh-
boring objects in both feature and location spaces. As a consequence, HOC2RF can combine
the complementary change information coming from the perspective of vector magnitude
and angle and utilize the spatial-context information of images at both the pixel and object
levels effectively.

Three case studies verified the effectiveness and advantages of the proposed HOC2RF
approach. The Kappa coefficient/overall accuracy values of HOC2RF were 0.9655/0.9967,
0.9518/0.9910, and 0.7845/0.9651, respectively, which are better than the nine benchmark
methods (CVA, SCM, RFLICM, MRF, CRF, FCCRF, IFCCRF, HOCRF, and INLPG). For
example, the Kappa coefficient values of HOC2RF increased at least by 4.39%, 3.31%, and
4.29% compared to the nine methods.

HOC2RF has only one parameter, thereby, needing much less parameter tuning com-
pared with HOCRF, FCCRF, and IFCCRF. Theoretically, this article contributes to CD
development by proposing the idea of using the interaction between neighboring objects in
both feature and location spaces to enhance the CD performance. Methodologically, we
presented a method to construct a higher-order clique, developed a higher-order clique
potential function, and proposed a novel CD method—HOC2RF.

The proposed method has two limitations: (1) It has a slightly higher computation
time requirement than the existing CRF CD methods because it needs to combine two DI
images and compute the higher-order clique potential function. (2) Though it has only one
parameter, it still requires parameter tuning.

Future work can focus on the following two directions. (1) To further automate
HOC2RF, additional work can be conducted on the automatic determination of the only
parameter λ used in HOC2RF. (2) Additional research can be conducted on how to define
new higher-order clique potential functions.
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