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Abstract: On 26 August 2020, a devastating flash flood struck Charikar city, Parwan province,
Afghanistan, causing building damage and killing hundreds of people. Rapid identification and
frequent mapping of the flood-affected area are essential for post-disaster support and rapid response.
In this study, we used Google Earth Engine to evaluate the performance of automatic detection of
flood-inundated areas by using the spectral index technique based on the relative difference in the
Normalized Difference Vegetation Index (rdNDVI) between pre- and post-event Sentinel-2 images.
We found that rdNDVI was effective in detecting the land cover change from a flash flood event
in a semi-arid region in Afghanistan and in providing a reasonable inundation map. The result of
the rdNDVI-based flood detection was compared and assessed by visual interpretation of changes
in the satellite images. The overall accuracy obtained from the confusion matrix was 88%, and the
kappa coefficient was 0.75, indicating that the methodology is recommendable for rapid assessment
and mapping of future flash flood events. We also evaluated the NDVIs’ changes over the course of
two years after the event to monitor the recovery process of the affected area. Finally, we performed
a digital elevation model-based flow simulation to discuss the applicability of the simulation in
identifying hazardous areas for future flood events.

Keywords: flash flood; change detection; rdNDVI; Sentinel-2; flow simulation; Charikar; Afghanistan;
Google Earth Engine

1. Introduction

Flash flooding is one of the most destructive and recurring natural hazards on the planet.
Flash floods are typically generated by significant rainfall in dry and semi-arid areas. It causes
catastrophic damage and threats to life, property, and cultural heritage. Floods affect more
people than any other sort of weather-related disaster and are a leading cause of natural disaster
fatalities worldwide [1]. It is caused by natural factors such as severe rainfall, the spilling of water
onto dry ground in the floodplain, rapid snowmelt, and the failure of man-made infrastructure
such as dams and levees. Floods have had significant impacts on the human economy as well,
as indirect effects on economic growth and societal well-being. Floods disproportionately affect
the poor and most vulnerable people [2].

Climate and morphology differ geographically and seasonally, which influences flash
floods [3]. Depending on flow attenuation and sediment loading, the influence might vary
within a watershed. To decrease the effects of flash floods, understanding hydrological dy-
namics in drainage basins is important [4]. Evaluations of flood consequences are feasible,
essential, and smart alternatives to flood prevention [5–8]. Unfortunately, dryland hydro-
logical measurements and observations are intermittent and insufficient to characterize
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these processes due to a lack of understanding and calibration of hydrological models. In
most situations, especially in less-developed countries, these data are unavailable owing
to a lack of meteorological stations [9]. Regional increases in hydrological problems are
alarming, and more data is needed to model and assess the relationship between urbaniza-
tion, hydrology, and land-use planning [10]. Due to the limited number of meteorological
stations and the uncertainty of the data, conducting hydrological modelling in a dry area is
technically impossible.

Remote sensing technology has been recognized as a convenient tool to widely identify,
monitor, and evaluate areas affected by natural disasters, including flash floods, because
land use and land cover change can be effectively identified. Flood monitoring by satellite
images would rapidly provide extensive details of the affected area. Several approaches and
methodologies based on pixel- and object-oriented methods can be used to detect water by
using optical satellite data, including supervised and unsupervised classification methods,
transformation of spectral channels, texture analysis, visual interpretation, single-channel
thresholding, and channel ratio use. In the mentioned approaches, water indicators are
extremely beneficial. Their implementation is contingent on the formulation of a threshold
value that differentiates water pixels from those representing other forms of land cover.

Several approaches for extracting water bodies from remotely sensed data have been
developed by researchers. McFreeters [11] proposed the Normalized Difference Water Index
(NDWI) to detect water features from Landsat TM by using band 2 and band 4. Rogers
et al. [12] introduced a new NDWI for extracting water from Landsat TM by utilizing bands
3 and 5. To extract surface water bodies from raw digital Landsat data, McFreeters [11]
proposed a threshold value of zero, with all positive NDWI values categorized as water and
negative values classed as non-water. This threshold, on the other hand, makes it impossible
to distinguish between built-up surfaces and water pixels. As a result, Xu [13] developed
the Modified Normalized Difference Water (MNDWI) by using Landsat TM bands 2 and
5. When compared to other indicators, the MNDWI indicator has a stronger ability to
reduce disturbances generated by buildings, vegetation, and soils [13]. Feyisa et al. [14]
developed the Automated Water Extraction Index (AWEI) to increase the accuracy of water
extraction in locations containing shadows and dark surfaces. The MNDWI has been used
to create a simple Enhanced Water Index (EWI) by [15]. Surface water can be identified from
background information such as deserts, soil, and vegetation. For the extraction of surface
water from Landsat data, Rokni et al. [16] examined the characteristics of NDWI, MNDWI,
AWEI, and the Normalized Difference Moisture Index (NDMI) in applying a novel surface
water change detection process based on the principal components of multi-temporal
NDWI. Surface water was retrieved from the indices by using a trial-and-error thresholding
methodology. The overall accuracy and kappa coefficient were used to examine the efficacy
of each water body extraction procedure, and NDWI was found to outperform other
measures. These indices have also been used in a multitude of scenarios, such as surface
water mapping [14,17], land use, and land cover change assessments [18], and ecological
research [19]. On the other hand, numerous researchers have utilized the Normalized
Difference Vegetation Index (NDVI) to detect land cover change because the NDVI shows
positive values for vegetation, values close to zero for bare soil, and negative values for
water [20–22]. Many studies show that AWEI and MNDWI achieved better results and
more stable thresholds than the NDVI [23].

Modern satellites are better than traditional techniques for monitoring surface water,
but downloading and processing vast study areas or long-term data is time-consuming.
Most classic approaches are not straightforward, making them technically challenging
to employ because of preprocessing [24]. We used the Google Earth Engine (GEE), a
planetary-scale platform for earth science data and analysis developed by Google, to apply
the spectral index technique developed in [25]. The GEE has enabled the development
of global-scale products, tools, and services by using temporal earth observation data
such as Sentinel-2. The GEE platform provides a fast-forward solution for these kinds
of big data problems. The GEE has been used to conduct various global and regional
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scale studies, including regional land cover mapping [26], surface water mapping [27],
accessing food security situations [28], settlement and population mapping [29], and other
applications [30]. Hazard Mapper is an open-access application developed in the GEE [25]
and has been used in many case studies and in different countries to delineate different
kinds of natural hazards, but it has never been used for floods or flash floods.

Although the model’s original developer [25] never used it to estimate floods in non-
vegetated environments such as high altitudes or semi-arid to arid regions, we are looking
into it to see if it can be used to locate flood-inundated areas in non-vegetated, data-scarce
regions such as Afghanistan. On 26 August 2020, the city of Charikar in Afghanistan was
devastated by a flash flood, which caused significant damage to the residential sector and
claimed the lives of hundreds of people. Nevertheless, the affected area has not been as
scientifically investigated as other parts of the country due to safety and economic concerns.
As a consequence of this, the actual location of the areas that were swamped by the flood,
in addition to the extent of the flood damage region, is unknown to this day. There have
been several research approaches developed in the field of remote sensing with almost all
of them concentrating on the detection of floods in areas where there is accumulated water.
On the other hand, there is no study that has been conducted up to this point that discusses
the practicability of approaches for detecting flash flood-inundated areas in regions that
do not have standing water. Most of the methods mentioned are frequently used by the
researchers for extraction of water bodies such as lakes, canals, waterways, ponds, and so
on. They never used methods such as the spectral index technique in flash flood situations
when there was no standing water.

Thus, to fill the gap, this study investigates the utilization of freely available optical
satellite data to evaluate flood-affected areas in Charikar to some extent, contributing
to the remote sensing community and disaster management team for the identification
and evaluation of damaged areas with better precision. This study intends to employ
remote sensing and GEE to automatically detect flash flood-inundated areas quickly after
the incident by using a change detection method based on pre- and post-event NDVIs in
Sentinel-2 satellite images. Moreover, it is also the goal to estimate the area of flash flood
to understand the magnitude of the flood and contribute to the planning for post-disaster
activities. We also evaluate and compare the detected inundation area’s accuracy with flood
maps derived from visual image interpretations and government reports. Furthermore, we
use the time series to measure changes in NDVIs two years after the event date to follow
the recovery process in the affected area. We also use a digital elevation model (DEM) to
examine flow path assessment of gravitational hazards at a regional scale [31] in order
to assess the feasibility of the simulation technique for finding and predicting vulnerable
regions in future flood occurrences. In addition, feasible mitigating strategies have been
recommended for any potential future incidents.

2. The Charikar Flash Flood and Dataset
2.1. Study Area

The study area is located in Afghanistan between latitudes 35◦01′9.3′′W and longitude
69◦09′55.67′′N, which includes parts of the capital of the Parwan province (Figure 1). The
city lies on the Afghanistan Ring Road, 69 km from Kabul along the route to the northern
provinces. It connects Kabul and the western parts of Afghanistan to northern parts of
Afghanistan such as Mazar-i-Sharif, Kunduz, and Puli Khumri. Despite the proximity to
Kabul, slightly more than half of the land is not built up.
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Sheybar pass (which connects the provinces of Parwan and Bamyan, or watersheds of the 
Ghorband and Kunduz Rivers and passes in an eastbound direction, which it maintains 
throughout most of its course. It runs along the south and the imposing central range of 
the Hindu Kush, receiving meltwater in the Sheybar pass area of Salang. It flows from 
here through a long valley between the Hindu Kush mountains in the north and Koh-i-
Baba in the south. It then connects to the Panjshir on its right bank, some 10 km east of 
Charikar. It runs through the Sheikh Ali, Shinwari, Ghorband, and Surkh Parsa districts. 

Parwan is situated at a high elevation of 1800 m (5900 feet) above sea level. Winter is 
chilly, with an average temperature of −1 °C in January, freezing nights most of the time, 
and a probable high of −20/−25 °C; snowfalls are very common and sometimes substantial. 
Summer days are hot, occasionally blistering, and nights are normally cool. Precipitation 
in Charikar is rather low, averaging 300 mm per year. Spring is the wettest season. It rarely 
rains in the summer and the average summer high and low temperature fluctuate between 
32 and 20 degrees respectively. Even in winter, the sun shines regularly in Charikar, and 
it shines frequently in summer. 
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Figure 1. Topographical map of the study area showing how Charikar city is surrounded by high
mountains of Hindu Kush which the elevation is between 1000–4000 m.

The study area encompasses the central city of Charikar, as depicted by the rectangle in
Figure 1, which covers 30,500 hectares and was devastated by flooding. The Ghorband river
flows through Parwan province. It is a tributary of the Panjshir river, then a sub-tributary of
the Indus River, and then the Kabul River. The Ghorband runs entirely in Parwan province,
where it gave its name to the Ghorband district. It is born in the eastern Sheybar pass
(which connects the provinces of Parwan and Bamyan, or watersheds of the Ghorband and
Kunduz Rivers and passes in an eastbound direction, which it maintains throughout most
of its course. It runs along the south and the imposing central range of the Hindu Kush,
receiving meltwater in the Sheybar pass area of Salang. It flows from here through a long
valley between the Hindu Kush mountains in the north and Koh-i-Baba in the south. It
then connects to the Panjshir on its right bank, some 10 km east of Charikar. It runs through
the Sheikh Ali, Shinwari, Ghorband, and Surkh Parsa districts.

Parwan is situated at a high elevation of 1800 m (5900 feet) above sea level. Winter
is chilly, with an average temperature of −1 ◦C in January, freezing nights most of the
time, and a probable high of −20/−25 ◦C; snowfalls are very common and sometimes
substantial. Summer days are hot, occasionally blistering, and nights are normally cool.
Precipitation in Charikar is rather low, averaging 300 mm per year. Spring is the wettest
season. It rarely rains in the summer and the average summer high and low temperature
fluctuate between 32 and 20 degrees respectively. Even in winter, the sun shines regularly
in Charikar, and it shines frequently in summer.

2.2. The Flash Flood in Charikar

Afghanistan is a landlocked country with an arid to semi-arid climate vulnerable to a
variety of hazards, including earthquakes, flooding, drought, avalanches, and man-made
calamities [32,33]. A devastating flash flood occurred near the residential areas in Charikar
city, Parwan province, Afghanistan on 26 August 2020, killing over 100 people. Most of
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the victims were children and women. More than 150 people were injured [34]. In the
flash flood event, more than 17,000 people were affected, and nearly 2000 homes were
destroyed [35]. The midnight floods surprised locals who were asleep. According to local
witnesses, first a roar was heard and then a flood arrived at their houses [36]. Even police
soldiers attempted air shooting to wake people, but unfortunately, most of the people did
not notice. Rescue teams, locals and social groups were searching for the bodies of the
victims. However, many people were missing. Based on a report [37], a person was missing
nine members of his family. The substandard mud houses on the mountainside near the
Opyan village (Figure 2) and some other areas around Charikar turned into rubble after
the flood, as shown in Figure 3.
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The flood path information is collected from the Surface Water Resources Department of Afghanistan.

This horrific occurrence, combined with the ongoing conflict and the COVID-19
outbreak, exacerbated the healthcare system’s reliance on foreign aid for even the most
basic services. The city of Charikar is situated in a location where a variety of flood channels
and valleys directly threaten the city’s residents. Due to population pressures, land scarcity,
and improper land development, the majority of people in Afghanistan now live in hilly,
flood-prone areas like Charikar, which will almost certainly result in an increase in flood-
related building damage. As can be seen in Figure 2, areas that are prone to flooding, are
represented by red outlines. Each red region has hundreds of residential buildings that
are in danger of flooding at any given time, which puts the lives of the people living there
at danger. Government regulation and regular urban planning have been neglected in
the construction of new cities and buildings. The irregular and arbitrary land sales by
landlords and local bullies, as well as the absence of floods in recent years in Charikar,
have misled people to assume that it is safe to buy and construct houses in these hazardous
places. Building and construction were expanding at a rate that had never been witnessed
before the devastating flash flood. This ruined the lives of individuals and the economy.
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victims in a mudslide caused by a flash flood at Sayrah-e-Opiyan in Charikar (Photo is re-printed/adapted 
with permission from Ref [40]). (D) A flash flood brought debris and boulders into the house, covered the 
car, and injured and killed people. (Photo is reprinted/adapted with per-mission from Ref [41]). (E) A 
general view of a building in Charikar, Afghanistan, covered in flooded debris from flooding on 26 
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Figure 3. The affected area in Charikar: (A) group of people walk near damaged houses in Charikar,
Parwan province, on Wednesday, 26 August 2020. The image is reprinted/adapted with permission
from Ref. [38], which can be accessed through Fox News. (B) A man reacts near to his ruined home
as rescuers search for victims in Sayrah-e-Hopiyan, Charikar, Parwan province, on 26 August 2020,
following a flash flood, photograph is reprinted/adapted with permission from Ref. [39]. (C) Villagers
and soldiers search for victims in a mudslide caused by a flash flood at Sayrah-e-Opiyan in Charikar
(Photo is reprinted/adapted with permission from Ref. [40]). (D) A flash flood brought debris and
boulders into the house, covered the car, and injured and killed people. (Photo is reprinted/adapted
with permission from Ref. [41]). (E) A general view of a building in Charikar, Afghanistan, covered in
flooded debris from flooding on 26 August 2020, Reprinted/adapted with permission from Ref. [36].

2.3. Data Sets

Sentinel-2 satellite imagery is a constellation of two earth observation satellites, de-
veloped by the European Space Agency (ESA) and the European Commission’s ambitious
Copernicus Program, consists of two identical satellites: Sentinel-2A, launched on 23
June 2015, and Sentinel-2B, launched on 7 March 2017, available in various processed for-
mats [42]. The so-called multispectral instrument (MSI) products go through several rounds
of processing before reaching a level that is usable. Level-0, Level-1A, Level-1B, Level-1C,
and Level-2 are the primary stages. Users cannot access Level-0 and Level-1A, which are
stored in the instrument source packet (ISP) format, which is a compressed raw picture
data format. Level-1B has radiometrically corrected imagery with TOA radiance, which is
built up of granules of 25 by 23 km in length. Level-1C has been formed in 100 × 100 km
tiles in an orthorectified format in the UTM/WGS 84 projection [42]. The Sentinel-2 Tool-
box can process Level 2A products from Level-1C products. The most commonly used
products in land cover/use mapping are Level-1C and Level-2A. As part of the European
Commission’s and European Space Agency’s free, complete, and open data policy, this
dataset is freely distributed to the public domain. Since its introduction, Sentinel-2 data
has been used in a variety of earth and atmospheric science research investigations, and
is perfect for agriculture, forestry, and other land management applications [43–46], flood
mapping [47–49], wetland monitoring [50], and agricultural operations [51,52]. The radio-
metric and geometric quality of Sentinel-2 data is technically superior to data acquired by
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other low spatial resolution data, such as Landsat data. For the purpose of this study, we
utilized Sentinel-2 imagery acquired between the periods of 5 June 2020 and 23 October
2020. Table 1 presents an overview of the key features of the images used in this study.
The Sentinel-2 has a 10-day return period at the equator and a five-day revisit time at
mid-latitudes, as well as a spatial resolution of 10 m, which contributes to its dominance.
Although they have the disadvantage of being affected by cloudiness, optical imaging
satellites would be preferred for flood studies since the surface conditions of the affected
areas are easily confirmed from the images compared to radar satellites data.

Table 1. The distinguishing characteristics of the satellite imagery used in this study, as well as their
observation conditions.

No Image ID Date Acquired Cloud Cover
Percentage Relative Orbit Pass Direction Processing Level

1 S2A_MSIL2A_20200605T060641 5 June 2020 1.10 134 Descending Level-1C

B
ef

or
e

ev
en

t

2 S2A_MSIL2A_20200615T060641 15 June 2020 0.63 134 Descending Level-1C

3 S2A_MSIL2A_20200625T060641 25 June 2020 4.23 134 Descending Level-1C

4 S2A_MSIL1C_20200705T060641 5 July 2020 23.75 134 Descending Level-1C

5 S2A_MSIL2A_20200715T060641 15 July 2020 35.2 134 Descending Level-1C

6 S2A_MSIL2A_20200725T060641 25 July 2020 8.63 134 Descending Level-1C

7 S2A_MSIL2A_20200804T060641 4 August 2020 3.06 134 Descending Level-1C

8 S2A_MSIL2A_20200814T060641 14 August 2020 1.20 134 Descending Level-1C

9 S2A_MSIL2A_20200824T060641 24 August 2020 9.87 134 Descending Level-1C

10 S2A_MSIL2A_20200913T060641 13 September 2020 8.7 134 Descending Level-1C

A
ft

er
ev

en
t11 S2A_MSIL2A_20200923T060641 23 September 2020 0.23 134 Descending Level-1C

12 S2A_MSIL2A_20201003T060711 3 October 2020 0.82 134 Descending Level-1C

13 S2A_MSIL2A_20201013T060821 13 October 2020 11.82 134 Descending Level-1C

14 S2A_MSIL2A_20201023T060921 23 October 2020 0.68 134 Descending Level-1C

3. Methodology

The current study’s overall procedure is depicted in a flow chart in Figure 4. The
NDVI, MNDWI, and NDMI indices and their correlations were discussed in Section 3.1,
relative difference in NDVI (rdNDVI) and its formulation and procedures are discussed
in Section 3.2, the histogram-based segmentation is discussed in Section 3.3, accuracy
assessment by using the confusion matrix is discussed in Section 3.4, and prediction of
probable future flood inundation by using Flow-R is evaluated in Section 3.5.

3.1. NDVI and Spectral Water Indices

We did not investigate the extraction of water bodies in the affected area because
there was no standing water after the incident. However, we used NDVI to assess and
identify the inundated region because there are many indices established by researchers
for the identification of flooded areas. To assess the performance of other indices in the
impacted area, we intend to examine their applicability in the affected area shortly. To
extract water bodies from remotely sensed data, several spectral water indices have been
established, mainly by computing the normalized difference between two image bands and
then applying an appropriate threshold to classify the outputs into two groups (water and
non-water features). The MNDWI and NDMI indices are utilized by most researchers for
the extraction of water bodies such as lakes, rivers, ponds, etc. The current study’s purpose
is to use rdNDVI to delineate the inundated area following a flash flood where there are
no leftover water bodies. Then we calculate and illustrate a correlation between NDVI
and three spectral water indices to observe the output of each single index for detecting
changes caused to the study area by the flash flood.
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Figure 5a,b depicts the true color Sentinel-2 images observed before the flash flood
on 24 August and after the flash flood on 13 September. If we examine those rectangular
areas in Figure 5 we can clearly notice a trail of the inundated area that remains due mainly
to the flood occurrence. The color of the soil in the affected area changed as a result of
increased soil moisture after the flash flood. As shown in Figure 5c–f, the reflectance of
such darkened wet soil is significantly low in infrared bands such as near infrared (NIR)
and short wavelength infrared (SWIR). This means that spectral indices using NIR and/or
SWIR would be effective to detect the flood-inundated areas.

3.1.1. Normalized Difference Vegetation Index (NDVI)

The NDVI index uses reflected light in the visible and near-infrared bands to detect
and quantify the presence of live green vegetation. Simply put, NDVI is a metric that may
be used to classify land cover in remote sensing areas and can measure the density and
health of vegetation in each pixel. The first formal report of the NDVI was in [53]. The
NDVI is expressed by Equation (1),

NDVI =
(

NIR− Red
NIR + Red

)
, (1)

where NIR is the near-infrared band and red is the visible red band. This index ranges
from −1.0 to 1.0, essentially depicting green, with negative values originating from clouds,
water, and snow, and values close to zero originating from rocks and bare soil. The NDVI
function has very low values (0.1 or below) that correlate to vacant expanses of rocks, sand,
or snow. Medium values (0.2 to 0.3) show shrubs and meadows, whereas large values (0.6
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to 0.8) show temperate and tropical forests. In Figure 6, we showed the estimated image of
the NDVI index to see how the area hit by the flash flood had changed. 
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images. (a) True-color images acquired on 24 August 2020. (b) True-color image acquired on 13 
September 2020. (c) NIR band acquired on 24 August 2020. (d) NIR band acquired on 13 September 
2020. (e) SWIR band acquired on 24 August 2020. (f) SWIR band acquired on 13 September 2020. 
Rectangular area is selected on those areas to analyses the NDVI time series. 

 

Figure 5. Observation of changes in the study area by using pre- and post-event Sentinel-2 satellite
images. (a) True-color images acquired on 24 August 2020. (b) True-color image acquired on 13
September 2020. (c) NIR band acquired on 24 August 2020. (d) NIR band acquired on 13 September
2020. (e) SWIR band acquired on 24 August 2020. (f) SWIR band acquired on 13 September 2020.
Rectangular area is selected on those areas to analyses the NDVI time series.
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3.1.2. Normalized Difference Water Index (NDWI)

The normalized difference water index (NDWI) was developed by [11] for detecting
surface water in wetland regions and surface water measurement and is defined as

NDWI =
(

GREEN−NIR
GREEN + NIR

)
, (2)

where, for Sentinel-2, green and NIR are the reflectance of green (band 3) and NIR (band 8),
respectively. The NDWI value ranges from−1 to 1. McFeeters [11] determined the threshold
value as zero. That is to say, if NDWI is greater than zero, the type of cover is water;
alternatively, if NDWI is less than zero, the type of cover is not water. According to the
previous study [13], NDWI was unable to entirely differentiate built-up features from water
features. Because the NIR reflectance was lower than the green reflectance, NDWI displayed
positive values in built-up features that were comparable to water. Therefore, Xu [13]
proposed the modified NDWI (MNDWI), which substituted the SWIR band (Landsat TM
band 5) for the NIR band in McFeeters’ NDWI Equation (3):

MNDWI =
(

GREEN− SWIR
GREEN + SWIR

)
, (3)

where, for Sentinel-2, SWIR is the reflectance of short-wave infrared bands (Band 11). Equa-
tion (3) is used to enhance open-water features that are dominated by built-up areas. Noise
from built-up land, vegetation, and soil is reduced considerably. We visually presented the
estimated image of the MNDWI index in Figure 7. This allowed us to see the changes that
had occurred in the area that had been inundated by the flash flood.
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3.1.3. Normalized Difference Moisture Index (NDMI)

The Normalized Difference Moisture Index (NDMI) was initially utilized by [54,55]
to extract moisture content from biomass and vegetation. For Sentinel-2, the normalized
difference moisture index (NDMI) is derived as a ratio between the NIR (band 8) and the
SWIR (band 11) by using Equation (4),

NDMI =
(

NIR− SWIR
NIR + SWIR

)
. (4)

Like most indices, the NDMI value ranges between −1 and 1. Negative numbers
approaching−1 indicate water stress, whereas higher values correspond to larger quantities
of water. NDMI can detect water stress in early stages, before it becomes a serious problem.
Furthermore, employing NDMI to monitor irrigation, particularly in locations where crops
require more water than nature can provide, aids crop growth tremendously. In order to
determine whether or not it is possible to observe the changes in the study area as a result
of the impact of the flash flood by using NDMI, we illustrate the NDMI images in the study
area in Figure 8. Initially, we assess the performance of NDVI, MNDWI, and NDMI in the
inundated area and then show the correlation between the mentioned indices with NDVI.

We visually presented the estimated images of the indices in Figures 6–8 to see the
applicability of the index in detecting the changes in the flash flood-inundated area. To
examine how the images would alter after the flood, we specified a completely identical
color table ranging from (−1 to +1) for all of the estimated indices. As can be observed in
Figure 6, the color in the rectangle area of the NDVI-post event shifted to dark red (+1),
although in the same area, we noticed some changes in the MNDWI post-event (Figure 7),
but it is not as pronounced as the NDVI. Additionally, the NDMI, in the selected rectangular
area, depicts the changes as a result of the flood in a more pronounced manner (Figure 9),
compared to the MNDWI (Figure 8). Particularly in the NDMI-after image, vast areas at
the tops of the hills (surrounding the rectangular areas), are altered to darker colors (+1),
indicating an overestimation of the inundation area.
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In the inundated area depicted by the rectangular area in Figures 6–8, a time series
of NDVI, MNDWI, and NDMI is also displayed in Figure 9 for the months of February
through December of 2020. The result demonstrates that both NDVI and MNDWI values
decreased just after the event over the flood affected area. However, NDMI does not follow
a similar trend. In order to evaluate the relationship between the indices, we illustrated the
correlation between NDVI, MNDWI, and NDMI in Figure 10. It is clear from Figure 10 that
NDMI and NDVI have a weak negative correlation (R2 = 0.27). NDVI and MNDWI, on the
other hand, show a high positive correlation (R2 = 0.82).
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It is possible to identify the changes by using most of the stated spectral water indices
due to the impact of the flood on the affected area by manipulating the color table to some
extent. These results indicate that the flood-inundated areas can be detected not only by
MNDWI but also by NDVI. Furthermore, the NDVI has a higher spatial resolution (10 m)
compared to those of MNDWI (20 m) and NDMI (20 m) because the spatial resolution
of the SWIR band is 20 m in the Sentinel-2 images. Higher spatial resolution images are
expected to detect the inundation areas in more detail. For those reasons, we intend to
employ the NDVI applicability in detecting flood-inundated areas in this study.

3.2. Relative Difference in NDVI (rdNDVI)

It is self-evident that the information contained in any given index varies substantially
depending on the seasons and type of land cover, such as vegetation types. As a result,
using a single indicator to assess complex landscapes is technically difficult because change
does not always correlate to the degree of effects [56]. It is difficult to quantify changes
in fractional forest, grass, or shrub cover because an NDVI drop in a low-NDVI drought-
sensitive open forest area can have a greater impact than a similar percent loss in a high-
NDVI dense forest [57]. Hence, rdNDVI [58] was calculated using the Equation (5),

rdNDVI =
(

NDVIPost −NDVIPre√
NDVIPre + NDVIPost

)
× 100 . (5)

In Equation (5), NDVIPre and NDVIPost present the greenest pixel composites in
multitemporal pre- and post-event satellite imagery, respectively. Equation (2) was origi-
nally used to help not only interpret or quantify the changes in complex landscapes such
as fractional forest, grass, or shrub cover, particularly with low-resolution imagery, but
also help partially overcome problems that arise from NDVI’s nonlinear responsiveness or
NDVI “saturation” effect [58]. When forest cover is low, a few trees added (or lost) have
a higher impact on NDVI than a few trees lost in a dense forest cell. When both areas
experience the same absolute change in NDVI, taking the square root of the denominator
makes cells with high and low NDVI values fall more similarly. The result of Equation (5)
represents a normalized percentage of NDVI gained or lost. Later, Scheip et al. [25] used
the rdNDVI technique to detect surface changes, primarily vegetation area changes, as
a result of fire, volcanic eruptions, and landslides. Scheip et al. [25] never discuss the
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feasibility of the method in detecting flood-inundated areas, particularly in non-vegetated
areas, unlike the current work. This study will focus on the feasibility of the rdNDVI-based
detection, delineation, and assessments of inundated areas in the non-vegetated arid region
of Charikar, Afghanistan.

We prepared two temporal composites. One is a stack of all pre-event images, and
the second contains all post-event images. Then, we calculated pre- and post -event NDVI
for the so-called stacks. The greenest-pixel composite is a single composite or tiled image
generated from all images within the user-defined pre- and post-event windows that record
the pixel with the highest NDVI result as shown in Equation (1). Instead of differencing
true-color composites such as red, green, and blue bands, it exploits changes in surface
vegetation by developing and differencing an NDVI band from the greenest-pixel composite
image. Simply, the algorithm works in a way that from all-composite images it retains only
the pixels with the highest NDVI value from the entire stack. This composite indicates
the peak phenological cycle of pre- and post-event conditions. The rdNDVI indicator was
derived by using the peak phenological cycle calculated from the user input duration (in
months) for the pre- and post-event duration.

3.3. Histogram-Based Segmentation

The thresholding-based segmentation algorithm is one of the simplest, most powerful,
and most commonly used algorithms for the segmentation process. A thresholding value
is applied to histograms based on segmentation. This technique is used to segment the
area of interest (AOI) from images with a uniformly bright background. Based on AOI,
the threshold might have a single or multiple values. The entire image is pixel-by-pixel
scanned in order to designate pixels as objects or background according to gray-level value
and thresholding function (T). In the current study, to discriminate between the inundated
and non-inundated area pixels, we used a histogram-based thresholding technique to find
a set of thresholds. The method associates each pixel of the image (f) with a binary number
that depends on the intensity of the pixels and a threshold T:

G(m, n) =
{

1 if f(m, n) ≥ T,
0 if f(m, n) < T

. (6)

The above equation simply defines the binarization method. The thresholding process
produces a binary image as its output. In Equation (6), pixels with an intensity value of 1
correspond to objects (inundated area), whereas pixels with a value of 0 correspond to the
background (non-inundated area). In histogram-based thresholding, it is critical to select
the optimum threshold, and this process needs to be carried out in a way that produces
the least amount of bias possible. The optimal value was obtained manually by iterating
the value and observing the outcome. This process was repeated until we observed that,
with the value that was selected, the image contained almost all of the pixels that were
present in the original image. The histogram-based methods typically produce results that
contain noise that needs to be removed before further analysis can be performed. In this
specific research area, we use sieve analysis in ENVI 5.3 to eliminate any single separate
pixel that is less than 10. It is possible to eliminate noise by using larger (11 or 12 pixel)
values. However, using pixels less than 10 would diminish most of the single pixels of such
size in the vicinities of the inundated area, which may underestimate the inundation area.

3.4. Accuracy Assessment Procedures Using Confusion Matrix

To validate the rdNDVI detection result, the flood inundation map was first created
by using visual interpretations of pre- and post-event Sentinel-2 images, as well as gov-
ernmental reports from after the flood, as shown in Figure 4. We employ a confusion
matrix to evaluate the accuracy of detected inundation compared to the inundation map of
the visual interpretation. Confusion matrices, also known as error matrices, are typically
utilized as the quantitative method for characterizing the accuracy of image classification.
These matrices contain information about actual and predicted classification. It is a table
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that illustrates the correspondence between the classification result and a reference image.
In order to generate a confusion matrix, we require ground truth data, which consists of
elements like cartographic information, images that have been manually digitized, and the
outcomes of field work or surveys that have been recorded by using GPS. This data is also
referred to as reference images. In this analysis, the reference image is a manually digitized
version of an image that was compiled from various sources, including photographs taken
after the flood, published reports, and government survey reports. It is necessary to make
a comparison between the pixels that have been classified and the truth data. We have two
classes of inundated and non-inundated areas that were produced by using binarization
thresholding methods. As a means of performing the accuracy assessment, we made use
of the outcome of the visually identified inundated reference map data. The estimated
inundated pixels located within the boundary of the reference map (visually identified
inundated map) is the number of correctly identified pixels. On the basis of the confusion
matrix, a pixel-by-pixel analysis of the image’s accuracy was carried out. We present the
accuracy of the result by considering the user’s accuracy, the producer’s accuracy, the
overall accuracy, and the kappa coefficient.

3.5. Flood Susceptibility Mapping Model Based on Flow-R

Remote sensing technology is a very useful tool for detecting and monitoring land-use
changes after natural disasters. However, evaluation and prediction of hazardous areas for
flooding are also important issues in considering countermeasures for future events. In
order to talk about how well the simulation method works for figuring out flood inundation
areas for future flash floods, semi-automatic debris flood-mapping susceptibility is made
by using Flow-R and free DEM from ASTER Global DEM (ASTER-GDEM) [59] with 30 m
spatial resolution (see Figure 4). Flow-R is a freely available simulation software developed
by [31] that has been used to simulate the flow propagation of debris flows and debris
floods through a DEM. The Flow-R software is a path assessment of gravitational hazards
that provides a substantial basis for a preliminary susceptibility assessment at a regional
scale [31]. It has been successfully applied to different case studies in various countries
with variable data quality and satisfying accuracy. We utilized the Flow-R simulation
to discuss the applicability of the technique in assessing flood areas for a future event.
Although in this study, Flow-R is applied to a true disaster, such a simulation technique is
especially useful to identify vulnerable areas before the sources of an event are provided.
The main input requires two steps to apply the technique. First, we need to provide source
points by using morphological and/or user-defined criteria. Second, debris floods are
being propagated from the given source points based on simple frictional laws and flow
spreading algorithms. Debris floods are caused by water moving quickly through steep
channels with a lot of debris in them. Their peak flow is similar to that of water floods [60].

The DEM used for the simulation of flood susceptible areas was 30 m, which is a very
low resolution. However, the developer of the Flow-R [31] reported that the quality of
the produced map is of major importance for the result’s accuracy. In addition, Horton
et al. [31], suggest that a DEM resolution of 10 m is a good compromise between the
amount of time it takes to process the data and the quality of the results. In addition, the
hazard map that is generated by Flow-R is a possible future hazard map, which means that
compatibility of one hundred percent is not required to be achieved. Because it only shows
the areas that could potentially be hazardous. For Flow-R analysis, we follow the methods
described by [31].

4. Results

We identify the flood inundation area by using the GEE in Section 4.1. The inundation
map by visual interpretation is discussed in Section 4.2, and the accuracy assessment using
the confusion matrix is presented in Section 4.3.
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4.1. Extraction of Flood-Inundated Areas

As discussed in the previous chapter, we initially chose two months for the pre-event
and two months for the post-event periods. There were 14 photos available for the given
time period. We took into account the total pre-event images, and we altered the number of
post-event images during the study to evaluate and determine the least duration that the
rdNDVI can analyze and identify the affected area. We started by analyzing all pre-event
composites into a single post-event image, as shown in Figure 11a. In the subsequent stages
of analysis, two post-event images are taken, and in the final iteration, we compare all
pre-event images to all post-event data in the study area, as shown in Figure 11a–e.
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Figure 11. The figure depicts the result of the rdNDVI map for five scenarios. Pre-and post-event
images were acquired between 5 June 2020 and 31 October 2020. Figures (a) through (e) show the
rdNDVI results for all available pre- and post-event images used in this study. (a) presents the
result of rdNDVI, which was generated with only one post-image acquired on 13 September 2020.
(b–e) represent the results obtained from two, three, four, and five post-event images, respectively.

Figure 11 presents the rdNDVIs’ inundation map where the blue color illustrates the
decrease of NDVI as a result of the flood event. The colors other than blue show no change
(green) and vegetation gain (red). From Figure 11, it can be clearly seen that by considering
only one post-event image, we obtained a clear inundation map. By increasing the number
of the post-event images, we noticed slight changes in the result of the inundation map.
The changes were so small that they were barely noticeable without a close-up of the
image. Therefore, we can conclude that by using only one post-event image, we can detect
the flooded area by using the rdNDVI algorithm. For further analysis, we use the image
presented in Figure 11a.
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Figure 12 presents the larger map of the rdNDVI vegetation change in percentage. The
blue color represents the loss of vegetation, which here means inundated areas, whereas
red colors indicate vegetation gain or non-flooded areas’ detection. As can be seen, the
current technique rapidly detects the inundated area by using the explained methodology.
However, there were falsely detected areas due to the existence of a sharp slope that
reflected as a shadow. Hence, we canceled out those undesired noises by using sieve
analysis. We also masked out falsely detected areas resulting from sharp slopes (greater
than 30 degrees).

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 29

Figure 11 presents the rdNDVIs’ inundation map where the blue color illustrates the 
decrease of NDVI as a result of the flood event. The colors other than blue show no change 
(green) and vegetation gain (red). From Figure 11, it can be clearly seen that by consider-
ing only one post-event image, we obtained a clear inundation map. By increasing the
number of the post-event images, we noticed slight changes in the result of the inundation 
map. The changes were so small that they were barely noticeable without a close-up of 
the image. Therefore, we can conclude that by using only one post-event image, we can 
detect the flooded area by using the rdNDVI algorithm. For further analysis, we use the
image presented in Figure 11a.

Figure 12 presents the larger map of the rdNDVI vegetation change in percentage. 
The blue color represents the loss of vegetation, which here means inundated areas, 
whereas red colors indicate vegetation gain or non-flooded areas’ detection. As can be 
seen, the current technique rapidly detects the inundated area by using the explained 
methodology. However, there were falsely detected areas due to the existence of a sharp 
slope that reflected as a shadow. Hence, we canceled out those undesired noises by using 
sieve analysis. We also masked out falsely detected areas resulting from sharp slopes 
(greater than 30 degrees). 

Figure 12. rdNDVI-based change detection image and greenest pixel composites (pre-event time: 2-
months; post-event time: 16 days).

To conduct an error assessment, we first simplified the representation of the inun-
dated image into an easily distinguishable map. We used a histogram-based thresholding 
technique, as explained in the methodology, to find a set of thresholds that can discrimi-
nate between the inundated and background pixels, as presented in Figure 13. 

Figure 12. rdNDVI-based change detection image and greenest pixel composites (pre-event time:
2-months; post-event time: 16 days).

To conduct an error assessment, we first simplified the representation of the inundated
image into an easily distinguishable map. We used a histogram-based thresholding tech-
nique, as explained in the methodology, to find a set of thresholds that can discriminate
between the inundated and background pixels, as presented in Figure 13.

Figure 13 presents the histogram of the rdNDVI image with the minimum, optimum,
and maximum thresholding. We segmented the image based on the optimum thresholding
of −12.90 into two different colors. The optimum value was obtained manually by iterating
the value and observing the result. This process was repeated until we noticed that, with the
selected value, the image contained nearly all of the pixels from the original image. For values
smaller than the optimum value, we chose the color to be blue, which represents the inundated
area. Values larger than optimum thresholding were segmented into a non-inundated area
which is presented in white or non-color. The result of binarization is illustrated in Figure 14a,
which only consists of two classes of inundated and non-inundated zones. However, the result
of threshold binarization contains unwanted salt-and-pepper noise. We mask out the so-called
unwanted noises with a 10-pixel size (Figure 14b). All noises with small areas were canceled
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out by using the sieve analysis in ENVI 5.3 software, as shown in Figure 14b. Figure 14b
shows the final inundation map of Charikar, which occurred on 26 August 2020. A total of
300 hectares of built-up area were extracted as inundations.
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Figure 14. The extraction of inundated and non-inundated areas from the rdNDVI result based on
binarization for two thresholds. (a) The left image presents the result of threshold binarization with
unwanted salt-and-pepper noise. (b) In the left image, the inundated area (shown by the red lines) is
superimposed on the extracted image of the threshold-binarization after removing salt-and-pepper noise.



Remote Sens. 2022, 14, 3647 19 of 27

4.2. Inundation Map by Visual Interpretation

To draw the true inundation of Charikar, we collected the reports published mainly
in the local language by the Disaster Management Authority, the National Statistic and
Information Authority (NSIA) [61], and the National Water Affairs Regulation Authority.
Moreover, we visually compared the pre- and post-event satellite images side by side to
identify changes between the flood events. We used the Sentinel-2 satellite images acquired
before the event (24 August 2020) and after the event (13 September 2020) as reference
data. We overlaid the true Charikar inundated vector data, which is similar to the true
impacted site. Because of the resolution of the satellite images, only significant changes
were considered. Therefore, minor damage may not be visible, and it was neglected in this
study. Although the inundation area by the Charikar flood was also estimated by visual
interpretation in a previous study [62], the interpreted area was limited. We estimated
the inundation map for a wider area. In the visual interpretation process, we considered
the previous inundated map in [62] and the reports by the government authorities. The
official reports by the government were reflected in the inundation map. For example,
when building damage was reported in some towns in the official documents, inundation
areas were identified in the town by the visual interpretations. Figure 15 presents the result
of our visual interpretation.
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4.3. Accuracy Assessment

The accuracy assessment of the results obtained in this study was made through a
confusion matrix explained in the methodology. We overlaid the result of the rdNDVI-
based change detection shown in Figure 14b on the visually identified inundation map
shown in Figure 15. The error assessment was conducted pixel-by-pixel based on the
confusion matrix. The result of the confusion matrix is presented in Table 2. It presents the
user’s accuracy, the producer’s accuracy, the overall accuracy, and the kappa coefficient.
The accuracy assessment obtained from the analysis of this study shows an overall accuracy
of 88.44% with a kappa coefficient of 0.75, which indicates a good agreement between
thematic maps generated from images and the reference data.

Table 2. Accuracy assessment result using the confusion matrix.

Actual Change Status
User’s Accuracy

(%)
Producer’s

Accuracy (%)Classes Inundated
(Pixels)

Non-Inundated
(Pixels)

Row Total
(Pixels)

Modeled change
status

Inundated 2323 524 2847 81.59 88.23

Non-inundated 310 4057 4367 92.90 88.56

Column total 2633 4581 7214
Overall accuracy 88.44

Kappa Coefficient 0.75

Based on the inundated map obtained in this study, most of the affected houses were
in built-up areas, and it was also confirmed by government reports. Another significant
point of this method is the ability to detect changes with a single post image. Increasing
the number of post-event images does not increase the quality of the detected image.
Therefore, the rdNDVI algorithm has the potential to quickly identify the flood-affected
area immediately after an event on a routine basis, typically with comparable accuracy to
on-site reports, to help decision makers find a quick way to contribute significantly to the
post-disaster activities.

5. Discussion

This section discusses the monitoring of the changes in the affected area after two
years in Section 5.1, flow propagation analysis by Flow-R in Section 5.2, and the practical
use of the method and future aspects in Section 5.3.

5.1. Monitoring the Changes in the Affected Area in Two Years

We have noticed a significant improvement in the spatial resolution of the remote
sensing data which is available to governments in the state or local and regional govern-
ments. It is very helpful for the public sector and local governments to consider the use of
new remote sensing technologies to monitor and efficiently act based on needs. The use of
satellite data and remote sensing applications already brings significant efficiency to the
decision-makers and policymakers of developed countries. However, developing countries
such as Afghanistan do not have the technical capacity to use remote sensing data and
applications for post-disaster activities. In most cases, even having information about the
affected area, the government does not reach out to the people to help them in the recovery
process.

Figures 16 and 17 are presented to show the changes in the study area after the event
over a long period of time. From the NDVI time series (Figure 16) in the typically affected area
shown by the rectangular area in Figures 5–8, we noticed that the NDVI decreased after the
event in Charikar. As can be seen, even after one year, the NDVI values did not recover. We
illustrate the rdNDVI changes one year after the event in Figure 17. We observed very small
and negligible changes in the rdNDVI image time series, indicating that the affected area has
not yet been significantly recovered. Probably one factor behind the lack of changes in the
NDVIs is the limitation of economic and human resources in the Afghanistan government,
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which they failed to utilize to revitalize and rebuild the affected areas. People also could not
rebuild their houses, probably due to their poverty. This result shows that the NDVI and
rdNDVI techniques are very useful for monitoring the event, and it will be particularly useful
to observe how long it will take for the recovery of the affected area.
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Figure 16. NDVI time series over the study area; the blue line indicates the raw 
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Figure 17. rdNDVI changes in Charikar after a one-year period. 

  

Figure 16. NDVI time series over the study area; the blue line indicates the raw NDVI from February
2019 to April 2022.
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5.2. Flow Propagation Analysis by Flow-R

The freely available ASTER-GDTM with 30 m spatial resolution was used in the
simulation of the Charikar flood event. The initial pixels of the detected inundated areas
in the mountains were selected as the predefined source points. The parameters for flow
spreading in Flow-R were provided as shown in Table 3.

Table 3. Debris-flood parameters used in Flow-R.

Types of Input Flow-R Parameters Value

Directions algorithm Holmgren (1994) modified Dh = 2, exponent = 4

Inertial algorithm Weights Default

Friction loss function Travel angle 4, 5, 6 Degrees

Energy limitation Velocity 15 m/s

These parameters were also used in the evaluation of the debris-flow events in Hi-
roshima prefecture, Japan in July 2018 [63]. We considered three different travel angle
iterations for the analysis, as illustrated in Table 3, because the threshold of the travel angle
largely controls the propagation areas. The result of each iteration is shown in Figure 18.
The overlaid red lines are the visually identified inundation maps. The findings demon-
strate that the estimated regions of spreading successfully reproduced the inundated areas
caused by the flood. We noticed that smaller travel angles such as four degrees overesti-
mated the inundation areas, as shown in Figure 18a, and larger travel angles, such as six
degrees, underestimated the flood inundation areas (Figure 18c). The result with a travel
angle of five degrees, shown in Figure 18b, gave moderate spreading areas. Figure 18b de-
picts a spread region that is slightly bigger than the inundation areas that were determined,
but the simulation that used a travel angle of five degrees was able to better reproduce these
inundation areas. These results indicate that hazardous areas for future flood events can be
evaluated if appropriate source points are provided in the simulation. Such simulations
would be useful not only for government officials but also for residents living in natural
hazard-susceptible areas, particularly flood- and debris-flow-prone areas, to increase their
awareness of mitigating future disasters.

5.3. Practical Use of the Method and Future Aspects

As discussed in this study, we found a strong similarity between NDVIs and MNDWIs
in the flood inundation areas. Because the spatial resolution of NDVI is higher than MNDWI
in most optical satellite images, including the Sentinel-2, NDVI would be a powerful
index in precisely detecting inundation areas for a semi-arid region such as Afghanistan
even if water bodies derived from floods do not exist in the affected area. Because most
optical satellite sensors, including high-resolution satellites, obtain near-infrared band, and
only specific satellites, such as Landsat and Sentinel-2, have short-wavelength infrared
band limits, NDVI is a more common and practical index, indicating that an NDVI-based
approach can be applied to various optical images. The GEE also allows us to automatically
assess the land cover change based on rdNDVI with minimum effort in preprocessing of the
satellite images. It means that inundation areas would be quickly estimated immediately
after a disaster if a cloud-free optical image is obtained immediately following the event.
In order to further assess structural damage such as buildings and infrastructures such as
roads and bridges in natural disasters, spatial databases in geographic information systems
(GIS) would be useful not only at local and regional levels but also at global level [64–69].
By superimposing the building and infrastructure inventory data in the GIS database on
the inundation map developed by the proposed method, the amount and extent of the
structural damage can be easily evaluated. Although up-to-date GIS databases have not
fully developed, especially in developing countries, mainly due to financial problems, the
recent development of open geographical databases such as OpenStreetMap (OSM) [70]
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and satellite image-derived topographical data [59] would allow us to freely use the spatial
datasets and to develop damage maps in natural disasters.

Remote Sens. 2022, 14, x FOR PEER REVIEW 25 of 29 
 

 

 
Figure 18. Flow-R generated flood-debris susceptibility map using a four-degree travel angle illus-
trated in (a), five-degree travel angle in (b), and six-degree travel angle in (c). 

5.3. Practical Use of the Method and Future Aspects 
As discussed in this study, we found a strong similarity between NDVIs and 

MNDWIs in the flood inundation areas. Because the spatial resolution of NDVI is higher 
than MNDWI in most optical satellite images, including the Sentinel-2, NDVI would be a 
powerful index in precisely detecting inundation areas for a semi-arid region such as Af-
ghanistan even if water bodies derived from floods do not exist in the affected area. Be-
cause most optical satellite sensors, including high-resolution satellites, obtain near-infra-
red band, and only specific satellites, such as Landsat and Sentinel-2, have short-wave-
length infrared band limits, NDVI is a more common and practical index, indicating that 
an NDVI-based approach can be applied to various optical images. The GEE also allows 
us to automatically assess the land cover change based on rdNDVI with minimum effort 
in preprocessing of the satellite images. It means that inundation areas would be quickly 
estimated immediately after a disaster if a cloud-free optical image is obtained immedi-
ately following the event. In order to further assess structural damage such as buildings 

Figure 18. Flow-R generated flood-debris susceptibility map using a four-degree travel angle illustrated
in (a), five-degree travel angle in (b), and six-degree travel angle in (c).

The identification of flood inundation areas, and the distribution of the affected areas
including building and infrastructure damage maps are an essential part of post-disaster
activities such as rescuing impacted individuals, providing more vital relief, and helping
communities in the reconstruction of affected areas. Furthermore, the identification of flood-
prone areas for future events by simulation techniques such as Flow-R would be beneficial
in considering risk reduction measures not only for urban planners and policymakers but
also for residents living in the dangerous areas. The results of the remote sensing-based
assessments and the prediction of high-risk areas would enhance government and official
awareness of future natural disasters.
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6. Conclusions

This study examined the applicability of the rdNDVI technique in Sentinel-2 images
to estimate the flood inundation areas in a semi-arid region by using the GEE. The method-
ology of this study was applied to the flash flood event in Charikar, Afghanistan on 26
August 2020. We examined several spectral indices such as NDVI, MNDWI, and NDMI in
detecting the inundation areas. We found a strong correlation between NDVI and MNDWI,
and both indices decreased significantly in the impacted regions immediately after the
incident. On the contrary, NDMI did not show any remarkable change before and after
the event. From the viewpoint of the spatial resolution, we determined to use NDVI in
detecting the inundation areas. One of the important conclusions of this work is that NDVI
worked effectively in delineating flood inundation areas in a semi-arid region.

The analysis of the rdNDVIs between the pre- and post-event images showed that
the inundation areas were adequately extracted by using a single post-event image. The
binarization based on the histogram of the rdNDVIs and the removal of isolated noise
were applied to develop the inundation map. The total flood-affected area estimated by
the current method was approximately 300 ha. From the comparison with the visually
interpreted inundation areas, we found that the inundation areas were successfully detected
with an overall accuracy of 88% and a kappa coefficient of 0.75. The results show that the
inundation areas were accurately detected by the rdNDVI technique even in semi-arid
places like Charikar, where there isn’t much vegetation.

The time-series analysis of the NDVIs two years after the flash flood event revealed
that there was no significant change in the NDVIs in the affected areas, most likely due to a
lack of financial and human resources in the government and the poverty of the affected
residents. In addition, we discussed the potential of the flow propagation prediction
technique in Flow-R for identifying flood prone areas by using the ASTER GDEM with
a spatial resolution of 30 m. We revealed that the inundation areas of the Charikar event
were successfully reproduced by the Flow-R-based simulation by providing starting points
in the actual event.

Satellite image- and/or DEM-based approaches would be beneficial in performing
pre-and post-disaster activities, especially for countries with fewer financial and human
resources such as Afghanistan. Implementations of remote sensing technologies including
the proposed method in this study to the government and official agencies would be a
key for more rapid and adequate disaster responses and effective countermeasures against
future natural disasters.
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