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Abstract: In this paper, we provide updates on our recent work on the theory of microwave remote
sensing for applications in remote sensing of soil moisture and snow water equivalent (SWE). The
three topics are the following. (i) For the effects of forests and vegetation, we developed the hybrid
method of NMM3D full-wave simulations over the vegetation field and forest canopies. In the hybrid
method, we combined the use of commercial off-the-shelf software and wave multiple scattering
theory (W-MST). The results showed much larger transmission than classical radiative transfer theory.
(ii) In signals of opportunity at L-band and P-band, which are radar bistatic scattering in the vicinity
of the specular direction, we developed the Analytical Kirchhoff solution (AKS) and Numerical
Kirchhoff approach (NKA) in the calculations of coherent waves and incoherent waves. We also took
into account of the effects of topographical elevations and slopes which have strong influences. (iii) In
rough surface radar backscattering, we used the volume integral equation approach for NMM3D
full-wave simulations for soil surfaces with kh up to 15. The simulations were calculated for the
X-band and Ku-band and the results showed saturation effects. The simulation results can be applied
to microwave remote sensing of SWE at these two frequencies.

Keywords: microwave remote sensing; surface scattering; volume scattering; vegetation; forests; soil
moisture; snow water equivalent

1. Introduction

Soil moisture and snow water equivalent are two geophysical variables that are
monitored globally and continually. Information of soil moisture has applications in
weather forecasting, modeling of climate change, agricultural productivity, water resources
management, drought prediction, flood area mapping, and the ecosystem. Seasonal snow
on land is responsible for processes and feedbacks that affect the global climate system,
freshwater availability to billions of people, biogeochemical activity including exchanges
of carbon dioxide and trace gases, and ecosystem services.

Presently, the ESA SMOS satellite and NASA SMAP satellite have been using L-band
radiometry in measuring soil moisture. The NISAR satellite that will be launched in 2023
will use both L-band and S-band radar backscattering. The ESA’s Sentinel 1 radar at C-band
has also been used to map soil moisture. The Copernicus Imaging Microwave Radiometer
(CIMR) will be launched by ESA. There are five frequencies in CIMR of which the L-band,
C-band, and X-band will be useful for the monitoring of soil moisture. Recently, P-band
reflectometry is also proposed for the remote sensing of soil moisture. In microwave remote
sensing of soil moisture, a major challenge is the ability of microwaves to penetrate through
the vegetation field and forest canopies above the soil. The original proposal of SMAP
at L-band was that the sensitivity to soil moisture will be limited by the vegetation field
and forest canopies with the upper limit of VWC (Vegetation Water Content) at 5 kg/m2.
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This upper limit is based on the models of radiative transfer equation (RTE) and the
distorted Born approximation (DBA) using the discrete scatterer model. The RTE and DBA
approaches have been used since the 1980s and are extensions of the water cloud model [1].
Based on the two models, attenuation through vegetation will increase with frequency,
making it even more difficult for remote sensing of soil moisture at the higher frequencies
of S-, C-, and X-bands. However, in recent years, we have been successful in performing
full-wave simulations of Numerical solution of Maxwell equations in 3D vegetation based
on the hybrid method [2–5]. The results of full-wave simulations showed much larger
transmission than that of the results of RTE/DBA.

In P-band and L-band Signals of Opportunity (SoOp), the transmitters on existing
satellites are utilized. Satellites with receivers are launched to measure the reflected signals.
Global Navigation Satellite System Reflectometry (GNSS-R) is an application of SoOp at the
L-band. The operating GNSS-R missions include the Techdemosat-1 (TDS-1) [6] launched
by UK in 2014, the Cyclone Global Navigation Satellite System (CYGNSS) [7] launched
by NASA in 2016, and Bufeng launched by China in 2019. The GNSS-R data are collected
in the form of Delay Doppler Maps (DDMs). Researchers have shown the potential of
soil moisture retrieval by the GNSS-R data [8–10]. Recently there are also interests in
using the phase of the P-band signals of opportunity at 370 MHz. In Reference [11], it was
proposed to infer snow water equivalent using the phase of the reflected waves. With new
SAR technology [12] implemented for Signals of Opportunity with much higher spatial
resolutions, the use of SoOp will gain importance for remote sensing in land applications.
The distinction between SoOp and radar backscattering is that in SoOp, the bistatic direction
is in the vicinity of the specular direction within a few degrees. The signals are influenced
strongly by topography. In theoretical modeling for signals of opportunity, we developed
the Analytical Kirchhoff solution (AKS) and Numerical Kirchhoff approach (NKA) in
first-principles calculations of coherent waves and incoherent waves [13–16].

In microwave remote sensing of snow water equivalent (SWE), the X- and Ku-band
radar backscattering measurements provide the means to produce SWE information at the
temporal and spatial scales necessary to advance water resource management across the
northern hemisphere [17]. The ESA Cold Regions Hydrology High-Resolution Observatory
(CoReH2O) mission (dual-frequency X- and Ku-band; completed Phase A at ESA in 2013)
was a major impetus [18]. The physical basis for estimating SWE from X- and Ku-band
radar measurements is volume scattering by millimeter-scale snow grains. Significant
progress was made over the past decade in understanding the X-band and Ku-band radar
response to variations in SWE, snow microstructure, and snow wet/dry state. Driven by
the success of recent air-borne measurements, ground-based measurements, [19–21] and
improved physical models and validations of retrieval algorithms [22–24], a Terrestrial
Snow Mass Mission (TSMM) in phase 0 has been supported by the Canadian Space Agency.
In addition to volume scattering, another contribution to the X-band and Ku-band radar
backscattering signal is the rough surface backscattering from the soil surface below the
snow. The backscattering is the sum of the volume scattering contribution and the rough
surface scattering contribution. The rough-surface scattering is a “nuisance effect” as it
is not correlated with SWE and needs to be subtracted to obtain the volume scattering
contribution. With the advent of computers and computation methods, full-wave simula-
tions of numerical solutions of Maxwell equations for rough soil-surface scattering have
been carried out for L-bands up to kh = 3 where k is the wavenumber and h is the rms
height [25–27]. In mountainous regions, the rms height of rough surfaces can be 6 cm so
that kh = 25 at the Ku band frequency of 17.2 GHz

Recently, we performed full-wave simulations to apply to rough-surface scattering at
X-band and Ku-band, up to kh = 15 using the volume integral equation (VIE) approach. The
results showed rough-surface scattering saturation with increase of rms height and frequency.

The focus of this paper was to present the exciting recent results from our group on
the theory of microwave remote sensing. In the three topics, (i) the full-wave simulations
of NMM3D are recent works that can provide different results from RTE. It is significant
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because the models of RTE and a similar model of DBA have been used for several decades.
(ii) For the signals of opportunity, the SoOp topic is new as SoOp missions were only
recently launched. The new microwave theory is that the scattered direction is in the
vicinity of the specular direction. The theory shows that, unlike radar backscattering,
specular reflection is affected by topography strongly and there are both coherent waves
and incoherent waves. (iii) For rough-surface scattering, the new theory is for kh up to
15 while old models are limited to kh = 3. The new theory means that the results can be
applied up to the Ku-band.

In Section 2, we study the effects of forests and vegetation in microwave remote
sensing of soil moisture. We describe the hybrid method of NMM3D full-wave simulations
over the vegetation scene and forests scene. In Section 3, we describe the model of signals of
opportunity. We describe the Analytical Kirchhoff solution (AKS) and Numerical Kirchhoff
approach (NKA) in first-principles calculations of coherent waves and incoherent waves
in the vicinity of the specular scattered direction. In addition to microwave centimeter
roughness, we also took into accounts of the effects of topographical elevations and slopes.
The results of NKA and AKS were indistinguishable. Comparisons were also made with
the results of two geometric optics methods. In Section 4, we describe NMM3D full-
wave simulations of rough soil-surface scattering for soil surfaces with kh up to 15. The
simulations were applied for the X-band and Ku-band to calculate rough-surface scattering
of the soil surface with and without a layer of snow above the soil. We also illustrate
the retrieval of rough surface rms height and soil moisture using UAVSAR L-band data.
Section 5 is the Conclusion.

2. Vegetation and Forest Effects in Microwave Remote Sensing of Soil Moisture

In microwave remote sensing of soil moisture, a major challenge is the capability
of microwaves to penetrate through the vegetation and forest canopies. The accurate
modeling of wave propagation at multiple frequencies in the vegetation layer above the
soil is also crucial for evaluating the feasibility of the multifrequency approach of remote
sensing of soil moisture.

Since the 1980s, the discrete scatterer approach has been implemented using Radiative
Transfer Equation (RTE) and the Distorted Born Approximation (DBA). In these two ap-
proaches, the vegetation canopy is considered as a layer of randomly distributed scatterers.
Specifically, the branches and leaves are treated as single scatterers and are modeled, re-
spectively, by cylinders and disks. The positions of branches and leaves are assumed to
be random and are assumed to be statistically homogeneous in space. The scattering and
absorption cross sections are calculated by adding the scattering cross sections and absorp-
tion cross sections of each branch and each leaf. The orientations of disks and cylinders are
characterized by probability distribution over the Euler angles of rotations [28].

In RTE and DBA, the vegetation or forest canopy is approximated as a layered medium
with an effective attenuation rate calculated based on the independent scattering approxi-
mation. The effective attenuation rate is basically an assumption of homogenization treating
the vegetation canopy as effectively homogeneous. In this model of backscattering, there
are three contributions which are rough-surface scattering, volume scattering, and double
bounce [29,30]. The models of first-order RTE and DBA are essentially the same as they
have the same formulas of attenuation, optical thickness tau, and bistatic volume scattering.
The only difference between RTE and DBA is a factor of 2 in the double bounce term, which
is due to backscattering enhancement [22,31–33]. The RTE and DBA have several inherent
approximations when applied to vegetation and forests.

(1) The positions of the scatterers are assumed to be uniformly random. However,
such a description is not consistent with the clustering of scatterers in a tree or plant. For
example, in pine trees, there are hundreds of needle leaves attached to a branch. In addition,
the assumption of uniformly random positions does not account for the gaps among plants
and trees. Unlike ray optics, the abilities of microwave to pass through the gaps depend on
the sizes of the gaps relative to the microwave wavelength.
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(2) The scatterers such as leaves and branches are assumed to be independent so that
the scattered intensities are added incoherently. The frequency dependence of scattering is
that of the individual cylinder and/or individual disk, which leads to a strong increase of
scattering and absorption by vegetation. The collective scattering and absorption effects
due to clustering are ignored.

(3) Far-field assumptions are made throughout the RTE and DBA models. This means
far field between the scatterers and between the scatterers and the underlying soils. Since
the far field distance is size squared divided by wavelength, the far field assumptions are
not obeyed in vegetation/forests.

Recently, we were successful in performing full-wave solutions of Numerical Maxwell
Model of 3D Simulations. The method is a hybrid method combining Computational
Electromagnetics (CEM) of a single object with Wave Multiple Scattering Theory (W-MST).
We added a word “Wave” in front of MST to distinguish from the multiple scattering theory
of the Radiative Transfer Equations. The MST in RTE is intensity addition rather than wave
interactions with amplitudes and phases. In the following subsections, we first describe
the T matrix of a single scatterer that can be calculated from CEM. This is followed by the
W-MST based on Foldy-Lax equations.

In addition to remote sensing, the MST model has been extensively used in solid state
physics, photonics, and acoustics.

2.1. T Matrix of a Plant or a Tree

The W-MST formulation is a Foldy-Lax Multiple Scattering equation using the T
matrices of single scatterers. In the hybrid method, we treat a single plant such as a corn
plant, a wheat plant, or a soya bean plant, or a single tree as a single scatterer. This is
different from the RTE and DBA in that a single branch or a single leaf is treated as a single
scatterer. The single scatterer T matrix is the scattering T matrix of an isolated scatterer in
the absence of all other scatterers.

Consider cylindrical coordinates (ρ, φ, z). The Vector Cylindrical Waves (VCW) that
are outgoing are

Mn(kz, r) =
[

ρ̂
in
ρ

H(1)
n
(
kρρ
)
− φ̂kρ H(1)′

n
(
kρρ
)]

exp(ikzz + inφ) (1)

Nn(kz, r) =

[
ρ̂

ikρkz

k
H(1)′

n
(
kρρ
)
− φ̂

nkz

kρ
H(1)

n
(
kρρ
)
+ ẑ

k2
ρ

k
H(1)

n
(
kρρ
)]

exp(ikzz + inφ) (2)

where k is the wavenumber, kρ =
√

k2 − k2
z,−∞ < kz < ∞, n = 0,±1,±2, · · · , and

H(1)
n
(
kρρ
)

are Hankel functions of the first kind and of order n. There are two indices, n
and kz, for the wave functions. The regular wave functions are the expressions above which
Hankel functions are replaced by Bessel functions Jn

(
kρρ
)
.

RgMn(kz, r) =
[

ρ̂
in
ρ

Jn
(
kρρ
)
− φ̂kρ J′n

(
kρρ
)]

exp(ikzz + inφ) (3)

RgNn(kz, r) =

[
ρ̂

ikρkz

k
J′n
(
kρρ
)
− φ̂

nkz

kρ
Jn
(
kρρ
)
+ ẑ

k2
ρ

k
Jn
(
kρρ
)]

exp(ikzz + inφ) (4)

In Figure 1, we show a corn plant with height 1.25 m, and the extent of the leaves is to
0.4 m. For the calculation of T matrices from commercial software (such as FEKO or HFSS),
we enclose the plant in a cylindrical volume of radius RC = 0.45 m and height 1.3 m as
shown in Figure 1. The T matrices results are for the use in Foldy–Lax multiple scattering
equations with other corn plants. Other corn plants are enclosed by similar cylinders, and
they lie outside the enclosing cylinders of each other.
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Figure 1. Single corn plant geometry.

The T matrices in vector cylindrical waves are for the region ρ > RC to treat wave
interactions among plants. The fields above the plant and below the plant for ρ ≤ RC do
not enter Foldy–Lax multiple scattering equations. After Foldy–Lax equations are solved,
the fields in these “inner” regions, ρ ≤ RC, can be calculated by Huygen’s principles. In
Figure 1, the β is the orientation angle and α is the azimuthal angle for the leaf. They
are labeled to characterize the orientations of the stalks and the leaves. These are used
traditionally in RTE as each stalk is treated as a single scatterer and each leaf is treated as a
single scatterer. Both β and α of leaves and stalks obey orientation distributions. Generally,
α is assumed to have uniform distribution between 0 and 2π. In the hybrid method, we
perform orientations differently as we treat a plant as a single scatterer. Each plant is
vertical. Thus, the plant itself does not have any β. The plant does have the azimuthal
angle which is also assumed to be uniform between 0 and 2π. We construct a corn field
of many plants such that the orientations of leaves and stalks are described by the same
distributions as done traditionally. We have several plants such that the distributions of
β angles of the stalks and leaves agree with traditional characterizations. The T matrices
of these several plants are calculated with commercial software. The α angles are next
introduced. The T matrices with α’s are just rotations of the T matrices without the need of
calculations of new T matrices.

The plant or tree is within a “virtual” cylinder of radius RC (Figure 1) based on Wave
Multiple Scattering Theory (W-MST), the electric field outside the enclosing cylinder, that
is, ρ ≥ RC is the sum of Eex, the “final” exciting field, and Es, the “final” scattered field.
Both Eex and Es refer to that of the “single scatterer“, which is inside the enclosing cylinder.

The final exciting field and final scattered field are respectively given by

Eex
(r) = ∑

n

∫ ∞

−∞
dkz

[
aEM

n (kz)RgMn(kz, r) + aEN
n (kz)RgNn(kz, r)

]
(5)

Es
(r) = ∑

n

∫ ∞

−∞
dkz

[
aSM

n (kz)Mn(kz, r) + aSN
n (kz)Nn(kz, r)

]
(6)
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In W-MST, the T matrix is that of a single scatterer, which is the scattering of the
scatterer in the absence of all other scatterers. The scattered field coefficients are expressed
in terms of the T matrices.

aSM
n (kz) = ∑

n′

∫ ∞

−∞
dk′z
[

T(M,M)
nn′

(
kz, k′z

)
aEM

n′
(
k′z
)
+ T(M,N)

nn′
(
kz, k′z

)
aEN

n′
(
k′z
)]

(7)

aSN
n (kz) = ∑

n′

∫ ∞

−∞
dk′z
[

T(N,M)
nn′

(
kz, k′z

)
aEM

n′
(
k′z
)
+ T(N,N)

nn′
(
kz, k′z

)
aEN

n′
(
k′z
)]

(8)

where the T matrix coefficients are T(M,M)
nn′ (kz, k′z), T(M,N)

nn′ (kz, k′z), T(N,M)
nn′ (kz, k′z), and

T(N,N)
nn′ (kz, k′z). The T matrix coefficients have dimensions of length for this case of cylindri-

cal waves.
The self-consistent equations of W-MST allow Eex and Es to be calculated in a self-consistent

manner using the single scatterer T matrix. Since −∞ < kz < ∞, and kρ =
√

k2 − k2
z, the

waves are propagating for |kz| ≤ k and evanescent in the ρ̂ direction for |kz| > k. Evanescent
waves decay exponentially. At 1/4 wavelengths, the evanescent waves become small. At
the SMAP frequency of 1.41 GHz, this 1/4 wavelength corresponds to 5.3 cm. This means
if the neighboring circumscribing cylinder is separated by more than 5 cm, the evanescent
waves are negligible. We shall truncate with |kz| ≤ k. The angular direction θ can be
used with

kz = k cos θ;
∫ k

−k
dkz = k

∫ π

0
dθ sin θ (9)

In (9) there is a factor, sin θ, that corresponds to the decrease of the solid angle when
θ → 0 , decreasing the contributions of θ → 0 .

The cylindrical wave expansions are analytic wave functions. The use of Bessel
functions and Hankel functions in the wave functions Mn and Nn mean that they are
applicable to all distance ranges of ρ from near field to intermediate distance and to far
field. On the other hand, the coefficients of field expansions, which include exciting field
coefficients, the scattered field coefficients, and the T matrix coefficients are independent
of distance. This means we can obtain these coefficients at any distance including the far
field, the intermediate field, and the near field. Once these coefficients are obtained, they
can be substituted in the analytic field expansions and the field expansions are valid for all
distance ranges. We use far field to extract the T matrix coefficients because commercial
software provides far-field scattering amplitudes.

In the far field, we related the T matrix of vector spherical waves to that of far field
scattering amplitudes [28]. Below, we relate the T matrix of vector cylindrical waves (VCW)
to the far field scattering amplitudes. In the far field of ρ→ ∞

Mn(kz, r)→ −φ̂kρ

(
i

√
2

πkρρ
exp
(

i
(

kρρ− nπ

2
− π

4

)))
exp(ikzz)exp(inφ) (10)

Nn(kz, r)→
[
−ρ̂kz + ẑkρ

] kρ

k

√
2

πkρρ
exp
(

i
(

kρρ− nπ

2
− π

4

))
exp(ikzz)exp(inφ) (11)

Substitute into Equation (6) and apply the method of stationary phase. The spherical
coordinates are (r, θ, φ). The stationary phase points are at kz = k cos θ, kρ = k sin θ. Since
θ̂ = cos θρ̂− sin θẑ, then

Es
(r)→ −φ̂k sin θ

2exp(ikr)
r ∑

n
exp
(
−i nπ

2
)
exp(inφ)aSM

n (k cos θ)

−θ̂k sin θ
2exp(ikr)

ir ∑
n

exp
(
−i nπ

2
)
exp(inφ)aSN

n (k cos θ)
(12)
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Let the exciting field be a plane wave in the direction k̂i = sin θi cos φi x̂+ sin θi sin φi ŷ+
cos θi ẑ with polarizations vectors v̂i = θ̂i of vertical polarization and ĥi = φ̂i of horizontal
polarization. Let the amplitudes be Evi and Ehi. Then, from Tsang et al., volume 1 [28]

Eex
(r) =

(
v̂iEvi + ĥiEhi

)
exp
(

iki · r
)

= ∑
n

inexp(−inφi)
kiρ

[
iEhiRgMn

(
kiρ, kiz, r

)
− EviRgNn

(
kiρ, kiz, r

)] (13)

The exciting field coefficients are

aEM
n′
(
k′z
)
=

in′+1exp(−in′φi)

kiρ
Ehiδ

(
k′z − kiz

)
(14)

aEN
n′
(
k′z
)
=

in′ exp(−in′φi)

kiρ
Eviδ

(
k′z − kiz

)
(15)

where δ(k′z − kiz) is the delta function indicating that k′z = kiz. Substitute (14) and (15) into
Equations (7) and (8), and we obtain the scattered field coefficients as

aSM
n (k cos θ) = ∑

n′
T(M,M)

nn′ (k cos θ, k cos θi)

(
in
′+1exp(−in′φi)

kiρ
Ehi

)
+∑

n′
T(M,N)

nn′ (k cos θ, k cos θi)

(
− in

′
exp(−in′φi)

kiρ
Evi

) (16)

aSN
n (k cos θ) = ∑

n′
T(N,M)

nn′ (k cos θ, k cos θi)

(
in
′+1exp(−in′φi)

kiρ
Ehi

)
+∑

n′
T(N,N)

nn′ (k cos θ, k cos θi)

(
− in

′
exp(−in′φi)

kiρ
Evi

) (17)

The far field scattered field is

Es
(r)

= −iφ̂k sin θ 2
i

exp(ikr)
r ∑

n
exp
(
−i nπ

2
)
exp(inφ)

[
∑
n′

T(M,M)
nn′ (k cos θ, k cos θi)

(
in
′+1exp(−in′φi)

kiρ
Ehi

)
+∑

n′
T(M,N)

nn′ (k cos θ, k cos θi)

(
− in

′
exp(−in′φi)

kiρ
Evi

)]
−θ̂k sin θ 2

i
exp(ikr)

r ∑
n

exp
(
−i nπ

2
)
exp(inφ)

[
∑
n′

T(N,M)
nn′ (k cos θ, k cos θi)

(
in
′+1exp(−in′φi)

kiρ
Ehi

)
+∑

n′
T(N,N)

nn′ (k cos θ, k cos θi)

(
− in

′
exp(−in′φi)

kiρ
Evi

)]
(18)

The far field scattered field is written as

Es
(r) =

exp(ikr)
r

(
v̂sEvs + ĥsEhs

)
(19)

where v̂s = θ̂s, ĥs = φ̂s. The scattered field components Evs and Ehs have dimensions of length
and are in terms of scattering amplitudes, fvv(θ, φ; θi, φi), fvh(θ, φ; θi, φi), fhv(θ, φ; θi, φi), and
fhh(θ, φ; θi, φi).

Evs = fvv(θ, φ; θi, φi)Evi + fvh(θ, φ; θi, φi)Ehi (20)

Ehs = fhv(θ, φ; θi, φi)Evi + fhh(θ, φ; θi, φi)Ehi (21)

Equations (18)–(21), we obtain

fvv(θ, φ; θi, φi)

= −k sin θ 2
i ∑

n
exp
(
−i nπ

2
)
exp(inφ)

[
∑
n′

T(N,N)
nn′ (k cos θ, k cos θi)

(
− in

′
exp(−in′φi)

kiρ

)]
(22)
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fvh(θ, φ; θi, φi)

= −k sin θ 2
i ∑

n
exp
(
−i nπ

2
)
exp(inφ)

[
∑
n′

T(N,M)
nn′ (k cos θ, k cos θi)

(
in
′+1exp(−in′φi)

kiρ

)]
(23)

fhv(θ, φ; θi, φi)

= −ik sin θ 2
i ∑

n
exp
(
−i nπ

2
)
exp(inφ)

[
∑
n′

T(M,N)
nn′ (k cos θ, k cos θi)

(
− in

′
exp(−in′φi)

kiρ

)]
(24)

fhh(θ, φ; θi, φi)

= −ik sin θ 2
i ∑

n
exp
(
−i nπ

2
)
exp(inφ)

[
∑
n′

T(M,M)
nn′ (k cos θ, k cos θi)

(
in
′+1exp(−in′φi)

kiρ

)]
(25)

The above expressions indicate that the T matrix coefficients, Tnn′ are Fourier coef-
ficients of the double Fourier series of the far-field scattering amplitudes. Using Fourier
coefficients integration, we have

T(N,N)
nn′ (k cos θ, k cos θi) =

i sin θi
8π2 sin θ

in−n′
∫ 2π

0
dφ
∫ 2π

0
dφiexp

(
−inφ + in′φi

)
fvv(θ, φ; θi, φi) (26)

T(N,M)
nn′ (k cos θ, k cos θi) =

− sin θi
8π2 sin θ

in−n′
∫ 2π

0
dφ
∫ 2π

0
dφiexp

(
−inφ + in′φi

)
fvh(θ, φ; θi, φi) (27)

T(M,N)
nn′ (k cos θ, k cos θi) =

sin θi
8π2 sin θ

in−n′
∫ 2π

0
dφ
∫ 2π

0
dφiexp

(
−inφ + in′φi

)
fhv(θ, φ; θi, φi) (28)

T(M,M)
nn′ (k cos θ, k cos θi) =

i sin θi
8π2 sin θ

in−n′
∫ 2π

0
dφ
∫ 2π

0
dφiexp

(
−inφ + in′φi

)
fhh(θ, φ; θi, φi) (29)

The far-field scattering amplitudes for incident plane waves are computed in commer-
cial software such as FEKO and HFSS.

2.2. Wave Multiple Scattering Theory (W-MST)

Let there be N scatterers. All the scatterers are within enclosing cylinders. The T
matrices are used to describe the scattered fields outside the circumscribing cylinders at all
distance ranges. Consider an incident wave with incident field Einc

(r). For W-MST, the final
exciting field on one scatterer, ′q′, is the sum of the incident field and the scattered fields
from all other scatterers except itself. The Foldy–Lax wave multiple scattering equations are

Eex
q (r) = Einc

(r) +
N

∑
p=1,p 6=q

Es
qp(r) (30)

where q = 1, 2, . . . , N. In (30) Eex
q (r) is the “final” exciting field of scatterer q, and Es

qp(r) is
the “final” scattered field from scatterer p to scatterer q. In (30), the summation of p is over
all scatterers, p = 1, 2, . . . , N, with p 6= q. Using cylindrical coordinate system, r = ρ + zẑ,
the center location of the qth scatterer is rq = ρq + zq ẑ = xq x̂ + yqŷ + zq ẑ. Since the scatterer
is inside a circumscribing cylinder, the ρq coordinate coincides with the horizontal center of
the cylinder. Since each scatterer is enclosed by a cylindrical surface, the final excitation
fields can be expanded using the incoming VCW. For scatterer q centered at rq, Eex

q (r) is
expanded as

Eex
q (r) = ∑

m

∫
dkz

[
RgMm

(
kz, rrq

)
aEM

m,q (kz) + RgN
(
kz, rrq

)
aEN

m,q(kz)
]

(31)
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In (31), rrq =r − rq, RgMm
(
kz, rrq

)
and RgN

(
kz, rrq

)
are VCW-centered at rq. The

incident plane wave is in direction ki = kiρ cos φi x̂ + kiρ sin φi ŷ + kiz ẑ with kiz = k cos θi
and kiρ = k sin θi. The electric field of the incident plane wave is

Einc
(r) = (v̂Evi + ĥEhi)exp(iki·r) (32)

To balance the Foldy–Lax Equation (30), all terms need to have VCW with the center at
the qth scatterer, rq. To achieve that, we make use of wave transformation. For the incident
wave, we set exp(iki · r) = exp(iki · rq)exp(iki · (r− rq)). A phase shift results when we use
the VCW expansion in Equation (13) with center at rq,

Einc
q (r) =

∫
dkzexp(iki·rq)∑

m

imexp(−imφi)

kiρ

×
[
iEhiRgMm

(
kρ, kz, rrq

)
− EviRgNm

(
kρ, kz, rrq

)]
δ(kz − kiz)

(33)

The Dirac delta function δ(kz − kiz) indicates that the incident wave is with kz = kiz in
the integration

∫
dkz. Since the scattered field from p to q originates from scatterer p, the

outgoing VCW from scatterer p are initially expressed with origin at rp. The expansion is

Es
qp(r) = ∑

n

∫ ∞

−∞
dkz

[
Mn
(
kz, rrp

)
aSM

n,p (kz) + Nn
(
kz, rrp

)
aSN

n,p(kz)
]

(34)

To translate Es
qp(r) to origin, rq of q scatterer, we use the translational addition theorem.

Let rp = ρp + zp ẑ = xp x̂ + ypŷ + zp ẑ, ρpρq = ρp − ρq. The quantity φρpρq = tan−1 yp−yq
xp−xq

is the angle that ρp − ρq makes with the x axis. The translational addition theorems are
(Tsang et al. volume 2)

Mn
(
kz, rrp

)
= ∑

m
RgMm

(
kz, rrq

)
H(1)

m−n
(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
(35)

Nn
(
kz, rrp

)
= ∑

m
RgNm

(
kz, rrq

)
H(1)

m−n
(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
(36)

Then we have

Es
qp(r) =

∑
n

∫ ∞
−∞ dkz ∑

m
RgMm

(
kz, rrq

)
H(1)

m−n
(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
aSM

n,p (kz)

+∑
n

∫ ∞
−∞ dkz ∑

m
RgNm

(
kz, rrq

)
H(1)

m−n
(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
aSN

n,p(kz)
(37)

Since all terms now have the dependence RgMm
(
kz, rrq

)
or RgNm

(
kz, rrq

)
, we balance the

coefficients of each term. Balancing the terms with RgMm
(
kz, rrq

)
, we have

aEM
m,q (kz) = exp

(
iki·rq

)
imexp(−imφi)

kiρ
iEhiδ(kz − kiz) + ∑

p 6=q
∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)

×exp
(
−i(m− n)φρppq

)
exp
(
−ikz

(
zp − zq

))
aSM

n,p (kz)
(38)

Balancing RgNm
(
kz, rrq

)
, we have

aEN
m,q(kz) = exp(iki·rq)

imexp(−imφi)
kiρ

[−Evi]δ(kz − kiz)+ ∑
p 6=q

∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)

×exp(−i(m− n)φρpρq)exp
(
−ikz

(
zp − zq

))
aSN

n,p(kz)
) (39)
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The multiple scattering equations in (38) and (39) relate exciting field coefficients
aEM

m,q (kz), aEN
m,q(kz) and scattering field coefficients aSM

n,p (kz), aSN
n,p(kz) among the scatterers.

To obtain Foldy–Lax equations with the exciting field coefficients aEM
m,q (kz), aEN

m,q(kz) as
unknowns, we use the T matrix relations

aSM
n,p (kz) = ∑

n′

∫
dkz
′
[

T(M,M)
nn′ ,p

(
kz, kz

′)aEM
n′ ,p
(
kz
′)+ T(M,N)

nn′ ,p

(
kz, kz

′)aEN
n′ ,p
(
kz
′)] (40)

aSN
n,p(kz) = ∑

n′

∫
dkz
′
[

T(N,M)
nn′ ,p

(
kz, kz

′)aEM
n′ ,p
(
kz
′)+ T(N,N)

nn′ ,p

(
kz, kz

′)aEN
n′ ,p
(
kz
′)] (41)

Then, the Foldy–Lax MST equations with exciting field coefficients as field unknowns are

aEM
m,q (kz) = exp(iki·rq)

imexp(−imφi)

kiρ
iEhiδ(kz − kiz)

+ ∑
p 6=q

∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp(−i(m− n)φρpρq)exp

(
−ikz

(
zp − zq

))
×∑

n′

∫
dkz
′
[

T(M,M)
nn′ ,p

(
kz, kz

′)aEM
n′ ,p
(
kz
′)+ T(M,N)

nn′ ,p

(
kz, kz

′)aEN
n′ ,p
(
kz
′)]

(42)

aEN
m,q(kz) =exp(iki·rq)

imexp(−imφi)

kiρ
[−Evi]δ(kz − kiz)

+ ∑
p 6=q

∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
×∑

n′

∫
dkz
′
[

T(N,M)
nn′ ,p

(
kz, kz

′)aEM
n′ ,p
(
kz
′)+ T(N,N)

nn′ ,p

(
kz, kz

′)aEN
n′ ,p
(
kz
′)]

(43)

In solving the Foldy–Lax equations numerically, it is sometimes convenient to use scat-
tered field coefficients as field unknowns. To obtain scattered field coefficients, MST, mul-
tiply (38) by ∑

m

∫
dkzT(M,M)

m′m,q (kz
′′ , kz) and multiply (39) by ∑

m

∫
dkzT(M,N)

m′m,q (kz
′′ , kz). Adding

the two equations gives

aSM
m′ ,q

(
k′′z
)
= ∑

m
exp
(

iki·rq

)
imexp(−imφi)

kiρ

[
T(M,M)

m′m,q

(
k′′z , kiz

)
iEhi − T(M,N)

m′m,q

(
k′′z , kiz

)
(Evi)

]
+∑

m

∫
dkz ∑

p 6=q
∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
[

T(M,M)
m′m,q

(
k′′z , kz

)
aSM

n,p (kz) + T(M,N)
m′m,q

(
k′′z , kz

)
aSM

n,p (kz)
] (44)

Next, multiply (38) by ∑
m

∫
dkzT(N,M)

m′m,q (kz
′′ , kz) and multiply (39) by ∑

m

∫
dkzT(N,N)

m′m,q (kz
′′ , kz).

Add the two equations gives

aSN
m′ ,q

(
k′′z
)
= ∑

m
exp
(

iki·rq

)
imexp(−imφi)

kiρ

[
T(N,M)

m′m,q (k′′z , kiz)iEhi − T(N,N)
m′m,q

(
k′′z , kiz

)
(Evi)

]
+∑

m

∫
dkz ∑

p 6=q
∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
[

T(N,M)
m′m,q

(
k′′z , kz

)
aSM

n,p (kz) + T(N,N)
m′m,q

(
k′′z , kz

)
aSM

n,p (kz)
] (45)

Equations (44) and (45) are the Foldy–Lax W-MST equations with scattered field
coefficients as field unknowns. They are also called the self-consistent MST equations. We
can also have exciting field Foldy–Lax MST equations by separating out the incident field
Dirac delta functions in (42) and (43). Let

aEM
m,q (kz) = exp(iki·rq)

imexp(−imφi)

kiρ
iEhiδ(kz − kiz) + aEOM

m,q (kz) (46)
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aEN
m,q(kz) = exp(iki·rq)

imexp(−imφi)

kiρ
[−Evi]δ(kz − kiz) + aEON

m,q (kz) (47)

where “O” in the superscript aEOM
m,q (kz) and aEON

m,q (kz) stands for from “other” scatterers.
Then the integral equations for aEOM

m,q (kz) and aEON
m,q (kz) are

aEOM
m,q (kz) = ∑

p 6=q
∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
∑
n′

T(M,M)
nn′ ,p (kz, kiz)exp(iki·rp)

in′ exp(−in′φi)

kiρ
iEhi

+ ∑
p 6=q

∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
∑
n′

∫
dkz
′T(M,M)

nn′ ,p

(
kz, kz

′)aEOM
n′ ,p

(
kz
′)

+ ∑
p 6=q

∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
∑
n′

T(M,N)
nn′ ,p (kz, kiz)exp(iki·rp)

in′ exp(−in′φi)

kiρ
[−Evi]

+ ∑
p 6=q

∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
∑
n′

∫
dkz
′T(M,N)

nn′ ,p

(
kz, kz

′)aEON
n′ ,p

(
kz
′)

(48)

aEON
m,q (kz) =∑

p 6=q
∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
∑
n′

T(N,M)
nn′ ,p (kz, kiz)exp

(
iki·rp

) in′ exp(−in′φi)

kiρ
iEhi

+ ∑
p 6=q

∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
∑
n′

∫
dkz
′T(N,M)

nn′ ,p

(
kz, kz

′)aEOM
n′ ,p

(
kz
′)

+ ∑
p 6=q

∑
n

H(1)
m−n

(
kρ

∣∣ρpρq
∣∣)exp

(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
∑
n′

T(N,N)
nn′ ,p (kz, kiz)exp

(
iki·pp

) in′ exp(−in′φi)

kiρ
[−Evi]

+ ∑
p 6=q

∑
n

H(1)
m−n

(
kρ

∣∣∣ρpρq

∣∣∣)exp
(
−i(m− n)φρpρq

)
exp
(
−ikz

(
zp − zq

))
∑
n′

∫
dkz
′T(N,N)

nn′ ,p

(
kz, kz

′)aEON
n′ ,p

(
kz
′)

(49)

It should be noted that the Foldy–Lax equations are entirely in terms of the wave in-
teractions outside the circumscribing cylinders. Thus, the wave interactions are completely
described by the T matrices of the scatterers.

2.3. Final Fields

After solving the Foldy–Lax MST equations, the final fields both outside and inside
the circumscribing cylinders can be calculated by the following procedures.
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2.3.1. Outside the Enclosing Cylinders

We obtained the scattered field coefficients from solutions of the Foldy–Lax W-MST
equations. Outside the enclosing cylinder, the electric field is equal to the sum of the
incident fields and the scattered fields from all the scatterers

E(r) = Einc
(r) +

N

∑
q=1

Es
q(r) (50)

The final scattered fields are calculated by

Es
q(r) = ∑

n

∞∫
−∞

dkz

[
Mn
(
kz, rrq

)
aSM

n,q (kz) + Nn
(
kz, rrq

)
aSN

n,q (kz)
]

(51)

2.3.2. Inside the Enclosing Cylinders

By solving the Foldy–Lax MST equations, we obtained the final exciting field coeffi-
cients aEM

n,q (kz), aEN
n,q (kz), q = 1, 2, · · · , N.

Since commercial software were used to solve the scattering problem of a single
object for plane wave excitations, we express the exciting field as plane waves by using
transformations of cylindrical waves in terms of plane waves. The final exciting field of the
q-th scatterer is

Eex
q (r) = ∑

m

∞∫
−∞

dkz

[
RgMm

(
kz, rrq

)
aEM

m,q (kz) + RgNm
(
kz, rrq

)
aEN

m,q(kz)
]

(52)

From Tsang et al. volume 1, let kx = kρ cos φk, ky = kρ sin φk,

exp
(
ikxx + ikyy

)
= exp

(
ikρρ cos(φ− φk)

)
= ∑

n
Jn
(
kρρ
)
exp
(

in(φ− φk) + in
π

2

)
(53)

Multiply both sides by
∫ 2π

0 dφkexp(in′φk) and integrate

Jn
(
kρρ
)
exp(inφ) =

1
2π

∫ 2π

0
dφkexp

(
in
(

φk −
π

2

))
exp
(
ikxx + ikyy

)
(54)

The scalar cylindrical waves

Rgψn(kz, r) = Jn
(
kρρ
)
exp(inφ)exp(ikzz) (55)

Then

Rgψn(kz, r) =
1

2π

∫ 2π

0
dφkexp

(
in
(

φk −
π

2

))
exp
(
ikxx + ikyy + ikzz

)
(56)

Equation (56) expresses scalar cylindrical waves in terms of scalar plane waves. For
VCW, we then have the transformation to vector plane waves

RgMn(kz, r) =
(−ik sin θk)

2π

∫ 2π

0
dφkexp

(
in
(

φk −
π

2

))(
ĥ(θk, φk)exp

(
ikxx + ikyy + ikzz

))
(57)

RgNn(kz, r) =
(−k sin θk)

2π

∫ 2π

0
dφkexp

(
in
(

φk −
π

2

))(
v̂(θk, φk)exp

(
ikxx + ikyy + ikzz

))
(58)
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where kz = k cos θk, kρ = k sin θk and v̂(θk, φk) and ĥ(θk, φk) are vertical and horizontal
polarizations

v̂(θk, φk) = cos θk cos φk x̂ + cos θk sin φk ŷ− sin θk ẑ (59)

ĥ(θk, φk) = − sin φk x̂ + cos φk ŷ (60)

Then

Eex
q (r) = −ik

2π ∑
n

∫
dkzaEM

n,q (kz) sin θk
∫ 2π

0 dφkexp
(
in
(
φk − π

2
))

ĥ(θk, φk)exp
(

ik ·
(
r− rq

))
− k

2π ∑
n

∫
dkzaEN

n,q (kz) sin θk
∫ 2π

0 dφkexp
(
in
(
φk − π

2
))

v̂(θk, φk)exp
(

ik ·
(
r− rq

)) (61)

The above provides a spectrum of plane waves exciting (incident on) scatterer q. Using
commercial software, the fields inside the enclosing cylinder q can be calculated.

2.4. Rotation and Efficient Use of Re-usable T Matrices

In modeling vegetation and forests, we model a plant or a tree as a single object.
We use commercial software to calculate the scattering of a plant or a tree. The three
common methods of commercial software are the Finite Element Method (FEM), Finite
Difference Time Domain method (FDTD), and the Method of Moment (MoM). Initially, we
used the commercial software HFSS (3D Hugh Frequency Simulation Software; version
R15; Ansys, Canonsburg, PA, USA), which is based on FEM. Recently, we also used FEKO
(Feldberechnung für körper mit beliebiger oberfläche), which can be translated as “field
calculations involving bodies of arbitrary shape”. FEKO is MoM based and accelerated
with Multilevel Fast Multipole (MLFMA). Using either HFSS or FEKO, we used incident
plane waves and calculate the far field scattering amplitudes fvv(θ, φ; θi, φi), fvh(θ, φ; θi, φi),
fhv(θ, φ; θi, φi) and fhh(θ, φ; θi, φi). The options of far-field scattering amplitudes are avail-
able in commercial software. Using the above transformation formulates, we obtain the
T matrix coefficients of vector cylindrical waves. In the above, we neglected evanescent
waves. To include evanescent waves, field solutions can be obtained in the surface of the
enclosing cylinder. Then, Huygens’s principles can be used to accurately extract the T
matrix coefficients. We have adopted the Huygens principles previously [3–5].

The T matrices are reusable and can be used to generate the T matrices of sech as
100 plants in a vegetation field. In traditional modeling of vegetations, the branches and
leaves obey orientation distribution as described by the Euler angles. Let the axis of
symmetry be

ẑb = sin β cos αx̂ + sin β sin αŷ + cos βẑ (62)

where β and α are the orientation angles of rotation. The probability distributions are pβ(β)
and pα(α) for β and α respectively such that∫ π

0
dβpβ(β)

∫ 2π

0
dαpα(α) = 1 (63)

In the past, pβ(β) and pα(α) are prescribed for branches and leaves. The probability
density function is usually assumed to be uniform between 0 and 2π.

We can generate a large number such as 100 different plants in the following manner.
We first generate 5 plants that obey pβ(β) that are prescribed for branches and leaves. The
T matrices of these 5 plants are calculated by the procedure earlier. In the hybrid method,
the plant is a single scatterer. Thus, the plant has a prescribed pα(α). Then the 5 plants
are rotated by α such that pα(α) is obeyed. For the entire plant as a single scatterer ẑb = ẑ.
For a rotation by α, the T matrix follows a simple rotation relation as described below. If
we have 20 rotations of α, we then have 100 different plants in the field. We can also have
100 rotations of α to have 100 plants. Thus, in this manner, we only need to calculate the
5 T matrices of plants for the 100 plants. The 100 plants can be placed randomly. They can
also be placed in a quasi-periodic manner with random displacement from the periodic
positions. The T matrix elements are stored and are of multiple uses for Monte Carlo
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simulation. The computations of T matrix are a set-up step. The 5 T matrices can also be
stored for future use for various densities of plants and for many realizations of random
displacements of plants.

Below, we derive the relations of a rotation of T matrix for vector cylindrical waves.
The body axes of the plant by arbitrary choice are x̂b and ŷb. So that the relation between
body axes and principal axes are as follows

x̂b = cos αx̂ + sin αŷ (64)

ŷb = − sin αx̂ + cos αŷ (65)

We calculate the T matrix coefficients in the body frame by using the far field scattering
amplitude in the body frame. For example,

T(N,N)(b)
nn′ (k cos θ, k cos θi) =

i sin θi
8π2 sin θ

in−n′
∫ 2π

0
dφ

(b)
i

∫ 2π

0
dφiexp

(
−inφ(b) + in′φ(b)

i

)
f (b)vv

(
θs, φ

(b)
s ; θi, φ

(b)
i

)
(66)

where superscript (b) stands for body frame. Next, suppose the body frame is rotated by an
angle α about the vertical z axis.

Then the scattering amplitude in the principal frame fvv and the body frame f (b)vv are
related by the relationship

fvv(θs, φs; θi, φi) = f (b)vv

(
θs, φ

(b)
s ; θi, φ

(b)
i

)
= f (b)vv (θs, φs − α; θi, φi − α) (67)

Substituting in, we obtain the following relations for the T matrices

T(j,l)
nn′ (k cos θs, k cos θi) = exp

(
i
(
n′ − n

)
α
)
T(j,l)(b)

nn′ (k cos θs, k cos θi) (68)

where j, l = M, N.

2.5. Computational Efficiency of the Hybrid Method for Statistical Moments of Fields

The hybrid method is adapted to solving wave MST for a large number of scatterers
of vegetation and forests.

In Figure 2, we have 2 plants with different β. With the 2 plants we rotate 9 different
α to have 9 corn plants. Each of the 9 plants has an α. We first place them periodically.
Next, we displace the corn plants from their periodic positions by a defined amount. That
generates a corn field with quasi-periodic arrangement of corn.

We make use of several key elements of such Monte Carlo simulations.
(i) Each plant or each tree is a single scatterer, the leaves are aggregated on a branch,

and branches are aggregated on a plant or a tree. Neither branches nor leaves are single
scatterers.

(ii) Each plant or each tree is a distinct random scatterer with a pre-computed T matrix.
The plant is rotated by an angle α and the corresponding T matrix is obtained. This provides
a different plant because the plant does not have azimuthal symmetry.

(iii) The positions of plants or trees are random. They can be placed in a quasi-periodic
manner such as in a row structure with random displacements from the periodic positions.

(iv) A field of many distinct plants such as 100 plants can be generated with a few,
such as 5, precomputed and stored T matrices.
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In random scattering problems, the scattered field solutions have fluctuations of
amplitudes and phases. Thus, averaging results over realizations are needed to obtain
useful solutions for remote sensing applications.

The computational objective is to calculate the Statistical Moments of Fields in Veg-
etation Fields and Forests. At present, the primary interests are the first and statistical
moments. This objective is distinctly different from CEM, the objective of which is to
calculate the “exact” field solution of each realization.

For each realization, we iterate Foldy–Lax multiple scattering equations with the T
matrices of the scatterers to obtain the multiple orders of scattering by scatterers. The itera-
tions provide the first-order solution, the second-order solution, the third-order solution,
etc. The iteration, unlike traditional methods such as conjugate gradient or biconjugate
gradient in which iterations are carried out until the convergence of the field solution, is
achieved for each realization. We iterate and then take realization averaging, for example,
after the solution is up to second order, we take realization averaging. Then, after the
solution is up to the 4th order, we take the realization averaging. This iteration method in
Monte Carlo simulations is analogous to the analytical perturbation method in random
scattering. For example, in the second-order small perturbation method for rough surfaces,
an averaging is taken after the second-order solution. In the fourth-order perturbation
method of rough-surface scattering, averaging of realizations is taken over the solution is
obtained up to the fourth order. The reasons for taking averages after even order are to
ensure energy conservation up to that order.

For the memory requirement, such as for 100 plants, it is only required to store the 5 T
matrices for the different β′s. The rotation of different α′s is merely rotating the 5 T matrices.
For the translational addition theorem, the order dependence of the Hankel function is on
m− n, the difference between the mth order and the nth order. Let the order be truncated
at Nmax with n, m = 0,±1,±2, . . . , Nmax. The memory requirement for the translation
theorem is 4Nmax+1 and not (2Nmax + 1)2. This reduction of memory is significant because
the enclosing cylinder is of moderate to large radius, requiring moderate to large values
of Nmax. In the matrix times column vector, the dependence on m− n means that FFT can
be applied. In Table 1, we compare the methodology of computational electromagnetic
method (CEM) method of full-wave simulations and the hybrid method. In the table,
NP = number of plants = 100, N = number of field unknowns in full-wave simulations,
and Nr = number of realizations = 30 to 100.
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Table 1. Comparison between CEM method and hybrid method.

CEM Method Hybrid Method Comments

Full Wave Entire problem of Np
number of plants

Single plant is an object. T matrix is
obtained for the plant

Each plant is an object
In RT: each leaf is an object.

Each branch is an object

Field Solutions
N = number of

unknowns in field
solutions, in millions

Multiple scattering of Np plants
Np moderate number, e.g., 100 NA

Reusable
Not reusable, solve N

field unknowns for
each realization

T matrices of a few plants plus
azimuthal α rotations, reused for

(i) configurations, random,
quasi-periodic
(ii) realizations
(iii) future use

T matrices put on shelves for
future use T matrices Portable

Iteration Solution of
Each Realization

large number of
iterations (e.g., conjugate

gradient) for large
number of N field

unknowns to reach
convergence of “exact”

field solution

Iterate Foldy–Lax to obtain multiple
scattering order solutions,

second order, fourth order, tenth
order, even orders of solutions

Significant wave iterations
within a plant which are
included in T matrix of a

plant, less wave interactions
between plants

For vegetation fields and
forests, no more than 10

multiple orders of solutions

Averaging over Realizations
to Calculate

Statistical Moments

Averaging “exact”
solutions over
Nr realizations

Averaging Nr realizations after
second order, fourth order, sixth

order, until statistical
moments converge

Averaged second order
solutions, fourth-order

solutions, are analogous to
analytical random media

theory SPM in rough surfaces
and iterative solutions of

radiative transfer equation

2.6. Calculations and Validation of T Matrices of A Single Corn Plant Using Commercial Software

We next illustrate the calculations of T matrix of a single corn plant and the validation
of the calculations. We first used FEKO to calculate the far-field scattering amplitudes.
Figure 3 shows the real and imaginary parts of fvv as a function of φs for θi = 140o, φi = 0o;
θs = 140o.

We used the Fourier coefficients equations in (26)–(29) to calculate the T matrix coeffi-
cients from the far field scattering amplitudes. We used Nmax = 6. In Figure 4, we plot the
T matrix coefficients TNN

mn′ (θs, θi) as a function of n for n′ = 0.
There are 2 incident polarizations, v and h. For each pair of (θi, φi), we can have as many

values of (θs, φs) for fvv(θs, φs, θi, φi), fhv(θs, φs, θi, φi), fvh(θs, φs, θi, φi), fhh(θs, φs, θi, φi). Us-
ing the far-field scattering amplitudes, we calculated the TMM

nn′ (θs, θi), TMN
nn′ (θs, θi), TNM

nn′ (θs, θi),
and TNN

nn′ (θs, θi). The choice of Nmax depends on θs and θi. The dimensions of T matrix are
in Table 2. The total dimension is 614× 614.

Next, we validated the accuracy and the use of T matrix coefficients of calculating the
scattered field. We use the T matrix of dimension 614× 614 and the scattered field Equations
of (7) and (8) with the incident field coefficients of Equations (14) and (15). We calculate
the scattered field as a function of a position for the positions as shown in Figure 5a. We
calculated the scattered field in 2 ways: using FEKO directly and using the expression of
scattered field in terms of T matrices. In Figure 5b, we show the comparisons. The results
were in very good agreement, validating the accuracies and the use of T matrix TNN

nn′ from
the far-field calculated from Equation (29).



Remote Sens. 2022, 14, 3640 17 of 47

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 47 
 

 

Iteration Solu-
tion of Each Re-

alization 

large number of iterations (e.g., 
conjugate gradient) for large 

number of N field unknowns to 
reach convergence of “exact” 

field solution 

Iterate Foldy–Lax to obtain multiple 
scattering order solutions, 

second order, fourth order, tenth 
order, even orders of solutions 

Significant wave iterations 
within a plant which are in-

cluded in T matrix of a plant, 
less wave interactions between 

plants 
For vegetation fields and forests, 
no more than 10 multiple orders 

of solutions 

Averaging over 
Realizations to 

Calculate 
Statistical Mo-

ments 

Averaging “exact” solutions 
over 푁  realizations  

Averaging 푁  realizations after 
second order, fourth order, sixth or-
der, until statistical moments con-

verge 

Averaged second order solu-
tions, fourth-order solutions, are 
analogous to analytical random 
media theory SPM in rough sur-
faces and iterative solutions of 

radiative transfer equation 

2.6. Calculations and Validation of T Matrices of A Single Corn Plant Using Commercial Software 
We next illustrate the calculations of T matrix of a single corn plant and the validation 

of the calculations. We first used FEKO to calculate the far-field scattering amplitudes. 
Figure 3 shows the real and imaginary parts of 푓  as a function of 휙  for 휃 = 140 , 
휙 = 0 ; 휃 = 140 . 

We used the Fourier coefficients equations in (26)–(29) to calculate the T matrix coef-
ficients from the far field scattering amplitudes. We used 푁 = 6. In Figure 4, we plot 
the T matrix coefficients 푇 (휃 , 휃 ) as a function of 푛 for 푛′ = 0. 

 
Figure 3. Plot the 푓  versus 휙  for fixed 휃 = 140°, 휙 = 0°, and 휃 = 140°, and 푁 = 6, 푛 =
0. (In the FEKO, we simulate 37 points, and in the MATLAB, we interpolate it to 370 points). 

Figure 3. Plot the fvv versus φs for fixed θi = 140◦, φi = 0◦, and θs = 140◦, and Nmax = 6, n′ = 0. (In
the FEKO, we simulate 37 points, and in the MATLAB, we interpolate it to 370 points).

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 47 
 

 

 
Figure 4. Plot the 푇 versus 푛 for fixed 휃 = 140°, 휃 = 140°, and 푁 = 6, 푛 = 0. 

There are 2 incident polarizations, 푣 and ℎ. For each pair of (휃 , 휙 ), we can have as 
many values of (휃 , 휙 )  for 푓 (휃 , 휙 , 휃 , 휙 ) , 푓 (휃 , 휙 , 휃 , 휙 ) , 푓 (휃 , 휙 , 휃 , 휙 ) , 
푓 (휃 , 휙 , 휃 , 휙 ). Using the far-field scattering amplitudes, we calculated the 푇 (휃 , 휃 ), 
푇 (휃 , 휃 ), 푇 (휃 , 휃 ), and 푇 (휃 , 휃 ). The choice of 푁  depends on 휃  and 휃 . The 
dimensions of T matrix are in Table 2. The total dimension is 614 × 614. 

Next, we validated the accuracy and the use of T matrix coefficients of calculating the 
scattered field. We use the T matrix of dimension 614 × 614 and the scattered field Equa-
tions of (7) and (8) with the incident field coefficients of Equations (14) and (15). We cal-
culate the scattered field as a function of a position for the positions as shown in Figure 
5a. We calculated the scattered field in 2 ways: using FEKO directly and using the expres-
sion of scattered field in terms of T matrices. In Figure 5b, we show the comparisons. The 
results were in very good agreement, validating the accuracies and the use of T matrix 
푇  from the far-field calculated from Equation (29). 

Table 2. The choice of 푁  for different 휃 or 휃 . 

휽 or 휽풊 푵풎풂풙 ퟐ푵풎풂풙 + ퟏ 휽 or 휽풊 푵풎풂풙 ퟐ푵풎풂풙 + ퟏ 
2° 2 5 95.18° 6 13 

7.18° 2 5 100.35° 5 11 
12.35° 2 5 105.53° 5 11 
17.53° 2 5 110.71° 5 11 
22.71° 3 7 115.88° 5 11 
27.88° 4 9 121.06° 4 9 
33.06° 4 9 126.24° 4 9 
38.24° 4 9 131.41° 4 9 
43.41° 4 9 136.59° 4 9 
48.59° 4 9 141.76° 4 9 
53.76° 4 9 146.94° 4 9 
58.94° 4 9 152.12° 4 9 
64.12° 5 11 157.29° 3 7 
69.29° 5 11 162.47° 2 5 
74.47° 5 11 167.65° 2 5 
79.65° 5 11 172.82° 2 5 
84.82° 6 13 178° 2 5 

90° 6 13    

Figure 4. Plot the TNN
n0 versus n for fixed θi = 140◦, θs = 140◦, and Nmax = 6, n′ = 0.



Remote Sens. 2022, 14, 3640 18 of 47

Table 2. The choice of Nmax for different θ or θi.

θ or θi Nmax 2Nmax+1 θ or θi Nmax 2Nmax+1

2◦ 2 5 95.18◦ 6 13
7.18◦ 2 5 100.35◦ 5 11
12.35◦ 2 5 105.53◦ 5 11
17.53◦ 2 5 110.71◦ 5 11
22.71◦ 3 7 115.88◦ 5 11
27.88◦ 4 9 121.06◦ 4 9
33.06◦ 4 9 126.24◦ 4 9
38.24◦ 4 9 131.41◦ 4 9
43.41◦ 4 9 136.59◦ 4 9
48.59◦ 4 9 141.76◦ 4 9
53.76◦ 4 9 146.94◦ 4 9
58.94◦ 4 9 152.12◦ 4 9
64.12◦ 5 11 157.29◦ 3 7
69.29◦ 5 11 162.47◦ 2 5
74.47◦ 5 11 167.65◦ 2 5
79.65◦ 5 11 172.82◦ 2 5
84.82◦ 6 13 178◦ 2 5

90◦ 6 13
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Figure 5. (a) Single corn plant in the simulation, line in (a): x = 2 m, y = 0, z = −2 m to 2 m; 35 points
for θs and θi = 140◦, φi = 0◦. (b) Scattered field for a single corn plant as a function of z along the
blue line in Figure 5a.

2.7. Numerical Results of Hybrid Method of Vegetation Field and Forests

Results of the Hybrid Method can be found in found in refs. [2,4,5,34]. Below we
illustrate two examples.

Simulations were performed for the transmission through a simulated forest [2] con-
sisting of 196 cylinders of 20 m height and 12 cm diameter arranged as shown in Figure 6.
The results are tabulated in Table 3. The results showed that the transmission is 1.89 times
that of the results of RTE.

For the transmission through vegetation and forests, there have been papers using
C-band Sentinel 1 to study soil moisture. Such studies coincide with the results in this
paper, i.e., the C-band penetration through vegetation is much larger than predicted by
RTE. For forests, the SMOS has the retrieval algorithm applied to forests meaning that the
L-band can penetrate through forests with VWC much larger than 5 kg per square meter.
SMAP has been conducting a ground and airborne campaign to verify the penetration
through forests at L-Band. Thus, although experimental comparison is lacking, there is
support from the community that there can be much larger penetration through vegetation
fields and forests from the L-band to the C-band.
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Figure 6. Tree trunks (left) are modelled as dielectric cylinders (right). The Figure is adapted with
permission from Ref. [2]. © 2019 IEEE.

Table 3. Transmission coefficient from RTE based on distorted Born approximation (RTE/DBA) and
the hybrid method from Figure 6. The table is adapted with permission from Ref. [2]. © 2019 IEEE.

RTE/DBA Hybrid Method

Transmission 0.35 0.66

To consider frequency dependence, we next show an example of the transmission
through a field consisting of 196 wheat plants (Figure 7a) at L-, S-, and C-bands [4,5]
as a function of VWC. Results of Figure 7b are compared with RTE. Firstly, the results
showed the transmission of full-wave simulations are much larger than RTE. Secondly, the
transmission at C-band was only slightly less than that at S-band, showing the frequency
dependence is weak between S-band and C-band. On the other hand, RTE showed a big
drop in transmission from the S- to the C-band, indicating a strong increase of attenuation
with frequency from the S-band to the C-band predicted by RTE. The full-wave simulation
results using the hybrid method had little difference between the S-band and C-band,
showing saturation with frequency between the S-band and C-band.
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Figure 7. (a) Scattering from wheat plants in the radius of the circumscribing cylinder, 6.5 cm;
distance between the centers of 2 circumscribing cylinders is rd =14 cm, the closest distance between
2 circumscribing cylinders is gd = 1 cm. Figure is adapted with permission from Ref. [4]. © 2021
IEEE. (b) Transmission of microwave through wheat predicted by the hybrid method and the RTE
vary with vegetation water content (VWC).
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Our current work constitutes (i) developing fast computation techniques for calculat-
ing the solutions of Foldy–Lax equations in the VCW representation and (ii) calculation of
solutions for the cases of forests with trees up to 20 m tall. For optical scattering work, read-
ers should refer to papers by Ping Yang from Texas A&M University and Karri Muinonen
from the University of Helsinki.

3. Signals of Opportunity
3.1. GNSS-R and SoOp Introduction

The operating GNSS-R missions include the Techdemosat-1 (TDS-1) [6], launched
by UK in 2014, the Cyclone Global Navigation Satellite System (CYGNSS) [7], launched
by NASA in 2016, and Bufeng-1, launched by China in 2019 [35]. The GNSS-R data are
collected in the form of Delay Doppler Maps (DDMs), which have been applied to the
retrieval of ocean wind speed [36], sea ice thickness [37], and monitoring the wetland
changes [38].

For the SoOp CYGNSS mission at the L-band, experimental results and comparisons
were presented in the IGARSS 2021 paper by Campbell et al. There has been a ground
campaign conducted for CYGNSS since 2018.

There are major differences between the traditional rough-surface bistatic scattering
formula and the reflected signals in SoOp. The comparison between GNSS-R and radar
back scattering is shown in Table 4. In the usual rough-surface bistatic scattering, the
formula is an extension of radar backscattering [39]. In radar rough-surface backscattering
from soil surfaces, contributions to σ0 come from the microwave roughness which have the
ratios of correlation length to rms height ratio around 10. In extension to bistatic scattering,
the formula is merely the radar backscattering with the scattered direction changed to
that of the bistatic direction and thus only the contributions from microwave roughness
are included. However, in reflection from signals of opportunity including GNSS-R, the
scattered direction is in the vicinity of the specular direction within a few degrees. The
first difference of this close-to-specular scattering is that the bistatic scattering has both the
mean field intensity and the covariance of the field. Thus, both the mean field intensity
and covariance of field need to be included in the σ0 [39]. The second difference is that
even if the mean fields are ignored, the remaining bistatic covariance of field are strongly
dependent on topographical elevations and slopes which can affect the σ0 by many decibels.
The topographical slopes are much less than that of microwave roughness. On the other
hand, for L-band microwave remote sensing of soil moisture, the models of SMAP (soil
moisture active and passive) and NISAR (NASA-ISRO SAR) primarily include the effects
of microwave roughness with topography playing a lesser role.

Table 4. Comparison between radar backscattering and GNSS-R.

Radar Backscattering
with 40 Degrees Incident Angle

GNSS-R
Observation Close to Specular Direction

Scattering Large angle from specular Small angle from specular

Kirchhoff integral Not Valid as Kirchhoff predicts VV is
comparable to HH Accurate near specular direction

Roughness Microwave roughness
Topography have small effects

Topography strong influence
+microwave roughness

Mean field intensity/Covariance of field Covariance of fields only Mean field intensity and Covariance of fields

Gamma/sigma0 −25 dB to 0 dB Much Larger values
10 dB to 30 dB

In the past, there have been three popular models. One is the extension of the radar
backscattering of microwave roughness to the bistatic direction as described earlier. The
second model is the coherent model which uses the image theorem of a point source to
obtain the reflected signal that captures the Fresnel zone effects. The results are multiplied
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by an attenuation factor exp
(
−4k2h2

1 cos2 θi
)
, where h1 is the root mean square (rms) height

of microwave roughness, k is the wave number, and θi is the incident angle. The attenuation
factor is quite significant. For microwave roughness of h1 = 3 cm, θi = 40◦, the attenuation
factor is −10 dB. The coherent model is calculating the mean field from small h1 surfaces.
The third model is the incoherent model based on the assumption that because of the
topographical large elevation changes in land surfaces, the received signal is incoherent.
The incoherent models are based on Geometric Optics (GO) model. The GO model is also
an approximation of Kirchhoff integral using the method of stationary phase. In the GO
model, the scattered intensity is proportional to the probability density function ppdf(p, q)
where p and q are the slopes in the horizontal x and y directions, respectively. The choice
of pdf is Gaussian, so that ppdf(p, q) = exp

[
−
(

p2 + q2)/(2s2)]/(2πs2), where s is the
rms slope and a small number is usually used. It was first used in GNSS-R for ocean
reflection [40] by truncating the ocean spectrum to eliminate the small roughness so as to
derive the pdf of slopes. For GNSS-R land applications, it was also used by refs. [41,42].
However, a second version of geometric optics in ocean problem was proposed in ref. [43]
in which the attenuation factor exp

(
−4k2h2

1 cos2 θi
)

is attached to account for the effects
of microwave small roughness. It is labeled as the “Improved Geometric Optics Model
(IGOM)”, which is GO-Att (Geometric Optics with Attenuation). The differences between
the two GO models are significant even for h1 = 3 cm. The two GO models have been
applied to land surfaces [39,42].

We applied Kirchhoff models to signals of opportunity for both L-band and P-band.
In our models, the surface profiles are composed of a summation of three kinds of rough-
ness/topography (Figure 8):

z = f1(x, y) + f2(x, y) + f3(x, y) (69)

where f1(x, y) is the microwave roughness with rms height of 6 cm or less, and f2 and f3
are for the topography. In the CYGNSS investigations, extensive measurements have been
taken to measure the rms heights and correlation lengths of the microwave roughness at
San Luis Valley. The topography f3(x, y) is the coarse scale topography as given by DEM.
It is labeled as “coarse” because the DEM is of horizontal resolution of 30 m. A linear
interpolation is used to obtain f3(x, y), so that f3(x, y) corresponds to tilted planar patches
with 30 m scale. The f2(x, y) is labeled as “fine-scale topography” that is in-between the
coarse topography and the microwave roughness. The fine scale topography f2(x, y) will
have rms height of 5 cm and above and horizontal correlations of 5 m to 10 m. The ratio
of correlation length to rms height of fine-scale topography f2(x, y) is of the order of 100,
which is 10 times that of the microwave roughness of f1(x, y). Recently, lidar measurements
have been taken [44].
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In our approach, we have used the Kirchhoff theory. Although the vector Kirchhoff
theory is not valid for radar backscattering particularly for the VV polarization, it is
quite accurate in the vicinity of the specular direction as shown by numerical solutions of
Maxwell equations. In Table 5, we summarize our two approaches when applied to L-band
signals of opportunity. The first approach, which we initially used, is a numerical Kirchhoff
approach [13]. We used a patch size of 2 cm by 2 cm in the numerical discretization of
calculating the Kirchhoff integral. The surface is characterized by the height function
f = f1 + f2 + f3. Because of fluctuations due to f1 and f2, Monte Carlo simulations were
performed and averages were taken over realizations over f1 and f2. The results are treated
as having benchmark accuracy as no approximations are used aside from the Kirchhoff
integral. An intensive CPU with high-performance computation is required.

Table 5. Summary of the two Kirchhoff approaches.

Models Numerical Kirchhoff Approach (NKA) [13] Analytical Kirchhoff Solution (AKS) [16]

Discretization 2 cm 30-m DEM patch

Monte Carlo simulations Monte Carlo
Speckle fluctuations

Analytical
No Monte Carlo
No fluctuations

CPU time for one DDM pixel of 15 km Intensive
1 week for one DMM

Fast
1 h for one DDM
f1 and f2 constant

Validation
Accurate benchmark
based on brute force

calculations
Validated by NKA

DEM Coarse f 3 Planar with slope, deterministic Planar with slope, deterministic

Fine scale f 2: random Monte Carlo average Analytical average

Microwave f 1: random Monte Carlo average Analytical average

Combining roughness f = f1 + f2 + f3 f12 = f1 + f2 combined dividing line not needed

Spectrum W(k) Can directly use W(k) Can directly use W(k)

Histogram statistics of amplitude and phase Yes No

In the second approach, the Analytical Kirchhoff Solution (AKS) [16], we performed
analytical averaging for the random surface. In this approach, we used f12 = f1 + f2
combined. The roughness f12 was super imposed on the f3 planar patches of DEM. Then
rough-surface scattering theory was applied to f12(x, y) with analytical solutions derived
for the coherent waves and incoherent waves. The salient features of the AKS model are as
follows. (i) Analytical expressions are obtained for both coherent and incoherent waves
by taking analytical averaging over the random f12; (ii) Monte Carlo simulations are not
required, making the AKS computationally efficient; and (iii) the analytical solutions are
expressed in terms of the spectrum so that the dividing line between microwave roughness
and the fine scale topography is not required, and the rough surface spectrum derived
from lidar elevation measurements can be incorporated directly. The results of AKS and
Numerical Kirchhoff Approach (NKA) are indistinguishable for both the coherent waves
and the incoherent waves. The agreements validate the AKS as NKA is a brute force
accurate method using 2 cm discretization and high-performance computers. In Table 5, we
compare the two approaches. Since the two approaches provide indistinguishable results,
we shall label the results as the Kirchhoff approach. The numerical results of the Kirchhoff
approach have been compared with that of GO [40] and GO-Att (IGOM) [42,43].

This section is organized as follows. In Section 3.2, the geometry of the SoOp problem
is discussed. In Section 3.3, NKA is discussed. In Section 3.4, we discuss AKS. Numerical
results generated with the Lidar data surface profile are shown in Section 3.5 and the CPU
time comparison between AKS and NKA is presented in Section 3.6.
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3.2. Coherent and Incoherent Models

The first two models initially proposed to the GNSS-R or SoOp application are the
coherent model and the incoherent model, which only account for the coherent wave or the
incoherent wave only, but not both. The geometry considered by the two models is shown
in Figure 9.
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The coherent model is:

Pr

Pt
=

GtGrλ2

(4π)2(Rpt + Rpr
)2 |Rlr|2e−4k2h2 cos2 θ (70)

where Gt and Gr are the gain of transmitter and receiver, and Rpt and Rpr are the distance
from transmitter to specular point and specular point to receiver. λ is the wavelength, and
Rlr is the reflection coefficient of circular polarized wave given as:

Rlr = Rv + iRh (71)

k is the wave number, h is the rms height of microwave roughness, and θ is the incident
angle at the specular point.

The coherent model is from a past model of rough-surface scattering and assumes a
single elevation and the contributions arise from Fresnel zones. The attenuation caused by
the surface roughness in the exponential term. Rigorous derivation for the coherent model
can be found in the appendix of ref. [13].

The incoherent model is also based on a past scattering model and treats the GNSS-R as
a special case of bistatic radar scattering with the scattering angle in the specular direction.
In the bistatic radar equation, the incoherent model is:

Pr

Pt
=

Gt

4πRt2
1

4πRr2
Grλ2

4π

∫
γdA (72)
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where γ is the bistatic scattering coefficient of incoherent wave. Equation (72) is propor-
tional to surface area. Based on geometric optics approximation, the bistatic scattering
coefficient is given as:

γ =
|Rlr|2

2s2 (73)

where s is the rms slope of the surface, and Rlr is the reflection coefficient of circular polar-
ized wave given in Equation (71). In the case of Gaussian correlation function, s =

√
2h/l,

where l is the correlation length of the rough surface.
Both the coherent and incoherent model consider only a single-scale roughness. The

effects of topography elevations and slopes are not included in the coherent model or the
incoherent model.

3.3. Geometric Descriptions of SoOp: Topography and Rough Surface

We consider the surface height f (x, y) as composed of a summation of three kinds of
roughness/topography (Figure 8).

f (x, y) = f1(x, y) + f2(x, y) + f3(x, y) (74)

We define
f12(x, y) = f1(x, y) + f2(x, y) (75)

where f1(x, y) is the microwave roughness with rms height of 0.25 wavelength or less. The
f3(x, y) is the DEM topography at 30 m scale. The intermediate scale f2(x, y) is labeled as
fine-scale topography between microwave roughness and DEM topography. Previously,
profiles of f2(x, y) were largely unknown. However, recent lidar measurements confirm
the existence of non-zero f2(x, y). A major difference between f1(x, y) and f2(x, y) is
that the ratio of correlation length to rms height of f2(x, y) is 10 times larger than that of
f1(x, y). We shall assume that f1(x, y) and f2(x, y) are stochastic Gaussian processes that
are statistical homogeneous. The f3(x, y), derived from DEM, is deterministic and will
be assumed to be consisting of planar patches of 30 m with slopes p3 and q3 in the x and
y directions respectively. This means that the second-order derivatives of f3(x, y) are equal
to zero. Thus, the geometry consists of DEM 30 m planar patches with slope and stochastic
roughness f1(x, y) and f2(x, y) superimposed on the planar patch.

The descriptions of f1(x, y), f2(x, y), and f12(x, y) are shown in Table 6. For real-life
profiles, it can be difficult to form a dividing line between f1 and f2. Thus, the last column
f12(x, y) is a combination of microwave roughness and fine-scale topography without a
dividing line. In Table 6, we also list the correlation functions and the spectral densities.
The combined case of f12(x, y) is the general case with correlation function h2C(x, y) and
spectral density of W

(
kx, ky

)
. The decompositions of f12(x, y) separately into f1(x, y) and

f2(x, y) are special cases of f12(x, y).

Table 6. Descriptions of f1(x, y), f2(x, y), and f12(x, y).

Scales Microwave Roughness f1(x,y) Fine-Scale Topography f2(x,y) Combined Profile f12(x,y)

Correlation Function h2
1C1(x, y) h2

2C2(x, y) h2C(x, y)

Spectrum W1
(
kx, ky

)
W2
(
kx, ky

)
W
(
kx, ky

)
Since f12(x, y) is statistically homogeneous, the correlation function is:

h2C(x, y) = 〈 f12
(
x′, y′

)
f12
(
x′ + x, y′ + y

)
〉 =

x +∞

−∞
dkxdkyW

(
kx, ky

)
eikx x+ikyy (76)

with C(0, 0) = 1. Then we have

h2 =
x +∞

−∞
dkxdkyW

(
kx, ky

)
(77)
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For the case of isotropic rough surface:

h2C(x, y) = h2C(ρ) = 2π
∫ +∞

−∞
dkρkρW

(
kρ

)
J0
(
kρρ
)

(78)

where J0 is the Bessel function of zero-th order. Let the GNSS-R transmitter and receiver be
located in the xz plane, as shown in Figure 10. Note that the transmitter is located at:

Tx = (xt, 0, ht) (79)
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Let the receiver be located at:

Rx = (xr, 0, hr) (80)

Since xt is negative, let
xs = −xt (81)

Then
xr + xs = d; xs = −xt =

dht

hr + ht
; xr =

dhr

hr + ht
(82)

In GNSS-R applications, the receivers are in the specular directions, which means d
can be expressed in terms of the incident angle θi:

d
hr + ht

= tan θi = tan θs (83)

Thus, we have
xs = −xt = ht tan θi; xr = hr tan θs (84)

3.4. Numerical Kirchhoff Approach (NKA)

Let a point on the observed surface have position r = (x, y, z) where z = f1(x, y) +
f2(x, y) + f3(x, y). The stochastic roughness and fine-scale topography are superimposed
on the planar patch of f3(x, y):

f3(x, y) = zn + p3n(x− xn) + q3n(y− yn) (85)
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where p3n and q3n are the coarse topography slopes in x and y directions. The scattered
field from the land surface is given by the following equation under Kirchhoff approxima-
tion [39]:

Es =
ik
4π

√
PtGtη0

2π

x

S
dr

eRt+Rr

RtRr

(
=
I − k̂s k̂s

)
·F(α, β) (86)

where the F(α, β) accounts for the polarization of the scattered wave, which is given as:

F(α, β) =
√

1 + α2 + β2
[
(−1 + Rh)(êi·k̂i)q̂i + (1 + Rv)(êi· p̂i)n̂× q̂i + k̂s × [(1 + Rh)(êi·q̂i)]n̂× q̂i

+(1− Rv)(êi· p̂i)(n̂·k̂i)q̂i

]
(87)

In the expression above, α and β are the surface slopes in x and y directions for
f1(x, y) + f2(x, y) + f3(x, y), which is given as:

α =
d

dx
f (x, y) =

d
dx

f1(x, y) +
d

dx
f2(x, y) + pn3 (88)

β =
d

dy
f (x, y) =

d
dy

f1(x, y) +
d

dy
f2(x, y) + qn3 (89)

êi is the incident wave polarization vector; in the GNSS-R application, the incident
wave is circular polarized with

êi = v̂i + iĥi (90)

The incident wave direction is given by k̂i and the scattering direction is given by k̂s,
which are given by the following equations:

k̂i =
r′−RT

Rt
= (x′−xt)x̂+(y′−yt)ŷ+(z′−zt)ẑ√

(x′−xt)
2+(y′−yt)

2+(z′−zt)
2

k̂s =
Rr−r′

Rr
= (xr−x′)x̂+(yr−y′)ŷ+(zr−z′)ẑ√

(xr−x′)2+(yr−y′)2+(zr−z′)2

(91)

The distance between r and receiver is given by Rr. Due to the high elevation in the
orbit of the transmitter satellite, the incident direction is the same for the observation area.
The receiver orbit is much lower and the scattering direction changes according to the
position of the location point (x, y, z) on the height profile. Let n̂ be the unit normal at the
point (x, y, z):

n̂ =
− d f (x,y)

dx x̂− d f (x,y)
dy ŷ + ẑ√

1 +
(

d f (x,y)
dx

)2
+
(

d f (x,y)
dy

)2
(92)

p̂i and q̂i are local polarization vectors defined at the point:

q̂i =
k̂i×n̂
|k̂i×n̂|

p̂i = q̂i × k̂i

(93)

Rv and Rh are the Fresnel reflection coefficients with local incidence angle:

θil = −a cos (n̂·k̂i) (94)

Rh =
k cos θil−

√
k2

1−k2 sin2 θil

k cos θil+
√

k2
1−k2 sin2 θil

Rv =
ε1k cos θil−ε0

√
k2

1−k2 sin2 θil

ε1k cos θil+ν
√

k2
1−k2 sin2 θil

(95)
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The integral in (86) is performed with brute force using a high-performance computer
with 2 cm discretization at the L-band. To obtain the coherent wave and incoherent
intensity, we use Monte Carlo averaging, and thus the mean field intensity and the intensity
of covariance of fields are given as:

|〈Emean f ield
s 〉|

2
= | 1

N

N

∑
1

Esn
∣∣2 (96)

|〈ECov
s 〉|

2
=

1
N

N

∑
1

∣∣Esn − 〈Es〉
∣∣2 (97)

After obtaining the intensity for mean field and covariance of field, we next obtain the
bistatic scattering coefficients by:

γmean f ield/Cov =
(4π)2R2

t R2
r

2ηPtGt A cos θi
Imean f ield/Cov
s (98)

3.5. Analytical Kirchhoff Solutions (AKS)

In the analytical Kirchhoff solutions, we divided the land surface into patches and ap-
ply far-field approximations to calculate the scattering from each patch. We first considered
the mean field and Covariance of fields from a single patch of size L. Let the center of the
patch be given by

rn = xn x̂ + ynŷ + zn ẑ (99)

On this patch, zn = f3(xn, yn), and the slopes of this patch are

d f3(xn ,yn)
dx = p3n

d f3(xn ,yn)
dy = q3n

(100)

The distance between the patch center and the transmitter and the receiver are respec-
tively Rnt and Rnr:

Rnt =
√
(xn − xt)

2 + y2
n + (zn − ht)

2

Rnr =
√
(xn − xr)

2 + y2
n + (zn − hr)

2
(101)

In order to apply the far field approximation to the patch, we need to have:

Rnt, Rnr � L2

λ
L�

√
λRnt,

√
λRnr

(102)

In GNSS-R, the elevation of the transmitter is much larger than that of the receiver,
which is Rr = 500 km. For the P band, we have f req = 370 MHz, λ = 0.81 m. For the L
band, f req = 1.575 GHz, λ = 0.19 m. Thus,

L� 308 m, L− band
L� 636 m, P− band

(103)

is required over the domain of integration. If the discretization is less than that requirement,
then the variations of the scattered field direction and the variations of the phase factor
need to be variables over the domain the integration. With respect to the center of the patch,
the wave vector for the incident wave is given by:

kin = kinx x̂ + kinyŷ− kinz ẑ
kinx = k(xn−xt)

Rnt

kiny = kyn
Rnt

kinz =
k(ht−zn)

Rnt

(104)
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The incident polarization vectors on the patch are:

ĥin = ẑ×kin
|ẑ×kin|

v̂in = ĥin × kin

(105)

For the scattering wave, we have the wave vector defined as follows:

ksn = ksnx x̂ + ksnyŷ + ksnz ẑ
ksnx = k(xr−xn)

Rnr

ksny = − kyn
Rnr

ksnz =
k(hr−zn)

Rnr

(106)

The corresponding polarization vectors are:

ĥsn = ẑ×ksn
|ẑ×ksn|

v̂sn = ĥsn × ksn
(107)

The local incident angle on the patch is given by:

cos θin = −n̂·kin (108)

The mean field intensity and covariance of fields correspond to the average and the
variance of the integral I(N)

n . They are evaluated using methods described in page 80 of
Tsang and Kong volume 3 [39]. The average of I(N)

n , denoted by I(N)
n , is expressed as:

〈I(N)
n 〉 = kLe−

k2
dnzh2

2 sinc
[(

kdnx
kdnz

+ p3n

)
kdnzL

2

]
sinc

[( kdny

kdnz
+ q3n

)
kdnzL

2

]
(109)

where k is the wavenumber, kdn = kin − ksn = kdnx x̂ + kdnyŷ + kdnz ẑ, and L = 30 m is the
planar patch size of DEM f3(x, y). The sinc functions represent the scattering pattern of
coherent of the patch. kdnx and kdny represent the separation of the patch from the specular
point, and p3n and q3n are the slopes of the patch for x and y directions.

The variance of I(N)
n is, assuming isotropic roughness and isotropic fine scale topogra-

phy of f12(x, y):

D(N)
In

= 〈|I(N)
n |

2
〉 − |〈I(N)

n
2
〉|

= 2πk2
∫ ∞

0 dρρJ0

(
ρ

√
(kdnx + p3nkdnz)

2 +
(

kdny + q3nkdnz

)2
)[

e−k2
dnzh2(1−C(ρ)) − e−k2

dnzh2
] (110)

3.5.1. Multiple DEM Patches

For land surfaces which are divided into multiple DEM patches with size of L (e.g.,
L = 30 m), the mean fields were obtained by field summation from each patch. The
covariance of fields was obtained by incoherent summation from each patch.

3.5.2. Mean Field

The bistatic scattering coefficient for mean field intensity of an area with N patches is
given as the following equation.

γmean f ield =
R2

t R2
r cos θi
Nπ

∣∣∣∣∣ N

∑
n=1

eik(Rnt+Rnr)

RntRnr

v̂snRv(θin) + iĥsnRh(θin)√
2

〈I(N)
n 〉

∣∣∣∣∣
2

(111)
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Small slope approximation is applied to f3 to simply the expression. Reference [16]
provides more details. To calculate the γmean f ield within a certain area, we need first to

obtain the 〈I(N)
n 〉 from each patch using Equation (109). The exponential term eik(Rnt+Rnr)

RntRnr
keeps track of the phase of mean field for each patch. Rnt and Rnr are the distance between

the specular point and transmitter and receiver respectively. The term v̂snRv(θin)+iĥsnRh(θin)√
2

represents the reflection of circular polarized wave on the patch, and the Fresnel reflection
coefficients with local incident angle θin are given by:

Rhn =
k cos θil−

√
k2

1−k2 sin2 θin

k cos θil+
√

k2
1−k2 sin2 θin

Rvn =
ε1k cos θin−ε0

√
k2

1−k2 sin2 θin

ε1k cos θin+ν
√

k2
1−k2 sin2 θin

(112)

3.5.3. Covariance of Fields

γCo var =
R2

t R2
r cos θi
Nπ

N

∑
n=1

1
R2

ntR2
nr

|Rv(θin)− Rh(θin)|2

4
D(N)

In
(113)

To calculate the γCo var within a certain area, the D(N)
I for each patch is calculated by

Equation (113). The reflection coefficient for the circular polarized wave is calculated by
|Rv(θin)−Rh(θin)|2

4 . Equation (45) is obtained by small slope approximation to f3. The detailed
derivation can be found in ref. [16].

3.6. Two Geometric Optics Approaches

The geometric optics consists of making a high-frequency approximation of k→ ∞ .
Since microwave roughness does not fall in that category, f1(x, y) is ignored in the tradi-
tional geometric optics approach. The stationary phase approximation is then applied to
the Kirchhoff integral to the phase term with f23(x, y) = f2(x, y) + f3(x, y). The results are
independent of frequency. The GO was first applied to GNSS-R for ocean [40]. However, to
account for the effects of small roughness of f1(x, y), an improved geometric optics model
(IGOM) was proposed in ref. [43], which was recently adopted in CYGNSS [42].

In IGOM, an attenuation term e−4k2h2
1 cos2 θi is added. The approach requires the

decomposition of f12 separately into f1 + f2.
The bistatic scattering coefficient for GO is:

γGO =
R2

t R2
r

N cos θi

N

∑
n=1

1
R2

ntR2
nr

|Rv(θin)− Rh(θin)|2

4
1

2s2
2n

|kdn|4

|kdnz|4
e
−

(
kdnx
kdnz

+p3n)
2
+(

kdny
kdnz

+q3n)
2

2s2
2n (114)

where N is the number of patches in the observation area, 1
2 (Rv + Rh) is the reflection

coefficient of circular polarized wave. s2 =
√

2 h2
l2

is the rms slope of f2 assuming a
Gaussian correlated surface.

The IGOM is given by

γIGOM = γGOe−4k2h2
1n cos2 θin (115)

Notice that both GO and IGOM are derived from the Kirchhoff integral based on
stationary phase approximation. The differences between GO and IGOM are small for
small h1. In Table 7, we tabulate e−4k2h2

1n cos2 θi at the L-band. As shown in Table 7, with
h1 = 3 cm, the difference between GO and IGOM is 10 dB. In mountainous regions, when
h1 = 6 cm, the difference between GO and IGOM is 40 dB.
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Table 7. Typical values of the attenuation factor in GO-Att. k = 33 m−1, θi = 40
◦
.

h1(cm) −4k2h2
1cos2θi exp(−4k2h2

1cos2θi)(dB)

1 0.26 −1.11

2 1.02 −4.44

3 2.30 −10.0

6 6.39 −40.0

3.7. Numerical Results for L-Band and P-Band

In this section, we present the results for L- and P-band simulations. In Figure 11, we
show the bistatic scattering coefficient near the specular direction of AKS, GO, and IGOM
in both L- and P-bands. It is shown that the GO stayed the same for L- and P-band and
IGOM had a 2 dB difference while AKS showed a difference about 8 dB in the specular
direction. Additionally, notice that at the L-band, the AKS solution overlaps with the GO.
This is due to the large kh2 value in the L-band since the rms height is already 1 quarter of
the wave length in the L-band, in which case the Geometric optic limit is satisfied. However,
in the P-band, the rms height is only 1/16 of the wavelength.
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Figure 11. Bistatic scattering coefficient for covariance of fields in the L and P bands with GO, AKS,
and IGOM. Results show that AKS has a frequency dependence while GO and IGOM do not.

The mean field bistatic coefficient and covariance are shown in Figure 12 for the P-band
and L-band. The observation area was centered at (0, 0, 0), which is the specular point. The
incident angle and scattering angle with respect to the specular point was fixed at θi = 40◦.
The transmitter and receiver positions are given by Equations (79) and (80). Equations (111)
and (113) were used to calculate the bistatic scattering coefficients for mean field intensity
and Covariance of fields. The rms height and correlation length for f2(x, y) were 5.78 cm
and 3.75 m respectively for the entire 5 km by 5 km area. The land topography data were
obtained from SRTM [45] centered at at 37.2116◦ N, 105.9756◦ W. The land surface was
interpolated into 60 m × 60 m grids, and the slopes for coarse topography was obtained by
taking the different between adjacent data points.
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The bistatic scattering coefficient for the mean field at P-band was much larger than
the covariance of fields for an area as large as 5 km. For the L-band, the mean field was
much smaller than the covariance of fields. This is due to the large rms height of 5.78 cm
for f2(x, y). Monte Carlo was performed to obtain the mean and covariance of fields for
NKA. For this case, the number of realizations N = 300 was used. Notice that for the L
band, the NKA does not agree with AKS for mean field in larger areas. This is due to the
fact that when the area increases, there will be more additions of complex numbers. To
obtain convergent results, more realizations are required for NKA.

3.8. L-Band: Track-Wise Comparison of DDM with CYGNSS Data

We compared simulated Delay Doppler Maps (DDM) with CYGNSS data. The track-
wise comparison was performed with CYGNSS v3.0 data from Physical Oceanography
Distributed Active Archive Center (PODAAC). We used the track data collected near
the Z1 cal/val site (37

◦
11′26.26′′ N, 105

◦
59′31.64′′ W) in San Luis Valley, CO, USA. The

data were collected on day 301 of 2019 by craft 02 in channel 3. The time index is
from 101,225 to 101,246. The specular points of the track of data we picked start from
(37.1817

◦
N, 106.1732

◦
W), and end at (37.2451

◦
N, 105.4590

◦
W).

In Figure 13, a track-wise comparison for the peak value bistatic radar cross section
(BRCS) between CYGNSS data and AKS is shown. The soil permittivity was selected as
ε = 3.293 + 0.198i based on the ground soil moisture measurement. We kept h1 = 1 cm,
h2 = 5 cm, l1 = 10 cm, and changed l2 from 50h1 to 130h1 for mountainous and planar
areas respectively. The table is shown in Table 8.

The size of the area that contributes to the Delay–Doppler along the track is 45,000 km2.
The p3n and q3n of the 30 m patches were derived from DEM over this area. As is shown in
Figure 13, the simulation results of AKS are in good agreement with the data. We also show
the mean slope using the scale on the right vertical axis. The result of Bistatic coefficient
is opposite to that of the topographical slope. When the topographical slope is small, the
bistatic coefficient is large. When the slope is large, the bistatic coefficient is small. The
result clearly shows the importance of topography in reflectometry. One limitation of this
comparison is that h1 = 1 cm is assumed to be small. The small h1 means that the difference
between GO and IGOM is small.

With the incorporation of SAR technology in SoOP, we are studying the specular
reflections with much finer spatial resolutions. We are also studying the vegetation and
forest effects using the full-wave simulations methods.



Remote Sens. 2022, 14, 3640 32 of 47

Remote Sens. 2022, 14, x FOR PEER REVIEW 31 of 47 
 

 

  
Figure 12. 𝛾𝛾𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛 𝑓𝑓𝑖𝑖𝑒𝑒𝑙𝑙𝑑𝑑 and 𝛾𝛾𝑖𝑖𝑜𝑜𝑣𝑣𝑚𝑚𝑟𝑟 for the L-band and P-band. Results have shown that the NKA has 
good agreement with AKS. In the P-band, 𝛾𝛾𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛 𝑓𝑓𝑖𝑖𝑒𝑒𝑙𝑙𝑑𝑑 is always much larger than 𝛾𝛾𝑖𝑖𝑜𝑜𝑣𝑣𝑚𝑚𝑟𝑟, while for 
the L-band, 𝛾𝛾𝑖𝑖𝑜𝑜𝑣𝑣𝑚𝑚𝑟𝑟 is much larger than 𝛾𝛾𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛 𝑓𝑓𝑖𝑖𝑒𝑒𝑙𝑙𝑑𝑑. 

3.8. L-Band: Track-Wise Comparison of DDM with CYGNSS Data 
We compared simulated Delay Doppler Maps (DDM) with CYGNSS data. The track-

wise comparison was performed with CYGNSS v3.0 data from Physical Oceanography 
Distributed Active Archive Center (PODAAC). We used the track data collected near the 
Z1 cal/val site (37o11′26.26”N, 105o59′31.64”W) in San Luis Valley, CO, USA. The data 
were collected on day 301 of 2019 by craft 02 in channel 3. The time index is from 101,225 
to 101,246. The specular points of the track of data we picked start from 
(37.1817oN, 106.1732oW), and end at (37.2451oN, 105.4590oW). 

In Figure 13, a track-wise comparison for the peak value bistatic radar cross section 
(BRCS) between CYGNSS data and AKS is shown. The soil permittivity was selected as 
𝜀𝜀 = 3.293 + 0.198𝑖𝑖 based on the ground soil moisture measurement. We kept ℎ1 = 1 cm, 
ℎ2 = 5 cm, 𝑙𝑙1 = 10 cm, and changed 𝑙𝑙2 from 50ℎ1 to 130ℎ1 for mountainous and planar 
areas respectively. The table is shown in Table 8. 

 
Figure 13. Track-wise comparison between AKS and CYGNSS v3.0 data from Physical Oceanogra-
phy Distributed Active Archive Center (PODAAC). 

  

0 1 2 3 4 5 6

sqrt(A)(km)

10

15

20

25

30

35

40

(d
B

)

P band  mean field vs  covar

 mean field AKS
 covar AKS

 mean field NKA
 covar NKA

0 1 2 3 4 5 6

sqrt(A)(km)

-5

0

5

10

15

20

25

(d
B

)

L band  mean field vs  covar

 mean field AKS
 covar AKS

 mean field NKA
 covar NKA

-106.2 -106.1 -106 -105.9 -105.8 -105.7 -105.6 -105.5 -105.4

longitude

15

16

17

18

19

20

21

22

23

24

B
is

ta
tic

 s
ca

tte
rin

g 
co

ef
fic

ie
nt

(d
B

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

m
ea

n 
f3

 s
lo

pe

Track wise comparison

CYGNSS data
AKS
mean slope

Figure 13. Track-wise comparison between AKS and CYGNSS v3.0 data from Physical Oceanography
Distributed Active Archive Center (PODAAC).

Table 8. Correlation length l2 and coarse topography slope.

Longitude l2 (Times of h2) 〈
√

p2
3+q2

3〉

<−105.90 125 /
−105.86 69 0.0599
−105.83 53 0.0785
−105.79 52 0.0797
−105.76 50 0.0837
−105.73 61 0.0679
−105.69 83 0.0503
−105.66 74 0.0569
−105.62 93 0.0448
−105.59 126 0.0331

>−105.56 125 /

4. Rough Surface

In this section, we review our recent method and results of calculating the scattering
of the snow/soil interface at L-, C-, X-, and Ku-bands [46,47]. Two distinct assessments
of rough-surface scattering simulations are (i) what is the largest kh simulated? (ii) Are
the simulations using exponential correlation functions or Gaussian correlation functions?
Physical models of rough-surface scattering have been studied with the two classical
methods of the small perturbation method (SPM) and the Kirchhoff approach [39,48].
Advanced analytical methods include the advanced integral equation model [49] and small
slope approximation and its extensions [50,51]. A description of roughness is through
kh, which is the product of the EM wavenumber of the medium above the rough surface
and the surface rms height h. For soil-surface scattering, the previous results of analytical
models and numerical simulations have been limited to kh < 3 because of the past focus
on L-band. Using a times series of backscatter measurements of SMAP from HH and VV
polarizations, both soil moisture and surface rms height were retrieved at 3 km resolution
for the 13 April–7 July 2015 period of SMAP radar operations [52]. The product shows that
the global median rough surface heights are 2 cm and rms heights are 5 cm in the mountain
regions. At Ku band, for the case of rms height of 5 cm, kh is 18 for air/soil interface
and 21.6 for snow/soil interface. The larger kh for the snow/soil interface is because of
the larger wavenumber in snow than in air. Thus, the past limit of kh < 3 has limited
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applications to the L-band and C-band. Recently, we performed full-wave simulations with
kh up to 15, thus widening the applicability of full-wave simulations up to the Ku-band.

The soil surface can be described by a stationary Gaussian random process, so that
knowledge of its covariance function is sufficient to describe its properties. The covariance
function is further parametrized in terms of its rms height and correlation length. Ground
measurements have been made of these properties [53–55]. The ground measurements of
correlation lengths have a maximum of 10 cm. We label these roughness measurements
as “limited correlation length up to 10 cm”. However, in global retrieval of soil moisture
using six months of the NASA Soil Moisture Active Passive (SMAP) radar data at the
L-band, the roughness was modeled as having a constant ratio of correlation length to
rms height [52,56]. The ratios range from 5 to 20. This means that if the rms height is
5 cm, then the correlation length 100 cm if the ratio is 20. The two assumptions of “limited
correlation length” and “constant ratio” are widely different for rms heights beyond 2 cm.
The rms heights in mountainous regions are large and can be up to 5 cm. Based on our
recent simulations, we found that the constant ratio approach provides more acceptable
results. Surface scattering also depends on the soil permittivity, which in turn depends on
soil moisture (which describes the volume of water present per unit volume of soil) and
texture (which describes soil composition). Given these parameters, empirical models are
available to calculate the soil permittivity [57,58]. In addition to soil properties, land cover
including litter and vegetation as well as rock outcrops impact the spatial variability of
surface permittivity.

We applied the Method of Moment (MoM) in full-wave simulations of numerical
solutions of Maxwell’s equations (NMM3D) to L-band radar backscatter for the SMAP
mission [25,26]. The full-wave simulations were used to generate look-up table (LUT) [27].
The LUT were initially used for air/soil interfaces. However, the LUT are based on
incident angles of the upper medium and the relative dielectric constant between the
two media on the two sides of the rough surfaces. By adjusting the relative dielectric
constants and the incidence angle using Snell’s law, the NMM3D LUT are also applicable
for all combinations of relative dielectric constants such as rough interfaces of snow/soil,
air/snow, and snow/permafrost, etc. Both the AIEM model and the NMM3D have been
previously limited to kh < 3.

Recently, NMM3D calculations were performed with kh up to 15 (h = 4.16 cm for
17.2 GHz) [46,47]. Table 9 lists how kh increases for h = 5 cm from the L-band to the Ku-band
for the air/soil interface and snow/soil interface. With kh = 15, we are able to reach the
Ku-band for the calculation for rms height up to 5 cm for most soil surfaces in the world.
In this section, we describe how we calculate the rough soil-surface scattering using the
volume integral equation (VIE) method with periodic boundary conditions.

Table 9. kh of 5-cm rms height for air/soil and snow/soil interface from L- to Ku-band.

rms Height, h = 5 cm L Band
(1.26 GHz)

S Band
(2.5 GHz)

C Band
(5.4 GHz)

X Band
(9.6 GHz)

Low Ku Band
(13.6 GHz)

High Ku Band
(17.2 GHz)

kh, air/soil interface 1.32 2.62 5.66 10.06 14.25 18.02
kh, snow/soil interface 1.58 3.14 6.79 12.07 17.10 21.63

Three-dimensional full-wave simulations of rough-surface scattering have drawn
significant interest in recent years because of the advance of Computational electromag-
netics (CEM), High-Performance Computing (HPC), and commercial software. We have
applied MoM accelerated by SMCG Other methods and commercial software have also
been used [26,27]. Among user-friendly commercial software are HFSS, which are based
on the Finite element method (FEM), FEKO, which is based on the Method of Moments,
accelerated by Multilevel Fast Multipole (MLFMA), and CST, which is based on the Finite
Difference Time Domain method (FDTD). The advancement of these methods in rough-
surface scattering can be assessed by the largest kh value calculated and the ability to deal
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with rough surfaces with exponential correlation functions. Soil surfaces are well described
by an exponential correlation function as concluded in the paper by Oh et al. 1992 [59].
Surfaces with exponential correlation functions have the fine-scale features that make them
more challenging than surfaces with Gaussian correlation functions. For HFSS, it was
reported in paper by H. Lawrence et al. [60]. The paper showed results of exponential
correlation functions with kh = 1. For CST, it was reported that rough surface simulations
were performed for Gaussian correlation functions with h = 0.1 wavelength, which means
kh = 0.63 [61]. For FEKO, it was reported in the paper by Y. W. Wei et al. that rough-surface
scattering was calculated with Gaussian correlation functions for h = 0.06 wavelength,
which means kh = 0.418 [62]. The extended boundary condition technique has been used for
exponential correlation function with h at 0.044 wavelength corresponding to kh = 0.27 [63].
In our previous work, we reported the SMCG method in MoM with RWG basis functions
with kh up to 4 and exponential correlation functions [27,64]. At this moment, the kh values
of the reported full-wave simulations are much smaller than the kh = 15 reported in this
section. To summarize, we previously performed NMM3D simulations using MoM–SMCG
for rough soil surfaces with exponential correlation functions up to kh = 4. Other methods
including FEM, FDTD and Extended Boundary condition (EBC), HFSS, FEKO, and CST,
etc. have been limited to even smaller kh: less than 1.

4.1. Formulation of VIE Using Periodic Boundary Conditions and Periodic Half Space Dyadic
Green’s Function

We applied the VIE approach with periodic boundary conditions to calculate scattering
by a rough soil surface. Since we only consider rough surfaces, the formulation of combined
volume and surface scattering in Tan 2016 is simplified [65].

Consider an incident plane wave incident onto a rough surface. The media above
and below the rough surface are labeled medium 0 and medium 1 respectively. The
permittivities are ε and ε1 respectively. The wavenumbers are k and k1 respectively. The
medium, 0, can be air or snow with ε = ε0 for air and ε = εsnow for snow. The ε1 in this paper
is ε1 = εsoil for soil. For a single realization of a rough surface (Figure 14) with maximum
height fmax and minimum height fmin, we set z = 0 at fmin and z = d at fmax so that

d = fmax − fmin (116)
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Then, the region 0 ≤ z ≤ d is an inhomogeneous region. The inhomogeneous
permittivity in that region is εm(r) is

εm(r) =
{

ε for r in medium 0
ε1 for r in medium 1

(117)

The region is inhomogeneous, and the problem can be cast into VIE with the surface
scattering problem converted into a volume scattering problem in the inhomogeneous
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region. We discretize the inhomogeneous regions into small cubes that are much smaller
than a wavelength. Each small cube has permittivity either ε or ε1. Consider an incident
plane wave launched from medium 0.

Einc(r) = E0eikix x+ikiyy+ikizz (118)

where E0 is vertical polarized (TM) or horizontal polarized (TE) and

kix = k sin θi cos φi
kiy = k sin θi sin φi
kiz = k cos θi

(119)

Let kiρ = kix x̂ + kiyŷ be the horizontal component of the incident wave vector. Because
we use the half space dyadic Green’s function as the background with the rough surface
creating the inhomogeneous medium, there is a specular reflected wave when the rough
surface is planar, which comes from reflection of a planar surface between medium 0 and
medium 1 due to the planar surface at z = 0.

Ere f (r) = E0R(θ)eikix x+ikiyy+ikizz (120)

where R(θ) is the Fresnel reflection coefficient at angle θi. The reflection coefficient is
R(θi) = RTM(θi) for TM and R(θi) = RTE(θi) for TE. By periodic boundary conditions, we
mean that the horizontal domain is divided into periodic regions and the permittivities are
repeated periodically. The (0,0) period is

− Lx
2 ≤ x ≤ Lx

2
− Ly

2 ≤ y ≤ Ly
2

(121)

Then, the cells are labeled by integers p, q with p, q = 0, ±1, ±2, . . . Let

ρpq = pLx x̂ + qLyŷ (122)

The periodic permittivities are

εm(r + ρpq) = εm(r) (123)

The boundary value problem is 3D electromagnetic wave scattering, and the periodic-
ity is 2D (labeled as a 3D2D problem). The electric field obeys the Bloch condition

E(r + ρpq) = E(r)eikiρ ·ρpq (124)

By making use of periodic Green’s functions, The VIE is converted into one period
(0,0) for the inhomogeneous region

E(r) = Einc(r) + k2
∫ d

0 dz′
∫ Lx

2
− Lx

2
dx′
∫ Ly

2

− Ly
2

dy′
=
GP

(
r, r′, kiρ

) (
εm(r)

ε − 1
)

E(r)

;− Lx
2 ≤ x ≤ Lx

2 ,− Ly
2 ≤ y ≤ Ly

2 , 0 ≤ z ≤ d
(125)

where r and r′ are in the inhomogeneous region of period (0,0). The
=
GP

(
r, r′, kiρ

)
is the half

space periodic Dyadic Green’s function. It is decomposed into the free space part
=
G
(0)

P and

the reflection part
=
G
(R)

P .

=
GP(r, r′, kiρ) =

=
G
(0)

P (r, r′, kiρ) +
=
G
(R)

P (r, r′, kiρ) (126)
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By applying the discrete dipole approximation (DDA) with small cube size ∆V and
taking into account the singularity of the dyadic Green’s function of the free space response
=
G
(0)

P

(
r, r′, kiρ

)
, we obtain the matrix equation.

pi =
=
αi

[
Einc(ri) + Ere f (ri) +

k2

ε ∑
j 6=i

=
G
(0)

P (r, r′, kiρ)·pj +
k2

ε ∑
j

=
G
(R)

P (r, r′, kiρ)·pj

]
(127)

where

pi = ∆Vε

(
εm(ri)

ε
− 1
)

E(ri) (128)

is the polarization of the cube.

=
αi = ∆Vε

(
εm(ri)

ε
− 1
)[

=
I − k2

(
εm(ri)

ε
− 1
)
=
S
]−1

(129)

is the polarizability of the i-th cube and
=
S is the singular integral over the self cube.

=
S =

∫
V(0)

C

=
G
(0)

P (0, r′, kiρ)dr′ (130)

The expression for half space dyadic Green’s functions are the non-periodic ones in
Tsang et al. volume 1 with the wave vectors replaced by Bloch vectors [28]. The free space
part is

=
G
(0)

P

(
r, r′, kiρ

)
=

i
2Ω ∑

α

1
kzα

[
êα(kzα)êα(kzα) + ĥα(kzα)ĥα(kzα)

]
eikρ ·(r−r′) f or z > z′ (131)

=
G
(0)

P

(
r, r′, kiρ

)
=

i
2Ω ∑

α

1
kzα

[
êα(−kzα)êα(−kzα) + ĥα(−kzα)ĥα(−kzα)

]
eiKρ ·(r−r′) f or z < z′ (132)

and the reflected part is

=
G
(R)

P

(
r, r′, kiρ

)
= i

2Ω ∑
α

1
kzα

[
RTE êα(kzα)êα(−kzα) + RTM ĥα(kzα)ĥα(−kzα)

]
eikρ ·(r)e−iKρ ·r′ f or z < z′

(133)

where kρ and Kρ are respectively the upward Bloch vector and downward Bloch vector.
For 2D periodicity, Ω = LxLy, the reciprocal lattice vectors are

Kmn = m
2π

Lx
x̂ + n

2π

Ly
ŷ (134)

where m, n = 0,±1,±2, . . .. The Bloch vectors are

kimn = kiρ + Kmn (135)

so that

kzmn =

√
k2 −

∣∣∣kimn

∣∣∣2 (136)

We also use α to represent the double index (m, n) so that ∑α = ∑m,n , kzα = kzmn.
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The upward propagation Bloch vector is

kα = kimn + kzmn ẑ (137)

The downward propagation Bloch vector is

Kα = kimn − kzmn ẑ (138)

The definitions of TE and TM polarization vector ê and ĥ follow that of Tsang et al.
volume 1 and are

êα(kzα) = êα(−kzα) =
1∣∣∣kimn

∣∣∣
(
kyα x̂− kxαŷ

)
(139)

ĥα(kzα) = −
kzα

k
∣∣∣kimn

∣∣∣
(
kxα x̂ + kyαŷ

)
+

∣∣∣kimn

∣∣∣
k

ẑ (140)

ĥα(−kzα) =
kzα

k
∣∣∣kimn

∣∣∣
(
kxα x̂ + kyαŷ

)
+

∣∣∣kimn

∣∣∣
k

ẑ (141)

4.2. Modeling and Estimation of the Roughness

In NASA’s Soil Moisture Active Passive (SMAP) mission, the objective is to retrieve
soil moisture globally using radar and radiometer observations. For the radar retrieval
part, the lookup table (LUT) is applied according to landcover and vegetation type [52].
Kim et al. applied a time-series approach to retrieve soil moisture [29]. For a given pixel,
the rms height is assumed constant, so it is not only retrieving soil moisture but also rms
height [29]. The retrieved soil moisture and rms height are provided in SMAP L3 Radar
Global Daily 3 km EASE-Grid Soil Moisture products through the National Snow & Ice Data
Center (NSIDC) [66]. Although SMAP’s radar was only active for 3 months, the amount
of retrieved global rms height map provides the basis for our analysis here. Figure 15a
plots the rms heights obtained over North America based on the average of rms height
maps from the 3 months products. The Figure shows most locations to have rms heights of
2 cm or less while mountainous regions show rms heights from 4 to 6 cm. A histogram of
these rms heights for North America is further provided in Figure 15b. In rough-surface
scattering at the Ku-band, a upper limit of kh = 2 or 3 was used, which missed the fact that
the kh upper limit is actually 20, which is ten times larger than kh = 2. Next, we consider
the scattering problem taking into account those fine features at higher frequency.

Consider an incident plane wave on a rough surface as shown in Figure 16. The
direction of the incident wave is ki = kk̂i = kix x̂ + kiyŷ− kiz ẑ, where kix = k sin θi cos φi,
kiy = k sin θi sin φi, and kiz = k cos θi. θi and φi are the incident elevation and azimuth angle,
respectively. The scattered wave Es is with scattered direction of ks = kk̂s = ksx x̂ + ksyŷ + ksz ẑ,
where ksx = k sin θs cos φs, ksy = k sin θs sin φs, and ksz = k cos θs. θs and φs are the scatter-
ing elevation and azimuth angle, respectively.

The roughness profile f (x, y) is given by

f (x, y) = f1(x, y) + f2(x, y)

h =
√

h2
1 + h2

2
h2C(ρ) = h2

1C1(ρ) + h2
2C2(ρ)

(142)

where f1(x, y) is the finer roughness in millimeter scale with rms height h1, correlation
length l1, and correlation function C1(ρ). The f2(x, y) is roughness in centimeters with
rms height h2, correlation length l2, and correlation function C2(ρ). For the combined
f1(x, y) and f2(x, y) in f (x, y), the rms height h and correlation function C(ρ) are given by
Equation (141). l is the correlation length of f (x, y) that C(l) = exp(−1).
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the correlation length of 푓  but comparable with the correlation length of 푓 . The milli-
meter-scale roughness 푓  has effects for high frequency. To investigate the scattering of 
rough surfaces at the X- and Ku-bands, it is important to include fine-scale roughness 푓  
superimposed on 푓 , providing a two-scale roughness for the present simulations. 

Figure 16. Wave scattering from a rough surface with two roughness scales.

Figure 17 plots the exponential term of the Kirchoff integral in the backscattering
direction as a function of ρ from the L- to the Ku-band. Results indicate that the exponential
term has effects on backscatter for ρ more than 10 cm for the L-band. For frequencies
above the X-band, the exponential term has effects for ρ less than 3 cm, which is less
than the correlation length of f2 but comparable with the correlation length of f1. The
millimeter-scale roughness f1 has effects for high frequency. To investigate the scattering of
rough surfaces at the X- and Ku-bands, it is important to include fine-scale roughness f1
superimposed on f2, providing a two-scale roughness for the present simulations.
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Figure 17. The exponential factor in the Kirchhoff integral, exp
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dxh2(1− C(ρ))
)
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dxh2)
versus ρ at backscattering direction from the L- to the Ku-band. The rough surface is exponential
with parameters of h1 = 0.3 cm, l1 = 1.2 cm, and h2 = 2.0 cm, l2 = 14 cm.

In the VIE-NMM3D approach, we modeled the rough-surface scattering using a Monte
Carlo simulation in which the scattering from each surface realization was computed using
a discrete dipole approximation (DDA) to the volume integral [67–69].

The rough surface realizations generated are stationary Gaussian random processes
having horizontal dimensions L × L. For each realization, the minimum of the rough
surface profile, fmin = MIN{ f (x, y)}, is defined as z = 0, and the “depth” of the simulation
domain must satisfy d > fmax − fmin, where fmax = MAX{ f (x, y)}. Note this definition
of the coordinate system results in a mean surface height > 0 and results in phase offsets
for each realization. This is immaterial for the purposes of this work because only the
incoherent backscattering coefficient γ(θs, φs) at oblique incidence is examined. The DDA
simulation domain of dimension L × L × d is then discretized into small cubes whose
dimensions are small compared with the wavelengths of interest and to the roughness
scales of interest. Cubes within the soil region are modeled as having the permittivity of
soil while those in free space are modeled as having the permittivity of free space. Because
these cubes exist in the presence of the soil half space z < 0, a half space Green’s function
was used to compute the radiation from each cube with z = 0 representing the half space
interface. Periodic boundary conditions were also applied in both horizontal directions
to reduce the effect of the horizontal boundaries. This has the effect of discretizing the
scattered field into a set of Floquet mode plane waves. However, it should be expected that
surface periods L much greater than the wavelengths of interest will produce Floquet mode
amplitudes that approximate the scattering in those directions of an infinite continuous
rough surface when observed in the same scattering direction.

4.3. The Frequency and Roughness Responses of the Backscattering from the Rough Surface

In this section, we provide a few simulation results [46]. More simulation results can
be found in the PhD thesis of Jiyue Zhu [47]. In Figure 18, the backscattering is plotted as a
function of kh up to kh = 6. The ratio of correlation length to rms height was 7. The simulated
frequency was 9.6 GHz. Figure 18 shows that the DDA simulations are in good agreement
with previous MoM full-wave simulations LUT up to kh = 1.5 [70]. The backscattering
of DDA simulations first increased with kh and then saturated around kh = 2.5. The
physical basis behind such phenomena is that the magnitude of waves reflected back to the
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backscattering direction increase with the roughness and then finally reaches a maximum
value (which is corresponding to the geometric optics (GO) realm [39]). Saturation was also
postulated by Oh’s empirical model without experimental data in the large kh regime [59].
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Figure 18. Backscattering as a function of kh for rough surfaces with a “constant ratio” of 7. The
incident angle is 40 degrees and soil permittivity is 5.5+ 2i. The stars are DDA simulations. The circles
are from previous full-wave simulations [27]. The fitting curve is generated based on NMM3D results.

In Figure 19, the backscattering is plotted as a function of kh for rough surfaces with
“limited correlation lengths”. The rms heights (0.3 cm, 0.6 cm, 0.9 cm, 1.2 cm, 1.5 cm, and
1.8 cm) and correlation lengths (2.64 cm, 5.04 cm, 5.85 cm, 6.3 cm, 6.75 cm, and 7.2 cm) are
from field measurements in San Luis Valley (SLV), CO, USA. A laser range finder mounted
on a horizontal bubble level supported by a tripod at each end was used to measure small-
scale surface roughness along the 1 m baseline of the level at multiple locations [42]. The
simulated frequency was 13.6 GHz. We considered a snow-covered, rough soil surface.
Backscattering first increased with kh to reach the peak around kh = 2.1 and then decreased.
Such a decrease is caused by the decrease of the ratio of correlation length and rms height.
In the GO limit, smaller ratio yields a weaker backscatter.
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Figure 19. Backscattering as a function of kh for rough surfaces with “constant correlation length”.
The upper medium is snow with permititivy of 1.44 and the lower medium is soil permittivity of
5.5 + 2i. The red curve is with snow attenuation and blue curve without snow attenuation.
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In Figure 20, we show the VV backscattering as a function of rms heights at C-, X-,
and Ku-bands. The figures show saturation effects, meaning that rough-surface scattering
saturates at large rms heights (~3–6 cm) and at high frequencies. The new results of kh up
to 15 are useful for studying rough surface radar backscattering at the X- and Ku- bands for
snow/soil interfaces.
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Figure 20. Backscattering at VV-polarization as a function of rms height with soil of 10% moisture at
C-, X-, and Ku-bands.

4.4. Using the Retrieved rms Height from UAVSAR L-Band Data to Simulate Backscattering at X-
and Ku-Bands
Interaction of Radar Waves with the Ground Surface Beneath the Snowpack

Figure 21 shows radar backscattering from a snow layer. The interaction of radar with
snow overlying a rough soil surface involves refraction and scattering from the air/snow
interface. In Figure 21, we show the incident plane wave at incident angle θi. Based on
Snell’s law, the transmitted angle is θt so that the incident angle on the rough soil surface
is θt. With snow relative permittivity of approximately 1.44, the refracted angle θt was
32.4 degrees, which corresponds to the 40 degrees incidence angle of θi in air. Because
of the magnitude of dielectric contrasts, the contributions of rough-surface scattering are
from the snow–soil rough interface and not from the air/snow interface. The air/snow
interface has stronger scattering contribution for wet snow which is outside the domain of
the X-band and Ku-band volume scattering approach for SWE retrieval.
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The volume scattering method at the X-band the and Ku-band has been proposed to
retrieve SWE for dry snow. For such a case, the rough surface contribution arises from the
rough snow–soil surface below the snow layer. It is proposed in this paper that L-band and
C-band radar signals can be used to retrieve both the rms height and the moisture of the soil.
Since microwave scattering depends on permittivity. The retrieval of soil moisture covers
the various soil conditions of soil texture, freeze–thaw, etc. For wet snow, a rough-surface
contribution arises from the air/snow surface. However, the volume scattering method is
not proposed for wet snow.

Rough-surface scattering from the snow/soil interface contributes to radar observa-
tions as represented by σrsexp(−2τsecθt). The term is affected by the rough soil-surface
scattering σrs and the attenuation through snow factor of exp(−2τsecθt). σ refers to either
VV or HH. rs stands for rough surface and τ is optical thickness. The rough soil-surface
scattering contribution is not related to SWE and it should be removed when retrieving
SWE. The subtraction of surface scattering has been used to improve the accuracy of SWE
retrieval [17,24]. The approach of removing σrsexp(−2τsecθt) consists of using a combina-
tion of data and electromagnetic models. The removal of surface scattering is a significant
part of the retrieval algorithm that is discussed later in this section.

To estimate rough-surface scattering at the X-band and Ku-band, there are two ap-
proaches, (a) and (b). Approach (a) is as described in ref. [18]. In approach (a), radar
observations at the X- and Ku-bands at a specific location before the snowfall are used
to estimate the surface backscattering [18]. Such an approach neglects changes in soil
properties and background land-cover during the snow-on season. In approach (b), the
estimation of rough-surface scattering, σrs, at the X-band and Ku-band consists of using a
combination of measurement data and electromagnetic models. The measurement data
include backscattering data at the L-band, C-band, X-band and Ku-band before and after
snow. The electromagnetic model of rough-surface scattering results is based on using
look-up table (LUT) results of Numerical Maxwell 3D model of full-wave simulations of
surface scattering from the L-band to the Ku-band. In this section, we illustrate approach (b)
using L band UAVSAR data. We used a two-step procedure. In the first step of approach (b),
we used co-polarized radar time series observations at the L- and C-bands, which have
much larger surface scattering than volume scattering, to estimate soil permittivity and
surface roughness. The use of the C-band time series together with the L-band time se-
ries enhances the existing L-band algorithm in retrieving rms height and soil moisture.
Using L-band and C-band data before and after snow fall together with LUT of Maxwell
equations for the L-band and C-band, we retrieve the rough surface rms heights and soil
moistures. The retrieval is carried out for both before snow fall and after snow fall. After
snow fall, Snell’s law is used to adjust the incident angle at the snow–soil interface to
account for the refraction angle at the air/snow interface. In step 2 of approach (b), the rms
heights and soil permittivities retrieved in step 1 are used in the NMM3D LUT to obtain
the model backscattering results of σrs at the X- and Ku-bands for the same roughness
and soil moisture parameters. Approach (b) is applicable even when there are changes
of rms heights and soil moistures during the snow season. Approach (b) assumes the
availability of matchup spaceborne L- and/or C-band SAR observations with revisits of
10 days. The revisits provided by the Sentinel-1 and NISAR systems, as well as future
proposed continuation missions, suggest that such datasets are likely to be available during
the time frame of a future snow observing mission.

We next give an example of approach (b) using UAVSAR L band data to demonstrate
the retrieval of rms heights and soil permittivity. We consider, as in step 1, using L-
band UAVSAR radar full polarization observations under snow-on conditions using the
NMM3D LUT [27]. The UAVSAR dataset was collected from February to March in 2017,
in the SnowEx 2017 campaign using five flights over the Grand Mesa region in Colorado,
United States. In situ soil moisture measurements were also collected throughout 2017
from an installed meteorological observation station. We apply the time series retrieval
algorithm developed for the SMAP mission at the station location, that is, at the point-
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scale [52,56]. From the retrieved soil permittivity, the soil moisture was derived using
Mironov’s empirical model [57]. The comparison of retrieved and measured soil moisture
is shown in Figure 22a. In addition to retrieving soil moisture, the rms height was also
retrieved from the time series and was at a single value of 1.9 cm. The cost function for
retrieving soil moisture and rms height is as follows. By using the L-band rough surface
lookup table, we used VV and HH to find the minimum cost function against the observed
backscatters. The rms height and time series soil moisture were retrieved at the same
time. The retrieved rms height from L-band is assumed to be invariant with time and
subsequently can be applied for rough-surface scattering at higher frequencies.

Cmin = min

{
∑
n

[(
σLUT

VV (h, εn)− σobs
VV

)2
+
(

σLUT
HH (h, εn)− σobs

HH

)2
]}

(143)
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Figure 22. (a) Retrieval of soil moisture compared with in situ measurements. The retrieved rms
height is 1.9 cm. The retrieval is based on based on L-band UAVSAR data from SnowEx 2017
campaign. The measured soil moisture is from SnowEx 2017 campaign meteorological observations
with a measured soil temperature of 0.6◦ C. The location of the station is 39.03388◦N, 108.21399◦W
with an elevation of 3033 m. (b) Simulated surface scattering with snow attenuation from the X- to
the Ku-band at VV polarization. Snow parameters have a depth of 54 cm, density of 183 kg m−3,
〈ζ〉 = 1.2 mm, and b = 1.2. Blue marks are based on the SnowEx 2017 campaign data shown in (a).

The above description is the rationale of the Kim et al., 2017, algorithm showing that
soil moisture changes but not rms height. Wet and frozen soils are assumed to have the
same rms height [52].

The retrieval soil moisture is in good agreement, as shown in Figure 22a, with the mea-
sured in situ soil moisture for a period of 8 weeks from 6 February 2017 to 31 March 2017.
The agreement achieved has a root mean square error (RMSE) of 0.047 m3/m3, a correlation
of 0.95, and a bias of 0.039 m3/m3. Based on the measurements, the soil moistures at this
site were relatively constant during the dry snow season (6 February to 8 March 2017).

To complete approach (b), we carried out step 2 and applied the retrieved rms height of
1.9 cm, and soil properties from Figure 22a to calculate the surface scattering contributions
with snow attenuation, σrsexp(−2τsecθt), at the X band of 9.6 GHz, the low Ku band of
13.4 Ghz, and the high Ku-band of 17.2 Ghz. These three frequencies were considered for
the proposed satellite snow water equivalent (SWE) missions. Figure 22b shows surface
scattering including snow attenuation. The results in Figure 22b show that the rough
soil-surface scattering contribution, including snow attenuation, was around −12 dB at the
X band and decreased to −14 dB at the high Ku band of 17.2 GHz. Higher frequencies such
as at the Ku band typically experience higher volume scattering and greater attenuation
from the snow layer of the surface scattering contributions. Continued studies are required
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to improve and validate the approach (b). These studies include extending NMM3D surface
modeling studies and LUT into cases with rms heights of four wavelengths or more so that
the LUTs can be applied to the Ku-band of 17.2 GHz up to 7 cm of rms heights. Unlike
volume scattering of snow, rough-surface scattering has a stronger dependence on incidence
angle. Thus, the effects of topographical slopes that cause changes in incidence angles,
particularly in mountainous regions, should be included in the retrieval. The sample size in
Figure 22a,b is small. However, with the availability of L band and C band data, full-wave
simulations of rough soil-surface scattering from the L band to the Ku band up to kh = 15
allow retrievals of rms heights of the soil surfaces and the soil-surface scattering at the X
band and Ku band can be determined.

Our current work is computing look-up tables for rough soil-surface scattering for kh
up to 15. We are also continuing investigating various CEM techniques of rough-surface
scattering in the large kh domain.

5. Conclusions

In this paper, we reviewed our recent work in three topics of the theory of microwave
remote sensing. The effects of vegetation and forests are important topics of microwave
remote sensing of soil moisture and the snow water equivalent. The hybrid method of
full-wave simulations showed results that are significantly different from that of RTE and
DBA. As remote sensing of soil moisture extends from the P-band to the X-band while
remote sensing of snow water equivalent covers the P-band to the Ku-band, such studies
using full-wave simulations will provide new solutions different from that of RTE/DBA.
Signals of opportunity offer new efficient ways of remote sensing at P-band and L-band.
The theory of microwave remote sensing at bistatic scattering close to the specular direction
requires modeling techniques different from radar backscattering and radiometry. For
remote sensing of land surfaces at high frequencies, such as the X-band Ku-band, the theory
of microwave remote sensing full-wave simulations needs to be carried out to much larger
kh values than before. The study of multiscale surfaces and their effects at large kh continue
to be a challenge.
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