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Abstract: Completing point clouds from partial terrestrial laser scannings (TLS) is a fundamental
step for many 3D visual applications, such as remote sensing, digital city and autonomous driving.
However, existing methods mainly followed an ordinary auto-encoder architecture with only partial
point clouds as inputs, and adopted K-Nearest Neighbors (KNN) operations to extract local geometric
features, which takes insufficient advantage of input point clouds and has limited ability to extract
features from long-range geometric relationships, respectively. In this paper, we propose a keypoints-
aligned siamese (KASiam) network for the completion of partial TLS point clouds. The network
follows a novel siamese auto-encoder architecture, to learn prior geometric information of complete
shapes by aligning keypoints of complete-partial pairs during the stage of training. Moreover, we
propose two essential blocks cross-attention perception (CAP) and self-attention augment (SAA),
which replace KNN operations with attention mechanisms and are able to establish long-range
geometric relationships among points by selecting neighborhoods adaptively at the global level.
Experiments are conducted on widely used benchmarks and several TLS data, which demonstrate
that our method outperforms other state-of-the-art methods by a 4.72% reduction of the average
Chamfer Distance of categories in PCN dataset at least, and can generate finer shapes of point clouds
on partial TLS data.

Keywords: TLS point cloud completion; siamese network; attention mechanism; K-Nearest
Neighbors; Chamfer Distance

1. Introduction

In recent years, with the rapid development and wide application of LiDARs, point
clouds have become the main data format for 3D scene understanding and have been
playing an important role in the areas of remote sensing, robotics, digital city and so
on [1]. However, raw scanning point clouds from LiDARs are not always satisfactory
and complete, as they are often sparse and partial because of inappropriate scanning
factors such as light refraction, occlusion and limitation of sensor resolution. Therefore,
predicting missing regions from their partial scannings is uniquely significant to many
downstream applications.

Benefiting from the emergence of large-scale point cloud datasets and the improvement
of computer technology, researchers have tried many approaches to tackle the issue of point
cloud completion by the way of deep learning, which can be divided into three categories:
Voxel-based methods, MLP-based (Multilayer Perception) methods and Attention-based
methods. In the Voxel-based methods, 3D-EPN [2] maps voxelized 3D shapes into a
probabilistic latent space and completes single objects by 3D convolution operations. GR-
Net [3] takes 3D grids as intermediate representations to complete point clouds. VE-PCN [4]
embeds point clouds into regular voxel grids and then generates complete point clouds
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with the aid of shape edges. In the MLP-based methods, PCN [5] uses tandem layers of
PointNet [6] to extract shape features of partial point clouds. TopNet [7] proposes a tree
decoder that generates structured point clouds. NSFA [8] explores and aggregates multi-
level features to represent known parts and missing parts separately. CRN [9] proposes a
cascaded refinement network to generate detailed object shapes by a coarse-to-fine strat-
egy. In the Attention-based methods, SnowflakeNet [10] applies a transformer-based [11]
point deconvolution structure to the decoding process. PoinTr [12] regards the completion
process as a translation issue and proposes a transformer-based auto-encoder structure
for point cloud completion. Most of the above methods have two common techniques.
Firstly, they follow an ordinary auto-encoder architecture with only partial point clouds as
inputs. Secondly, they apply K-Nearest Neighbors (KNN) operations or their variant (e.g.,
ball query operations) on feature extractions, to explore the local geometric relationships
among points.

However, the ordinary auto-encoder network with embedded KNN blocks is not the
most effective method for point cloud completion. Firstly, the ordinary auto-encoder net-
work with only partial point clouds as inputs only uses complete point clouds as references
for calculating the loss function, and takes insufficient advantage of their intrinsic geometric
features. Secondly, KNN is unable to extract geometric semantic features effectively at local
incomplete regions of partial input point clouds and needs a trade-off between efficiency
and accuracy. To tackle these issues, ASFM-Net [13] employs an asymmetrical siamese
feature matching strategy to map the partial and complete input point cloud into a shared
latent space. VRCNet [14] proposes a dual-path architecture to enable principled proba-
bilistic modelling across partial and complete point clouds. However, these two methods
only use 3D position coordinates of each point for position embedding, and fail to depict
local geometries of points explicitly. SnowflakeNet [10] and PoinTr [12] adopt attention
mechanisms to explore long-range geometric relationships among points. Global-KNN [15]
improves KNN and selects neighborhoods of points adaptively by calculating attention
weights. However, these methods still use the Euclidean distance as measurement without
breaking the limit of KNN operations.

In this paper, we propose a keypoints-aligned siamese (KASiam) network to solve
the above issues for the completion of partial TLS point clouds. KASiam has dual input-
asymmetric paths, which are the reconstruction path with complete point clouds as inputs
and the completion path with partial point clouds as inputs, respectively. Both paths are
linked to each other through keypoints alignment operations. Each path has a similar
pipeline, which consists of a feature extractor, a keypoint generator and two shape refiners.
Moreover, we propose two essential blocks cross-attention perception (CAP) and self-
attention augment (SAA) in the pipeline, which replace KNN operations with attention
mechanisms, and are able to select neighborhoods adaptively to establish long-range
geometric relationships among points. We compare KASiam with various state-of-the-art
methods on the widely used benchmark PCN dataset [5] and several TLS data scanned by
a RigelScan LiDAR. Experimental results and analyses demonstrate that our method has
achieved leading performance on point clouds completion. Our main contributions can be
summarized as follows:

1. We propose the KASiam network for point cloud completion. KASiam has dual input
paths of reconstruction and completion, which interact geometric features with each
other through keypoints alignment of complete-partial pairs. The dual path structure
takes sufficient advantage of input data and is crucial for the completion task.

2. We propose CAP and SAA blocks, which weaken the explicit local feature extractions
and replace KNN with per-point attention mechanisms, to make the network able to
learn geometric relationships precisely in an implicit manner.

3. Experimental results and analyses demonstrate that KASiam achieves the state-of-
the-art point cloud completion performance, outperforms existing methods by at
least a 4.72% reduction of the average Chamfer Distance of categories in PCN dataset
especially and can generate finer shapes of point clouds on partial TLS data.
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2. Related Work

This section can be divided into three parts: Section 2.1 is a summary of point clouds
features exploitations, which are fundamental tools for most of the point cloud analyses
and understanding of tasks based on deep learning. Section 2.2 surveys three types of point
cloud completion methods by focusing on different structures of networks. Section 2.3 is a
summary of evaluations on point cloud completion, some of which are utilized by KASiam.

2.1. Point Cloud Features Exploitation

MLP-based methods. PointNet [6] is a pioneer of point cloud analysis by deep learning,
which models every point independently by MLPs and uses a symmetric function to handle
the order invariance of point clouds. PointNet++ [16] proposes two sets of abstraction
layers to extract local geometric features. PointMLP [17] builds a deeper network through
a pure residual MLP structure to explore high-dimensional geometric features. Inspired
by triangle meshes and umbrella curvature in computer graphics, RepSurf [18] computes
geometric representations of point clouds by predefined geometric priors after surface
reconstruction. Convolution-based methods. Because of the unstructured nature of point
clouds, convolution operations cannot be directly applied to them. Thus, PointCNN [19],
PointConv [20], PAConv [21] and FSDCNet [22] extract features of point clouds through
self-defined convolution kernels. DGCNN [23], AGConv [24] and GACM [25] search neigh-
borhoods of key points by graph convolutions [26]. Transformer-based methods, inspired
by the success of Transformers in 2D image processing [27,28], PCT [29], PT [30] and
Pointformer [31], model geometric relationships between points by calculating attention
weight matrices.

2.2. Point Cloud Completion

Voxel-based methods. The 3D-EPN method [2] completes partial shapes while using
semantic context from a shape classification network by 3D convolutions, and matches
output shapes with 3D geometries in existing shape datasets. GRNet [3] proposes two
novel differentiable blocks named gridding block and gridding reverse block, to generate
point clouds by grids without losing structural information. VE-PCN [4] incorporates
object structure features into the completion process by leveraging edge generation, and
proposes a multi-scale voxel-based network to predict finer shapes. However, due to the
quantization effect of 3D voxel representation, most voxel-based methods meet a trade-off
between efficiency and accuracy [7], and may not be suitable for practical applications.

MLP-based methods. PCN [5] is a pioneer of point cloud completion by MLP layers.
It encodes geometric features through two tandem layers of PointNet [6], and generates
complete shapes by a manifold fitting network FoldingNet [32]. TopNet [7] proposes
a hierarchical decoder to predict structured point clouds and publishes a new dataset
Completion3D. NSFA [8] models missing parts and complete parts respectively to predict
the whole point cloud shapes. CRN [9] considers local details of partial inputs with global
shape information together, to preserve the existing details and generate missing parts.
However, most of these methods follow an ordinary auto-encoder architecture with only
partial point clouds as inputs, and may make insufficient use of the intrinsic geometric
features of inputs.

Attention-based methods. With applications of transformer structures in point
clouds [29–31], attention relationships between points are increasingly considered in the
point cloud completion task. SA-Net [33] proposes a skip-attention mechanism to effec-
tively explore local structure details of partial point clouds during the inference of missing
shapes. VRCNet [14] designs a point selective kernel module to exploit and fuse multi-
scale point features effectively by self-attention operations. SnowflakeNet [10] applies a
transformer-based point deconvolution structure to interpret the generation process of
complete point cloud into an explicit and locally structured pattern. PoinTr [12] is a pioneer
of using pure transformer structures in the completion task, and regards the completion
process as a translation of point sets. Global-KNN [15] proposes an adaptive neighborhood
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feature extraction module to select neighborhoods of keypoints adaptively according to
different target shapes. However, most of these methods apply KNN operations or its
variant to select neighborhoods of points by the Euclidean distance measurement, and
ignore long-distance semantic relationships between points.

Other methods. SoftPoolNet [34] proposes a new module named soft pooling to
replace the max-pooling operation in PointNet [6] by taking into account multiple high-
score features rather than just the highest. PMP-Net [35] proposes a novel network to
mimic the behaviour of an earth mover. It generates complete point clouds by moving
every point in incomplete inputs to ensure the shortest total distance of all point moving
paths. PF-Net [36] and SpareNet [37] introduce the method of Generative Adversarial
Networks (GAN) [38] into the point cloud completion task.

2.3. Evaluation on Point Cloud Completion

For 3D point cloud completion, Chamfer Distance (CD) and Earth Mover’s Distance
(EMD) are the most frequently used performance criteria [39]. CD represents the average
distance of the closest point between two point clouds. EMD aims to find out a bijection to
minimize the average distance between corresponding points from partial and complete
ones [40]. In recent years, many works have expanded the CD criteria. MPED [41] measures
point clouds geometry and color difference by a distortion quantification of multi-scale
potential energy discrepancy. DCD [42] is derived from CD and it can detect the disparity
of density distributions.

3. Method
3.1. Overall Architecture

The overall architecture of KASiam is shown in Figure 1, which adopts a siamese auto-
encoder structure for point cloud completion. KASiam has dual input-asymmetric paths,
which are the reconstruction path with complete point clouds as inputs and the completion
path with partial point clouds as inputs, respectively. Both paths are linked to each other
through keypoints alignment operations (Section 3.6). Each path has a similar pipeline,
which consists of three modules: a feature extractor (Section 3.2), a keypoint generator
(Section 3.3) and two shape refiners (Section 3.4). The operation process of KASiam is as
follows. In the training phase, we first train the reconstruction path with complete point
clouds as inputs to explore features of complete shapes and generate skeleton keypoints.
Then, we load the pre-trained model into the completion path to finetune for fitting the
feature distribution of complete point clouds and predicting the position of skeleton key
points of missing regions. In the testing phase, we abandon the reconstruction path and
only use the completion path to generate complete point clouds, which ensures fairness
in comparison with other methods without importing additional information. For clarity,
we add symbols ̂ to the variables and modules on the reconstruction path. Because the
two paths of KASiam share the same structure, we take the completion path for example in
Sections 3.2–3.5, and the details of the network can be seen in Appendix A.
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Figure 1. The overall architecture of KASiam based on a siamese auto-encoder structure. For clarity,
we add symbols ̂ to the variables and modules on the reconstruction path.

3.2. Feature Extractor

The KASiam takes the point cloud Pin = {xi, yi, zi} ⊆ R3 of size 2048 × 3 as its
input, which contains 2048 points and only their 3D coordinate information. The feature
extractor aims to generate a feature vector f of size 1× 512, which can aggregate both
local geometric details and global shapes by searching neighborhoods of query points
adaptively. As shown in Figure 2, inspired by RepSurf [18], we feed Pin into the block of
umbrella surface constructor (USC). USC expands the feature dimension of Pin to 10 by
calculating the normal vectors, surface positions, centroid positions and polar auxiliaries
of each point in Pin, which are beneficial for the point cloud completion task. Then,
we connect it to Pin again and send it to a ResMLP block to perform an operation of
position embedding to obtain the embedded feature matrix Femb of size 2048× 64, which is
formulated by Equation (1). The ResMLP blocks stand for an MLP layer with a residual
structure, and are able to deepen the network to extract high-dimensional features while
preventing overfitting:

Femb = ResMLP(Concat(USC(Pin), Pin)) (1)

Figure 2. The structure of the feature extractor module. Here, USC is an abbreviation of the umbrella
surface constructor proposed by RepSurf [18] and © denotes a concatenation operation.

Then, we alternately stack three CAP blocks and three SAA blocks, to increase the
receptive field of points and embed both local and global geometric features during the
process of down-sampling. CAPs are used to perceive the geometric details of point clouds
by cross-attention operations. The down-sampling ratios of the three CAPs are 4, 2, and 2,
to down-sample the point number of Pin from 2048 to 128. Moreover, SAAs are used to
enhance useful features for completion tasks by self-attention operations. The up-sampling
ratios of the three SAAs are 1, 1, and 1. The structure details of CAP and SAA are introduced
in Section 3.5. We send Femb to the above stacked CAP and SAA blocks and obtain the
middle feature matrix FmidE of size 128× 512, which is formulated as follows:
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FmidE = (SAA(CAP(Femb)))
(3) (2)

To integrate the relationship between global features and local features, we send FmidE
to a layer of Max-pooling and concatenate it with FmidE again. Then, we send them to a
ResMLP block and form residual connection with FmidE, to get the encoder feature matrix FE
of size 128× 512, which is formulated by Equation (3). Put FE into the second Max-pooling
layer to get the output of the feature extractor module f of size 1× 512, which is a feature
vector containing shape features of the input point cloud and formulated by Equation (4).
Moreover, FE acts as a carrier of shape features and transfers it to the following module.

FE = FmidE + ResMLP(Concat(Maxpool(FmidE), FmidE)) (3)

f = Maxpool(FE) (4)

3.3. Keypoint Generator

The role of the keypoint generator is to produce coarse but complete keypoints Pkey of
inputs by decoding the feature vector f and the shape features FE, which are sent from the
feature extractor. As shown in Figure 3, f is firstly decoded into a feature matrix of size
128× 64 by a layer of an MLP and a convtranspose [43] operation. Convtranspose opera-
tions can expand the feature dimensions and reshape the relationship between dimensions,
and are widely used in generative tasks. Then, we put the feature matrix into another layer
of ResMLP to generate FConvT of size 128× 512, which is formulated as follows:

FConvT = ResMLP(ConvT(ResMLP( f ))) (5)

Figure 3. The structure of the keypoint generator module. Here, ConvT denotes a convtranspose
operation and FPS denotes the farthest point sampling [16] operation.

Then, we take FConvT and FE as inputs to a CAP block for fusing the previous genetic
shape features FE into the current shape features FConvT , which is achieved by an operation
of a cross-attention mechanism. After that, we feed the output of the CAP block into two
tandem SAA blocks for feature enhancements with the aid of the self-attention mechanism,
and then obtain the output FmidG of size 128× 512, which is formulated by Equation 6. The
sampling ratios of the CAP and SAAs are 1, 1, 1.

FmidG = SAA(SAA(CAP(FConvT , FE))) (6)

To ensure the density consistency of the generated keypoints, we send FmidG to a
layer of ResMLP and reshape it to a size of 512× 3. Since partial point clouds are also
true sampling points of objects surfaces, we concatenate the above output and Pin, and
obtain the keypoints Pkey of Pin by a layer of FPS [16]. The size of Pkey is 512× 3, which is
formulated by Equation (7). For easy understanding, we take the output of 512 keypoints
as an example; other completion tasks with different numbers of points in different datasets
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can also be processed by setting the parameters properly. Moreover, FmidG also acts as a
carrier of shape features and transfers it to the following module.

Pkey = FPS(Concat(Reshape(ResMLP(FmidG)), Pin), 512) (7)

3.4. Shape Refiner

Shape refiners aim to produce the fine-grained point cloud Pout of size N2 × 3 by
receiving the feature vector f , the previous point cloud Ppre of size N1 × 3 and the shape
features matrix FmidG from the previous module as their inputs. As shown in Figure 4, we
firstly send the previous point cloud Ppre and feature vector f to ResMLP layers separately,
and then concatenate their outputs as Fconcat to maintain the features of local details and
global shapes, which is formulated as follows:

Fconcat = Concat(ResMLP( f ), ResMLP(Ppre)) (8)

Figure 4. The structure of the shape refiner module. Here, N2 = N1 × m1 × m2 × m3. It is worth
noting that the point number of Pout is not fixed, and the selection of parameters m1, m2, m3 depends
on different point cloud completion tasks.

Then, we take Fconcat and FmidG as inputs to a CAP block for fusing the previous
genetic shape features FmidG into the current shape features Fconcat, which is achieved by
an operation of cross-attention mechanism and is similar to the operation of the keypoint
generator module. After that, we send the output of the CAP block into two tandem SAA
blocks for feature enhancements with the aid of a self-attention mechanism, and then get
the output FmidR of size 128× N2, which is formulated by Equation (9). The up-sampling
ratios of the CAP and SAAs are m1, m2, m3, respectively:

FmidR = SAA(SAA(CAP(Fconcat, FmidG))) (9)

The purpose of shape refiners is to generate finer shapes on coarse but complete point
clouds, so it is very important and practical to estimate coordinate offsets of input point
clouds. We concatenate FmidR with the transformed feature matrix of the input point cloud
Ppre, and feed them to a ResMLP layer to generate coordinate offsets. Finally, we add the
coordinate offsets and the input point cloud Ppre to predict a finer point cloud Pout , which
is formulated by Equation (10). Moreover, FmidR also acts as a carrier of shape features
and transfers it to the following module, until this shape refiner is the last one and the
resolution of the generated point cloud meets the requirements.

Pout = Ppre + Reshape(ResMLP(Concat(ResMLP(Ppre), FmidR))) (10)

3.5. Cross-Attention Perception and Self-Attention Augment

In this section, we focus on structures of cross-attention perception and self-attention
augment blocks. It is important for point cloud completion to capture suitable geometric
features. Existing local shape extraction methods with kNNs are easily affected by the local
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density of the point cloud and outliners, so we abandon the KNN operation and replace
it with pure attention mechanisms. As shown in Figure 5, they have similar structures,
especially the core layer of multi-head attention mechanisms.

Figure 5. The structure of the blocks of cross-attention perception and self-attention augment. Here,
BN is a layer of batch normalization, © denotes a concatenation operation, and ×m means increasing
the feature dimension of the input matrix to m times by layers of MLP.

3.5.1. Cross-Attention Perception Block

The structure of CAP is illustrated in the top of Figure 5. Each CAP has two feature
matrices as inputs, which are the current feature matrix Fcur and the shape feature matrix
Fpre from the previous module. It is worth noting that the feature extractor is the first
module in the network, so we regard the down-sampling of Fcur as Fpre in three CAP blocks
in the feature extractor. We generate the Value and Key matrices from Fcur and generate the
Query matrix from Fpre by different MLP layers respectively. Then, we adopt a layer of the
multi-head cross-attention in the form of residual with Query to learn a new feature matrix
Fmid, which is formulated as follows:

Q = MLP(Fpre), K = MLP(Fcur), V = MLP(Fcur) (11)

Fmid = BN(Q + MultiHead(Q, K, V)) (12)

Here, MultiHead is performed similarly to Transformer [11]. After the attention
operation, each point in Fpre can adaptively aggregate noteworthy features from Fcur to
perceive the local geometric structure of point clouds.

Then, to enhance the representation ability of CAP, we send Fmid to an MLP layer
with an inverted residual bottleneck design, to update Fmid and enhance the representation
ability of CAP. Finally, if in the feature extractor, we concatenate the updated feature matrix
with Fpre to generate the output of the CAP block as follows:

Fout = Concat(Fpre, Fmid + MLP(Fmid)) (13)

3.5.2. Self-attention Augment Block

The structure of SAA is illustrated at the bottom of Figure 5, which is similar to CAP
and has an additional channel attention block. The role of SAA is to establish the spatial
relationship among points and enhance the feature representation ability of the network.
Each SAA takes the current feature matrix Fcur as the only input. We generate the Query,
Key and Value matrices from Fcur by different MLP layers respectively. Then, we adopt
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a layer of the multi-head self-attention in the form of residual with Query to learn a new
feature matrix Fmid, which is formulated as follows:

Q = MLP(Fcur), K = MLP(Fcur), V = MLP(Fcur) (14)

Fmid = BN(Q + MultiHead(Q, K, V)) (15)

After that, similar to CAP, we send Fmid to an MLP layer with an inverted residual
bottleneck design, to update Fmid and enhance the representation ability of SAA. Then, we
concatenate the updated feature matrix with Fcur to generate the input feature matrix of the
channel attention block FinCA as follows:

FinCA = Concat(Fcur , Fmid + MLP(Fmid)) (16)

Inspired by the squeeze-and-excitation networks (SENet [44]) in image processing, we
propose a channel attention block to SAA, to augment useful features of geometric details
for the completion of point clouds. As shown in Figure 6, the channel attention block
adopts a similar squeeze-and-excitation structure on 3D point clouds. We firstly squeeze
the input feature matrix FinCA of size N× C into a channel descriptor, which is achieved by
using a global average pooling operation to generate channel-wise statistics. Then, we feed
the descriptor to an FC layer with a bottleneck structure, to learn the attention weight of
each channel. Finally, we can get a weighted feature matrix Fout by a dot product operation
between FinCA and the channel attention weight, which is formulated as follows:

Fout = Channel-Attention(FinCA) = FinCA � FC(
N

∑
i=1

FinCA(i, j)/N) (17)

Figure 6. The structure of the block of channel attention. Here, FC denotes a fully connected layer
and � denotes a dot-product operation.

3.6. Training Loss

As mentioned in the Section 3.1, KASiam has dual input-asymmetric paths, which are
the reconstruction path and the completion path, respectively. The training losses of the
two paths are different. We use the loss functions of the Chamfer distance (CD), the Earth
Mover’s Distance (EMD) and the Root Mean Square Error (RMSE) for the calculation of
training losses, which are formulated as follows:

dCD(P ,Q) =
1
|P | ∑

p∈P
min
q∈Q
‖p− q‖+ 1

|Q| ∑
q∈Q

min
p∈P
‖q− p‖ (18)

dEMD(P ,Q) = min
φ:P→Q

1
|P | ∑

x∈P
‖x− φ(x)‖2 (19)

dRMSE( f , h) =

√
1
n ∑

n
( f − h)2 (20)

where P and Q are two point clouds with the same number of points and f and h are two
feature vectors with the same length. CD represents the average distance of the closest
point between two point clouds. EMD aims to find out a bijection to minimize the average



Remote Sens. 2022, 14, 3617 10 of 21

distance between corresponding points from partial and complete ones. RMSE explicitly
measures the difference between two vectors.

3.6.1. Loss in the Reconstruction Path

In the reconstruction path, we use the combination of CD and EMD as a difference
measure of point clouds to formulate the training loss of reconstruction. We down-sample
the ground truth point cloud to {GTkey, GTmid, GTf ine}, which has the same point number
as {P̂key, P̂mid, P̂f ine}, and the loss is as follows:

Lreconstruction = dCD(P̂key, GTkey) + dEMD(P̂mid, GTmid) + dCD(P̂f ine, GTf ine) (21)

It is worth noting that we use EMD to calculate the loss of P̂mid and GTmid, which
are point clouds with medium resolution in the whole pipeline of reconstruction, becaue
we find that this operation can give consideration to both performance and efficiency
by experiments.

3.6.2. Loss in Completion Path

In the completion path, we use the combination of RMSE, CD and EMD as a difference
measure of point clouds to formulate the training loss of completion. The total loss is
as follows:

Lcompletion = α1 × [dRMSE( f , f̂ ) + dCD(Pkey, P̂key)] + α2 × dEMD(Pmid, GTmid) + α3 × dCD(Pf ine, GTf ine) (22)

where α1, α2 and α3 are changeable hyperparameters during the training stage of the
completion path. To make full use of geometric features of complete shapes and improve
the quality of the generated point clouds, we apply keypoints alignment operations by
minimizing the loss functions dRMSE( f , f̂ ) and dCD(Pkey, P̂key).

4. Experiments and Results
4.1. Datasets and Implementation Details

The proposed KASiam is evaluated on the standard PCN [5] benchmark, which
is derived from the ShapeNet [45] dataset, and some TLS data scanned by a RigelScan
LiDAR. PCN is a widely used benchmark of point cloud completion, which contains
30,974 complete-partial point cloud pairs of eight categories. The partial point clouds are
generated by back-projecting complete 3D shapes into eight different views. For each
ground-truth point cloud, 16,384 points are evenly sampled from the shape surface. For a
fair comparison, we follow the same train/val/test split settings as PCN [5], 28,974 pairs
for training, 800 pairs for validation and 1200 pairs for testing. Only the 28,974 training
pairs are trained by our network, the unseen 800 validation pairs and 1200 testing pairs
are tested directly for adjusting parameters of the network and comparisons with other
methods, respectively. Moreover, we adopt the L1 version of Chamfer distance to evaluate
the models.

To verify the effectiveness of KASiam on LiDAR point clouds, we scan several objects
partially and completely with a RigelScan LiDAR; most objects are selected from our labora-
tory, only planes and sport cars are high-fidelity models. The parameters of the LiDAR are
listed in the Table 1. We scan the objects from a single viewpoint and completely to obtain
the original partial and complete point clouds, respectively. To match the parameters of the
model, we manually remove the background points in the original data and down-sample
the partial and the complete point clouds to 2048 and 16,384 points as our inputs and
ground truths, respectively. It is worth noting that we load the pretrained PCN model and
use the TLS data only for testing.

All the experiments are trained on a graphics workstation, which is installed with
AMD Ryzen 7 5800X CPU (3.8 GHz, 8 cores), 32 GB RAM and two NVIDIA GTX 3090 GPUs.
We adopt the framework of Pytorch 1.10 with Python 3.8 and CUDA 11.3. We train the
model with Adam optimizer for a total of 400 epochs, while the learning rate is initialized
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to 1 × 10−4 and decayed by 0.7 every 50 epochs. The batch size is set to 32, and the
hyperparameters in the training loss of the completion path are set as the Table 2. For
experiments on the PCN dataset and our TLS data, we set the up-sampling ratios m1, m2, m3
in the two shape refiners as (1, 1, 4) and (1, 1, 8), respectively.

Table 1. Main parameters of the RigelScan LiDAR.

RigelScan Repetition Rate Scanning Beam Range Resolution

Standard mode 205,000 fps 14 0.05 mm
Fine mode 320,000 fps 14 0.03 mm

Table 2. The setting of hyperparameters in the training loss of the completion path.

Epoch α1 α2 α3

1–50 1 0 0
50–75 0 1 0.1

75–100 0 1 0.5
100–200 0 1 1
200–400 0 0 1

4.2. Results on the PCN Dataset

Table 3 enumerates the quantitative results of KASiam and other completion methods
on the PCN dataset; KASiam achieves the best performance in almost all categories, and
significantly reduces the average CD by 0.34 (4.72%) as compared with SnowflakeNet [10]
and 2.77 (28.73%) as compared with PCN [5], which proves that our method is able to
complete finer point clouds. Specifically, in the categories of plane, chair and lamp, our
method reduces the CD more than 8% as compared with SnowflakeNet [10], and the CD
of lamps reduces the most (9.2%). It is also worth noting that there is little reduction in
the category of car and even a little rise in the category of cabinet. Because objects within
these two categories are of similar shapes, this limits the advantage of KASiam in dealing
with various shapes. In particular, the objects of cabinet have a large number of points with
internal shapes, which is not conducive to the completion of point cloud surfaces.

Table 3. Point cloud completion quantitative results on the PCN dataset in terms of L1 Chamfer
distance (×10−3). The best results are highlighted in boldface.

Methods Average Plane Cabinet Car Chair Lamp Couch Table Boat

FoldingNet [32] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
TopNet [7] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12

AtlasNet [46] 10.85 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61
PCN [5] 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59

GRNet [3] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04
PMP-Net [35] 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25

CRN [9] 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05
PoinTr [12] 8.38 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29
NSFA [8] 8.06 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48

SnowflakeNet [10] 7.21 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40

KASiam (Ours) 6.87 3.90 9.28 8.02 7.21 5.51 8.82 6.25 5.96

We choose PCN [5], SnowflakeNet [10] and KASiam point clouds completion methods
from Table 3, and visually compare the completion results of them in eight categories
in Figure 7. We can observe that the shapes generated by our method have smoother
surfaces, more detailed shapes and more semantic structures. Specifically, we summarize
the advantages of our method into three types.
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Figure 7. Visual comparison of point cloud completion on the PCN dataset. Our method can generate
objects with smoother surfaces, more detailed shapes and more semantic structures. For clarity, we
mark the enlarged detail structures with red boxes.

Firstly, KASiam can produce complete and smooth surfaces without outliers. For ex-
ample, as for the cabinet, KASiam is able to keep the inside structure hollow during the
process of completion, while PCN and SnowflakeNet fill the hollow structure with lots
of noise points, which do not conform to the true shape of the cabinet. As for the lamp,
KASiam is able to generate the complete lampshade and the straight lamppost. However,
there are some outliers around the lampshade generated by SnowflakeNet, and it is dif-
ficult for PCN to identify and complete the lampshade structure. A similar event occurs
during the completion of the boat: the mast generated by KASiam is the straightest and
has few outliers.
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Secondly, KASiam can capture and generate more realistic and semantic object struc-
tures. For example, as for the chair, KASiam can capture and augment the feature of the
top region, and accurately generate the back of the chair with two tips, while PCN and
SnowflakeNet fail to capture the structure of two tips and generate an ordinary flat top of
the chair back. As for the table, PCN and SnowflakeNet ignore the shape of the tablecloth
on the desktop, and generate lots of messy points in the area. However, KASiam can accu-
rately capture the triangular structure of the tablecloth and complete it. As for the couch,
the difficulty lies in the completion process of the pillow on the couch. KASiam identifies
the existence of the pillow accurately, and generates the complete pillow according to the
existing shapes. However, PCN and SnowflakeNet only pay attention to the completion of
the overall shape of the couch, and ignore the detailed structure of the other objects.

Thirdly, KASiam is good at extracting features from existing parts of objects and
generating whole ones with detailed shapes. For example, as for the plane, KASiam can
generate the precise shapes of the missing engine and tyre of the plane, by aggregating
the shape features of existing structures on the other side. However, the wing generated
by SnowflakeNet does not have the same density as the wing on the other side, and
PCN neglects the completion of the tyre of the plane. As for the car, the difficulty lies in
the process of completion of the slanting tyres under the car. KASiam can generate the
slanting tyre by referencing the orientation of the existing tyre on the other side. However,
SnowflakeNet generates a normal tyre just like the shapes of most of ordinary tyres in
cars in the training dataset, and PCN ignores the completion of the slanting tyre and the
rearview mirror.

4.3. Results on the TLS Data

To verify the effectiveness of KASiam on LiDAR point clouds, we scan several objects
partially and completely with a RigelScan LiDAR (Table 1 for more details). To match
the parameters of our pre-trained model, we down-sample the partial and the complete
scans to 2048 and 16,384 points, respectively, to serve as the inputs and ground truths of
our model.

We choose the top 2 point clouds completion methods SnowflakeNet [10] and KASiam
from Table 3, and visually compare the TLS completion results of them in three common
categories in Figure 8. Our method, KASiam, can mitigate the impact of the data density
distribution and generate more accurate shapes, which is crucial to the field of remote
sensing and TLS analysis.

Figure 8. Visual comparison of point cloud completion on the TLS data. Our method can mitigate
the impact of the data density distribution and generate more accurate shapes. For clarity, we mark
the enlarged detail structures with red boxes.
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As shown in Figure 8, KASiam can generate the missing leg of the chair by capturing
and extracting shape features of the remaining three legs, and makes a basic completion of
the ring structure at the bottom of the chair. However, SnowflakeNet generates a bad shape
of the missing leg with lots of noise points and different densities from existing ones. As for
the plane, KASiam can complete the protruding auxiliary wing perfectly, which is failed in
SnowflakeNet. As for the car, KASiam is able to capture and generate the window structure
of the sport car accurately. However, the window structure generated by SnowflakeNet is
filled with lots of noise points.

4.4. Ablation Studies and Analyses

In order to examine the effectiveness of each module of our method, we stack the
proposed blocks on the baseline step-to-step to form five variations (A− E ) in Table 4. By
default, except for examined blocks, all structures of variations and the experiment settings
remain the same. We train these models on the whole PCN dataset and only show four
highly different categories (plane, chair, lamp and table) in the table. Five different network
variations are designed as follows:

• Variation A. To examine the effectiveness of USC block for point cloud generations,
we remove the USC block and send the input point cloud to the layer of position
embedding directly.

• Variation B. To examine the effectiveness of CAP blocks in the feature extractor
module, we replace all the CAP blocks in the feature extractor with layers of Point-
Net++ [16].

• Variation C. To examine the effectiveness of SAA blocks in the feature extractor
module, we remove all the SAA blocks in the feature extractor and connect the stacked
CAPs directly.

• VariationD. To examine the effectiveness of CA blocks in the feature extractor module,
we remove all the CA blocks in the SAA blocks, while the other structures of the
network remain unchanged.

• Variation E . To examine the effectiveness of the shape refiner modules for point cloud
generations, we replace all shape refiner modules with the generation operation based
on FoldingNet [32].

As shown in Table 4, the full KASiam model achieves the best performance. Specif-
ically, comparing with Variation A, the USC block can bring a little gain to the network
performance, which is likely that the parameters explicitly calculated by USC are beneficial
for the point cloud completion task. Comparing with Variation B, the average CD can be
5.2% lower by applying CAPs to the feature extractor, which demonstrates that the CAP
blocks can select neighborhoods of query points adaptively to capture and extract shape
features of partial point clouds. Comparing with Variation C, the average CD is reduced by
0.21 and SAA blocks in the feature extractor are crucial for deep feature extraction. The
comparison between D and the default KASiam demonstrates that the channel attention
blocks in the SAA blocks are helpful in augmenting useful features of geometric shapes
selectively. Comparing with Variation E , the average CD can be 17.7% lower by applying
shape refiner modules, which have the ability to generate point clouds with more detailed
structures and smoother surfaces than the manifold fitting method [32].

4.4.1. Visualization Analysis of Attention Mechanisms on Point Clouds

In this section, we make extensive visualization analyses of the attention mechanisms
on point clouds to show the effectiveness of CAP and SAA blocks visually. As shown in
Figure 9, these analyses can be divided into three aspects: different methods of neighbor-
hood selection, different attention layers and different positions of query points.

As shown in Figure 9a, we compare different neighborhood selection methods of query
points between the traditional KNN, Global-KNN [15] and our KASiam, we set the number
of neighbors in KNN to 64 and select the results of the first CAA layer as outputs of KASiam.
KNN only selects neighborhoods closest to the query point according to the Euclidean
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distance. Global-KNN [15] improves the KNN operation and can select neighborhoods of
the query point according to semantic features, but the number of neighbors is as limited
as KNN. However, our KASiam has the ability to search neighborhoods of query points
adaptively by multi-head attention operations, to capture and aggregate shape features of
all points according to semantic shape features.

Table 4. Ablation study of KASiam on the PCN dataset in terms of L1 Chamfer distance (×10−3).
Here, USC , CAP, SAA and CA represent the blocks of umbrella surface constructor [18], cross-
attention perception, self-attention augment and channel attention, respectively. The best results are
highlighted in boldface.

USC CAP SAA CA Shape Refiner Average Plane Chair Lamp Boat

A X X X X 6.92 3.92 7.32 5.59 6.02
B X X X X 7.25 4.53 8.43 6.40 6.99
C X X X X 7.08 4.42 8.17 6.23 6.65
D X X X X 7.01 4.27 8.02 6.12 6.34
E X X X X 8.35 5.31 9.74 7.34 7.94

Full X X X X X 6.87 3.90 7.21 5.51 5.96

Figure 9. Visualization analyses of the attention mechanisms on point clouds. Here, query points
are marked in green, and colors of points changing from red to blue indicate that query points
are of higher to lower attention to the corresponding regions. (a) Visual comparison of different
neighborhood selection methods of query points between the traditional KNN (k = 64), Global-
KNN [15] and KASiam (first CAA layer). (b) Visual comparison of the outputs of different CAA
layers. (c) Visual comparison of the attentive regions of different query points (second CAA layer).
(d) Results of attention mechanisms on more objects (first CAA layer).

As shown in Figure 9b, we compare the outputs of different CAA layers in the feature
extractor. Visualization results demonstrate that, with the deepening of the layers, our
KASiam can select neighborhoods in shape regions similar to the query point at the semantic
level, rather than simply according to the Euclidean distance. For example, the query point
close to the aircraft fuselage gradually transfers the attentive region from the wing to the
fuselage through the network fitting of CAA blocks. A similar event occurs on the chair;
the query point at the beam of the chair should pay more attention to the beams and legs of
the chair rather than the chair back.

As shown in Figure 9c, we explore the relationship between attentive regions and
positions of query points. We select results of the second CAA layer as outputs to make the
comparison more obvious. Visualization results demonstrate that our KASiam can capture
attentive regions adaptively according to different semantic shapes of query points. For
example, if the query point is on the tyre area, the attentive region of it should be close to
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the area of similar structures of tyres. If the query point is on the car hood, the attentive
region of it should be the front region of the car. Moreover, we provide more results of
attention mechanisms on other objects in Figure 9d.

4.4.2. Visualization Analysis of the Keypoints Alignment Operation

In this section, we make some visualization analyses of the keypoints alignment
operation during point cloud completion in Figure 10. After training in the reconstruction
path, we get the accurate keypoints distribution with complete point clouds as inputs.
Then, we constantly calculate the Chamfer Distance dCD(Pkey, P̂key) between keypoints
generated by the completion path and the reconstruction path (Section 3.6.2), and let it act
as a part of the loss function Lcompletion in the completion path. The role of the Keypoints
Alignment Operation is to make the distribution of completion path keypoints Pkey close
to reconstruction path ones P̂key, which is beneficial to generate fine-grained point clouds
with highly detailed geometric shapes.

Figure 10. Visualization results of the Keypoints Alignment Operation. Here, we use small gray dots
and large red dots to present input points and keypoints, respectively. (a) Visualization process of the
keypoints alignment operation. For clarity, we mark the enlarged detail structures with blue boxes.
(b) Results of the keypoints alignment operation on more objects.

Take the completion of a partial plane as an example. In epoch 2, there are few
keypoints located in the area of the missing wing and engine, which is detrimental to
generating a complete aircraft shape. With the training of the completion path, we find that
keypoints are distributed almost throughout the region of the missing wing and engine in
epoch 200. It is an important and fundamental step for generating a complete point cloud
of the plane. Moreover, we provide more results of the keypoints alignment operation
on more objects in Figure 10b. The results show that the keypoints generated by KASiam
are distributed on the surface of the corresponding object evenly, and demonstrate that
the keypoints alignment operation has the ability to capture and recover the geometry of
objects, and is beneficial to point cloud completion tasks.

4.4.3. Visualization analysis of the Shape Refiners

In this section, we make some visualization results of the process of point clouds
completion by shape refiners in Figure 11. As mentioned in Section 3.4, the purpose of
shape refiners is to generate finer point clouds from a coarse one and transfer shape feature
information. Specifically, each shape refiner first duplicates the former point cloud Ppre
and then adds variations to generate the current point cloud Pout, which can be estimated
by the aid of CAP and SAA blocks. As shown in Figure 11, we enumerate the generation
process of point clouds for eight objects. Shape refiners have the ability to refine the point
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cloud step by step (Pkey → Pmid → Pf ine) based on the accurate keypoints. Even if the
keypoints have inaccurate or missing areas, shape refiners can also identify and correct
them accurately. The results demonstrate that shape refiners are able to interpret the shape
features of former objects accurately and generate point clouds with fine-grained geometric
shapes, which is instrumental in the generation of point clouds.

Figure 11. Visualization results of the process of point clouds completion by shape refiners. Here,
after getting the keypoints Pkey, we send it to two tandem shape refiners to generate complete point
clouds step by step (Pkey → Pmid → Pf ine).

5. Discussion

Although the above analyses demonstrate that our KASiam has achieved great results
in point cloud completion, we identify three faulty modes for our method in the PCN
dataset in Figure 12.

Firstly, KASiam cannot handle rare shapes well. Taking the plane as an example,
compared with other common planes, this plane has a rare shape with a nose antenna and
complex wings, and has a small sample in the whole PCN dataset. Thus, KASiam has
limited ability to capture and reconstruct these rare shapes due to the training strategy,
which is also a common problem of supervised deep learning algorithms. Secondly, KASiam
cannot reconstruct some parts of objects without any prior information in partial point
clouds. Take the cabinet as an example, the input partial point cloud is scanned by a lidar
placed behind the cabinet, and there are no points belonging to the hierarchical structure of
the cabinet. Thus, KASiam generates an ordinary cabinet without the hierarchical structure.
On the other hand, this cannot be defined as a failure case, because it is also a complete
and semantic shape of cabinets under different evaluation criteria. Thirdly, KASiam cannot
handle objects with numerous and detached parts. Taking the lamp as an example, KASiam
mishandles the completion of the lamp with lots of detached bulbs. This is likely due to
that such structures have high-frequency feature information, which is difficult to extract
by neural networks.

In the future, to further solve the above problems, we think there are three directions
to explore. Firstly, because most of the scanned point clouds are incomplete and unmarked,
it is a trend to accomplish point cloud feature learning and point cloud completion by
unsupervised learning, which can reduce the inductive bias of algorithms for specific
datasets and improve categories generalization and robustness. Secondly, it is necessary to
propose a new point cloud completion evaluation standard based on the semantic level,
because it does not need to calculate the distance between each point in some completion
tasks. Thirdly, deep graph convolution networks, or other networks that implicitly define
geometric relationships between features, may be the key to further improve the feature
representation ability of neural networks.
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Figure 12. Visualization of the three typical faulty modes in the PCN dataset, which are mishandling
rare shapes (plane), losing detailed structures (cabinet) and mishandling numerous and detached
parts (lamp).

6. Conclusions

In this paper, we propose a keypoints-aligned siamese network named KASiam for
the completion of partial point clouds. KASiam has dual input-asymmetric paths of
reconstruction and completion with cross-attention perception (CAA) blocks and self-
attention augment (SAA) blocks inserted. KASiam takes sufficient advantage of input
point clouds through the keypoints alignment operation, and searches neighborhoods of
query points adaptively by multi-head attention operations to capture and aggregate shape
features. Experimental results and analyses on the PCN dataset and several TLS data
demonstrate that KASiam achieves the state-of-the-art point cloud completion performance
and can predict fine-grained shapes with highly detailed geometries in the majority of
cases, which is crucial for the area of remote sensing and some TLS applications. It is worth
noting that KASiam works on down-sampled TLS point clouds rather than the original
TLS data for efficiency.
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Appendix A. Network Details

Figure A1. The complete and detailed architecture of KASiam.
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