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Abstract: Chlorophyll-a (Chl-a) is an important marine indicator, and the improvement in
Chl-a concentration retrieval for ocean color remote sensing is always a major challenge. This
study focuses on the northwest Pacific fishing ground (NPFG) to evaluate and improve the
Chl-a products of three mainstream remote sensing satellites, Himawari-8, MODIS-Aqua, and VIIRS-
SNPP. We analyzed in situ data and found that an in situ Chl-a concentration of 0.3 mg m−3 could be
used as a threshold to distinguish the systematic deviation of remote sensing Chl-a data in the NPFG.
Based on this threshold, we optimized the Chl-a algorithms of the three satellites by data grouping,
and integrated multisource satellite Chl-a data by weighted averaging to acquire high-coverage
merged data. The merged data were thoroughly verified by Argo Chl-a data. The Chl-a front of
merged Chl-a data could be represented accurately and completely and had a good correlation
with the distribution of the NPFG. The most important marine factors for Chl-a are nutrients and
temperature, which are affected by mesoscale eddies and variations in the Kuroshio extension. The
variation trend of merged Chl-a data is consistent with mesoscale eddies and Kuroshio extension and
has more sensitive responses to the marine climatic conditions of ENSO.

Keywords: ocean color algorithms; Chl-a concentration; Himawari-8; MODIS-Aqua; VIIRS-SNPP;
northwest Pacific

1. Introduction

The northwest Pacific fishing ground (NPFG) is one of the most important fishing
grounds in the world, where the catch production can reach 20 million tons, account-
ing for 25% of the total worldwide marine fish production, according to statistics from
the Food and Agriculture Organization (FAO) of the United Nations [1]. The NPFG has
unique geographical conditions and oceanographic properties and is the habitat and fish-
ing ground for many pelagic fishery species, especially the Pacific saury (Cololabis saira),
a major commercial species in this region [2]. The intersection of the Oyashio Current,
Kuroshio Current, and Kuroshio extension brings abundant nutrients [3,4] to the region,
while also effecting marine climate changes in the NPFG [5,6]. The Chlorophyll-a (Chl-a)
concentration is an important ocean color indicator associated with phytoplankton, nutri-
ents, and primary productivity; it also plays an important role in marine climate changes,
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marine current responses, marine ecosystems, and marine geochemical cycle regulation.
Therefore, Chl-a concentration is a necessary factor for marine studies concerning carbon
flux, marine biomes, and fisheries [7–10]. The related study of Chl-a concentration in the
NPFG is essential.

Ocean color remote sensing is the most direct and effective way to observe the variation
in the global distribution of Chl-a and is highly convenient for marine studies [11,12]. In
1978, the United States launched the first ocean color remote sensor, CZCS, which received
considerable attention. Subsequently, SeaWIFS, MODIS, and other ocean color sensors
were launched by NASA and NOAA. Japan launched its first ocean color sensor, OCTS, in
1996; European countries and ESA also launched ocean color sensors such as POLDER and
MERIS [13]. China started late in the field of ocean color remote sensing but has developed
rapidly. Both HY-series (Haiyang series satellites, Table 1) and FY-series (Fengyun series
satellites, Table 1) satellites are equipped with ocean color sensors [14]. Countries such as
India and South Korea have also launched their own ocean color sensors (Table 1) [15].

Table 1. Representative ocean color remote sensors from various agencies in different countries.

Country &
Agency Sensor Satellite Launch Date Resolution (m) # of Bands Spectral

Coverage (nm)

USA NASA CZCS Nimbus-7 1978 825 6 433–12,500

SeaWIFS OrbView-2 1997 1100 8 402–885

MISR Terra 1999 250 4 446–867

MODIS Terra, Aqua 1999, 2002 1000 36 405–14,385

VIIRS SNPP, JPSS 2011, 2017 370/740 22 402–11,800

NASA, ONR
and DOD HICO

JEM-EF
International Space

Station
2009 100 124 380–1000

France CNES POLDER, -2, -3 ADEOS (Japan), -II
(Japan), Parasol 1996, 2002, 2004 600 9

443–910,
443–910,
443–1020

Germany DLR MOS IRS-P3 (India) 1996 500 18 408–1600

Japan NASDA OCTS ADEOS 1996 700 12 402–12,500

GLI ADEOS-II 2002 250/1000 36 375–12,500

Japan NEC OCI ROCSAT-1
(Taiwan) 1999 825 6 433–12,500

Japan JAXA SGLI GCOM-C 2017 250/1000 19 375–12,500

India ISRO OCM, -2 IRS-P4, Oceansat-2 1999, 2009 350, 100–400 8 402–885,
400–900

Korea KARI KOMPSAT OSMI 1999 850 6 400–900

GOCI, -II COMS,
GEOKompsat-2B 2010, 2020 500, 250 8, 13 400–865,

380–900

Europe ESA MERIS Envisat-1 2002 300/1200 15 412–1050

MSI Sentinel-2A, -2B 2015, 2017 10/20/60 13 442–2202

OLCI Sentinel-3A, -3B 2016, 2018 300/1200 21 400–1020

China CNSA CMODIS Shen Zhou-3 2002 400 34 403–12,500

China CMA MERSI-1, -2, -3 FY-3A, -3B, -3C 2008, 2010, 2013 250/1000 20 402–2155

China SOA COCTS HY-1B, -1C, -1D 2007, 2018, 2020 1100 10 402–12,500

CZI HY-1B, -1C, -1D 2007, 2018, 2020 250, 50, 50 4 433–885
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Chl-a concentration retrieval algorithms have developed synchronously with the
accumulation of ocean color data. To obtain global Chl-a concentration observations,
ocean chlorophyll-a (OCx, x means the version of the algorithm) algorithms, which are
widely used in remote sensing Chl-a concentration retrieval, were first proposed for Sea-
WIFS [16,17]. The algorithms are based on a polynomial of the spectral ratio of remote
sensing reflectance (Rrs, or normalized water-leaving reflectance) and empirical coefficients
obtained from regressions of spectral ratios and in situ Chl-a data [15,18]. The empirical
coefficients of different sensors have also been further optimized to verify the accuracy
of OCx algorithms [19]. Hu et al. found that the performance of OCx algorithms was not
good at low Chl-a concentrations; hence, they proposed the color index (CI) algorithm for
Chl-a concentrations < 0.15 mg m−3 and set Chl-a concentration thresholds for the applica-
tion of the OCx and CI algorithms, creating the ocean color index (OCI) algorithm [20,21].
However, the OCx and OCI algorithms were both designed to achieve global ocean observa-
tions and may cause errors at regional scales due to the different optical properties caused
by differences in colored dis-solved matter and phytoplankton community structure [22].
For this reason, many studies have focused on different ocean basins to assess and optimize
these algorithms. The research areas include the Arctic Ocean [23], the Atlantic Ocean [24],
the Mediterranean Sea [25], the Southern Ocean [26], the Indian Ocean [27], and the tropical
Pacific Ocean [28]. Related studies are few regarding the NPFG.

Differences in the missions and designs of sensors lead to differences in Chl-a data
quality from specific sensors [29,30], further resulting in the discontinuity and deviation of
long-term Chl-a records [12,31]. Natural effects such as clouds, interorbit gaps, sun glint,
and thick aerosols will prevent ocean color sensors from collecting Chl-a data, causing
missing data and low data coverage [32]. To improve the consistency of Chl-a data from
different sources and the coverage of final ocean color products, researchers have adopted
statistical methods, such as weighted averaging, empirical orthogonal functions, machine
learning, and the Bayesian maximum entropy method, to merge and improve Chl-a data
from multiple sources based on existing retrieval algorithms [33,34].

Remote sensing Chl-a data have been widely used in marine studies of the NPFG.
In fisheries studies of Pacific saury, Chl-a data have been utilized to study the migration
routes and formation mechanisms of the fishing grounds, as these data are closely related
to the food conditions of different regions and seasons [35–37]. Knowledge regarding the
effects of environmental factors on exploited fishery stocks is key for fishery management
strategies, and accurate Chl-a data could better indicate changes in Pacific saury migration
routes and distribution [38]. Mesoscale eddies and Kuroshio extension are also important
oceanographic phenomena in this region. The oceanographic dynamic process can cause
changes in nutrients, sea surface temperature, and sea surface height, which can then lead
to a change in Chl-a concentration. However, how to quantify the influence of this dynamic
process on Chl-a for different scales and what kind of influence mechanism impacts different
dynamic processes for marine ecosystems still need further exploration [39]. Accurate and
high-coverage Chl-a data could reflect the states of mesoscale eddies and the change scales
of Kuroshio extension more completely, laying a foundation for related studies. Marine
climate changes, caused by typhoon weather and ENSO events, have substantial impacts
on the marine ecosystem [6,40,41]. Chl-a concentration, which is sensitive to changes in
the marine environment, could respond to climate changes [11,18]. However, with the
exception of studies on typhoon weather and long-term climate changes, studies regarding
climate change impacts on ENSO and Chl-a concentration are relatively few for the NPFG.
Therefore, this paper proposes a method to acquire more accurate and higher-coverage
Chl-a data in the NPFG and discusses the related oceanographic phenomena.

In this study, the main goals include the following: (a) improving the algorithms for
Himawari-8, MODIS-Aqua, and VIIRS-SNPP Chl-a data in the NPFG and then proposing
a method for merging them into more accurate Chl-a data; (b) exploring the role of merged
Chl-a data to explain the changes in the NPFG; (c) verifying the action mechanism of



Remote Sens. 2022, 14, 3610 4 of 27

merged Chl-a data to reflect the influence of mesoscale eddies, Kuroshio variations, and
ENSO phenomena.

2. Materials and Methods
2.1. Data Sources
2.1.1. Satellite Chl-a Data

In this paper, the NPFG is defined as 35◦N to 55◦N, 140◦E to 175◦E, which includes
the Pacific saury migration routes and habitats for different life stages (Figure 1) [35,36]. To
obtain better Chl-a observation data in the NPFG, we selected three mainstream remote
sensing satellites in orbit, Himawari-8, MODIS-Aqua, and VIIRS-SNPP, as data sources.
MODIS-Aqua was launched in May 2002. It acquires data in 36 spectral bands and has the
longest service time among the three sensors. VIIRS-SNPP, launched in October 2011, has
22 spectral bands ranging from 412 nm to 12 µm. MODIS and VIIRS are equipped on polar-
orbit satellites of NASA and can make global observations (Table 1) [13,15]. Himawari-8
is not a traditional ocean color remote sensing satellite. It is a geostationary orbit satellite
with 16 observed bands that was produced by the Japan Meteorological Agency (JMA)
mainly for marine meteorological observations and was launched in October 2014 [14]. It
can scan the whole northwest Pacific Ocean once every 10 min and shows advantages in its
relatively high temporal–spatial resolution [42].
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Figure 1. Research area including the locations of observation data and Argo trajectory in NPFG. The
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ground, and northward (southward) migration route of Pacific saury are marked in the Figure.

MODIS-Aqua and VIIRS-SNPP level 3 mapped data, including Rrs data and Chl-a
concentration products, were downloaded from the NASA ocean color website (https:
//oceancolor.gsfc.nasa.gov/, accessed on 29 July 2020). The temporal resolution and
spatial resolution of these two satellites are daily and 4 km, respectively. The level 3
Himawari-8 data are from the Japan Aerospace Exploration Agency (JAXA) P-Tree System
(https://www.eorc.jaxa.jp/ptree/index.html, accessed on 30 July 2020). The daily and
full-disk (5 km) data, which include the normalized water-leaving reflectance and Chl-a
concentration data, were downloaded.

2.1.2. In Situ Chl-a Data

The in situ Chl-a data include fishing operation points from three years (2017~2019) of
the northwest Pacific autumn survey of Zhongtai Ocean Fishery Co., Ltd. (Qingdao, China).

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
https://www.eorc.jaxa.jp/ptree/index.html
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Water samples were collected at the operation points, and the value of Chl-a was measured
fluorometrically in the laboratory [43], resulting in a total of 85 surface (0 m) Chlin situ
observations from the research region. A total of 164 Pacific saury fishing operation sites
were also recorded in the three-year survey.

2.1.3. Chl-a Data from Argo

The Argo data are from BGC-Argo Program. We used these data as the validated
data, including 60 surface (0 m) ChlArgo observations from January 2020 to January 2021.
These data are collected and made freely available by the International Argo Program
(https://argo.ucsd.edu, accessed on 9 July 2021) and the national programs (https://www.
ocean-ops.org, accessed on 9 July 2021) that contribute to it.

2.1.4. Marine Environmental Data

Sea surface temperature (SST) data used in this paper are from the NASA ocean color
website (https://oceancolor.gsfc.nasa.gov/, accessed on 30 January 2022). The resolution
of SST data is 4 km. Sea level anomaly (SLA), for which the resolution is 0.25◦ × 0.25◦,
was obtained from the Copernicus Marine and Environment Monitoring Service (CMEMS,
https://www.aviso.altimetry.fr/en/home.html, accessed on 15 February 2022).

2.1.5. ENSO Index

The Multivariate ENSO Index (MEI, from https://www.esrl.noaa.gov/psd/enso/
mei/, accessed on 25 February 2022) was used in this paper to describe three ENSO states:
El Niño (MEI≥ 1), Neutral (−1 < MEI <1), and La Niña (MEI≤−1) [28,44]. The distribution
of Chl-a concentration would be recorded and compared in different ENSO states based
on MEI.

2.2. Chl-a Data Preprocessing

A pairwise comparison needed to be performed for the matched in situ data and
satellites’ Chl-a products to validate the point-to-point accuracy. Due to cloud cover and
other factors, satellite data will miss observation points and cause gaps in remote sensing
products, further resulting in the failure of data matchups. In this paper, different combi-
nations of temporal and spatial averaging were tested to find an appropriate averaging
method to solve this problem. For spatial averaging, the pixel corresponding to the in
situ data was regarded as the center pixel, and windows of 1 × 1, 3 × 3, and 5 × 5 pixels
were extracted. Temporal averaging of 1 day, 3 (1 ± 1) days, and 5 (1 ± 2) days was
performed centered around the sampling time of the in situ data. Different combinations
led to different accuracies and numbers of matchups. After selecting the best combination
of data, the outliers of each data set were eliminated under a 95% confidence interval.

2.3. Assessment Metrics

The in situ Chl-a data pairwise comparison results for different combinations were
recorded, including the total number, percent of matches, and accuracy of matchups. Be-
cause of the small sample size of in situ Chl-a concentration data, the quantity of successful
matchups was the first priority. The correlation of matchups was described by the coef-
ficient of determination (R2) of the original algorithm fitting between the Rrs data and
satellite Chl-a products.

The slope, intercept, and R2 between the in situ data and satellite data were recorded
to evaluate the performance of the ocean color algorithms. For systematic estimation of the
satellite Chl-a data, the log-transformed bias was used to indicate the degree of deviation
from one set to another (Equation (1); bias = 1 means no deviation) [45]. The mean absolute
error (MAE; Equation (2)) was calculated as the absolute value of the bias.

Bias = 10
∑n

i=1(log10(chl product)−log10(chlin-situ)
n , (1)

https://argo.ucsd.edu
https://www.ocean-ops.org
https://www.ocean-ops.org
https://oceancolor.gsfc.nasa.gov/
https://www.aviso.altimetry.fr/en/home.html
https://www.esrl.noaa.gov/psd/enso/mei/
https://www.esrl.noaa.gov/psd/enso/mei/
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Mean absolute error = 10
∑n

i=1 |log10(chl product)−log10(chlin-situ)|
n , (2)

2.4. Remote Sensing Chl-a Algorithm Development
2.4.1. Current Chl-a Algorithms

The Chl-a products of MODIS-Aqua and VIIRS-SNPP are based on OCx algorithms
(Equations (3) and (4)). For MODIS-Aqua, the maximum band ratio (MBR) is the ratio of the
maximum Rrs of the blue band (λ = 443 nm or λ = 488 nm, depending on which wavelength
has the larger Rrs value) to the Rrs of the green band (λ = 547 nm). For VIIRS-SNPP, the
MBR is the ratio of the maximum Rrs of the blue band (λ = 443 nm or λ = 486 nm) to the
Rrs of the green band (λ = 551 nm). For Himawari-8, the MBR is the ratio of the band at
λ = 470 nm to the band at λ = 510 nm (Equation (3)), and the Chl-a products are created
by a linear polynomial (Equation (4)) [46]. The ax terms are empirical coefficients of the
algorithms (Table 2).

X = log10(MBR); MBR =
max(Rrs(λblue))

Rrs
(
λgreen

) , (3)

Chlocx = 10a0+a1X+a2X2+a3X3+a4X4
, (4)

X = log10(MBR);MBR =
(Rrs(λ470))

Rrs(λ510)
, (5)

Chl = 10a0+a1X , (6)

Table 2. Default coefficients of the Chl-a algorithms of the sensors.

Satellite Rrs (nm) Rrs (nm) a0 a1 a2 a3 a4

Himawari-8 470 510 0.0388 −4.2500 # # #
MODIS-Aqua 443 > 488 547 0.2424 −2.7423 1.8017 0.0015 −1.2280
VIIRS-SNPP 443 > 486 551 0.2228 −2.4683 1.5867 −0.4275 −0.7768

2.4.2. Coefficient Optimization

In this paper, we retained the polynomial form of the OCx algorithm and the Himawari-
8 algorithm. The least-squares optimization method was used to adjust the original co-
efficients of the algorithms [26]. The in situ Chl-a data (Chlin situ) and log10 (MBR) were
plugged into the polynomials with the original empirical coefficients as the starting coeffi-
cients to improve the original algorithms of the three sensors. Previous studies have shown
that the performance of OCx algorithms is not good at low Chl-a concentrations and that
systematic deviation exists [20,21,28,34]. In this study, according to the fitting results for the
Chl-a data and variation of bias, the in situ data and satellite data were divided into two
groups for each sensor (a low-Chl-a concentration group and a high-Chl-a concentration
group). Optimization was performed for each group to generate two new algorithms for
each sensor.

2.4.3. Blending Windows

The blending windows are the ranges for the application of the algorithms for each
sensor. According to the distribution and systematic deviation of each data group, different
thresholds were set for the three sensors. In different application ranges, the new algorithms
or default algorithms of each sensor were used to generate Chl-a concentration data.
Algorithms using blending windows are called blending algorithms [21,28].

2.5. Data Merging

The cross-sensor consistency of data is important for merging the data of multiple
satellites [32]. The consistency is measured by the bias between two satellites’ Chl-a data.
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After consistency validation, the Chl-a products were merged through weighted averages.
The weights of the three sensors and each pair of sensors of Chl-a products were calculated
by the MAE. MAE is different from bias, and the use of MAE can avoid the impact of
an uneven Chl-a data distribution on bias. As the measured criteria of MAE are the same
as those for bias, the weight ratio of each satellite’s product in the data merging process
depends on the difference value obtained from the subtraction between the MAE of the
product and MAE = 1. Grid points with Chl-a data from only one sensor will be filled by
these data. The spatial resolution of the merged products is 4 km. In the process of data
merging, the products of Himawari-8 were resampled, and a 3 × 3 mean filtering process
was performed for the merged data to eliminate abnormal variations in Chl-a data. Figure 2
shows the complete process of algorithm improvement.
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3. Results
3.1. Matchups of Chl-a Data

Different matchup processes result in different numbers of pairs between in situ Chl-a
data and satellite Chl-a data. The matchup information between in situ data and satellite
data was evaluated to select the optimal spatial–temporal combination.

The range of the in situ Chl-a data is from 0.07 to 5.54 mg m−3. The median and
mean are 0.32 and 0.48 mg m−3, respectively. For MODIS-Aqua and VIIRS-SNPP, matchup
conditions of 5× 5 pixels and 5 (1± 2) days of processing were selected due to their highest
match percentages of 68.24% and 67.06%, respectively. The results of the regressions
comparing the spectral data and satellite Chl-a data are R2 = 0.9673 and 0.9830 for MODIS-
Aqua and VIIRS-SNPP, respectively, showing that this processing method is feasible. For
Himawari-8, the method with conditions of 1 × 1 pixel and 1 day processing was selected
due to the regression between the spectral data and Himawari-8 Chl-a data (R2 = 0.78)
and a match percent of 70.59%. The numbers of matched data points are 60, 58, and
57 for Himawari-8, MODIS-Aqua, and VIIRS-SNPP, respectively (Table 3). The numbers of
outliers for MODIS-Aqua, VIIRS-SNPP, and Himawari-8 are 12, 12, and 16, respectively.
The distribution of the Chl-a data (without outliers) is shown in Figure 3, which shows the
high productivity level in the NPFG.
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The same processes were applied for the Argo Chl-a data. A total of 36, 22, and
33 pairwise data points for Himawari-8, MODIS-Aqua, and VIIRS-SNPP, respectively, were
collected for later validation.

3.2. Adjustment of Chl-a Algorithm Coefficients

The linear regression of the default satellite Chl-a products and Chlin situ is shown
in Figure 4. The initial fitting results show that the three satellite Chl-a products are not
quite accurate in the research area. The performances of the MODIS-Aqua and VIIRS-SNPP
Chl-a data are relatively good (R2 = 0.4257 and 0.3362, respectively). The performance of
the Himawari-8 Chl-a data is the worst among the three satellites (R2 = 0.0622).

From Figure 4, with an in situ Chl-a concentration = 0.3 mg m−3 as a threshold, the
satellite Chl-a data are generally underestimated when the in situ Chl-a concentration
> 0.3 mg m−3, and the satellite Chl-a data are generally overestimated when the in situ
Chl-a concentration < 0.3 mg m−3. Figure 5 reflects the variation in bias with increasing in
situ Chl-a data, including the variations in the total data set and in the data sets grouped by
the threshold Chlin situ = 0.3 mg m−3. The variation lines of bias for the total data set (black
lines) show a steady and continuous downward trend when the in situ Chl-a concentration
> 0.3 mg m−3. Moreover, a steep drop in the red lines (variation lines of bias for grouped
data) occurs at an in situ Chl-a concentration of approximately 0.3 mg m−3. Based on the
results, the data are divided into two groups for each sensor (a Chlin situ > 0.3 mg m−3

group and a Chlin situ < 0.3 mg m−3 group) in the optimization process.

Table 3. Summary of in situ data and satellite data matchup results. The selected combinations and
the basis of each selection are highlighted in red bold.

Temporal Average Pixel Average Matches Match Percent % R2

Himawari-8
1 day 1 × 1 60 70.59% 0.7814
1 day 3 × 3 66 77.65% 0.6228
1 day 5 × 5 68 80.00% 0.7174

3 (1 ± 1) days 1 × 1 77 90.59% 0.6542
3 (1 ± 1) days 3 × 3 79 92.94% 0.4934
3 (1 ± 1) days 5 × 5 82 96.47% 0.3082
5 (1 ± 2) days 1 × 1 78 91.76% 0.5652
5 (1 ± 2) days 3 × 3 81 95.29% 0.4882
5 (1 ± 2) days 5 × 5 82 96.47% 0.4205
MODIS-Aqua

1 day 1 × 1 13 15.29% 0.9523
1 day 3 × 3 18 21.18% 0.9762
1 day 5 × 5 22 25.88% 0.9683

3 (1 ± 1) days 1 × 1 26 30.59% 0.9822
3 (1 ± 1) days 3 × 3 38 44.71% 0.9421
3 (1 ± 1) days 5 × 5 42 49.41% 0.9836
5 (1 ± 2) days 1 × 1 35 41.18% 0.9706
5 (1 ± 2) days 3 × 3 51 60.00% 0.9534
5 (1 ± 2) days 5 × 5 58 68.24% 0.9673
VIIRS-SNPP

1 day 1 × 1 15 17.65% 0.9601
1 day 3 × 3 18 21.18% 0.9635
1 day 5 × 5 21 24.71% 0.9721

3 (1 ± 1) days 1 × 1 30 35.29% 0.9716
3 (1 ± 1) days 3 × 3 37 43.53% 0.9864
3 (1 ± 1) days 5 × 5 40 47.06% 0.9589
5 (1 ± 2) days 1 × 1 43 50.59% 0.9733
5 (1 ± 2) days 3 × 3 55 64.71% 0.9806
5 (1 ± 2) days 5 × 5 57 67.06% 0.983
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Figure 4. Fitting results of original remote sensing Chl products and Chlin situ data. (a) Himawari-8,
(b) MODIS-Aqua, (c) VIIRS-SNPP. The points are the matched data, the solid line is the slope of each
sensor, and the dashed line represents 1:1. The shaded areas show the 95% confidence interval range.
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Figure 5. Bias variation of the three satellites. The black lines are the bias variation for the total
data set; the red lines are the bias variation after data grouping based on a 0.3 mg m−3 threshold
in situ Chl-a concentration (the red lines of the Chlin situ < 0.3 mg m−3 group are overlapped by
the black lines).

For the Chlin situ < 0.3 mg m−3 group, Himawari-8 has 26 matched data points; MODIS-
Aqua has 21 matched data points; and VIIRS-SNPP has 21 matched data points. The details
of the polynomial improvement are shown in Figure 6(a1–c1). The red line is the improved
fitting line, and the black line is the default algorithm line. All red lines are under the black
lines from Figure 6(a1–c1), which is consistent with the in situ data.

For the Chlin situ > 0.3 mg m−3 group, Himawari-8 has 18 matched data points, MODIS-
Aqua has 25 matched data points, and VIIRS-SNPP has 24 matched data points. The
adjusted results for the polynomials are shown in Figure 6(a2–c2). The adjustment of
Himawari-8 is obvious, and the red line is above the black line. For MODIS-Aqua and
VIIRS-SNPP, the trend of the line is mildly adjusted.
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The new coefficients of the Chl-a algorithms are shown in Table 4. Each sensor has
two algorithms for the different data groups. To avoid overfitting, the coefficients a3 and
a4 of MODIS-Aqua and VIIRS-SNPP in the Chlin situ > 0.3 mg m−3 group are the default
coefficients because of the small sample sizes of matchup data. The default coefficient a4 of
MODIS-Aqua in the Chlin situ < 0.3 mg m−3 group is retained for the same reason.

3.3. Performance of Improved Chl-a Algorithms

New Chl-a products of the three sensors are created by the improved algorithms. The
means, biases, and MAEs of the new Chl-a products of the three sensors were calculated
for comparison with the default Chl-a products (Table 5). From Table 5, the improve-
ments in the two groups of data are obvious for each sensor: relative to the initial values,
the means are all closer to the in situ means, and the biases and MAEs are closer to
1. The improvement in Himawari-8 is excellent for both data groups (the bias changes
from 1.5092 to 1.0382 for the Chlin situ < 0.3 mg m−3 group and from 0.6547 to 1.0000 for
Chlin situ > 0.3 mg m−3 group). The systematic deviation in the MODIS-Aqua and VIIRS-
SNPP data was significantly reduced after optimization for the group of in situ Chl-a concen-
tration < 0.3 mg m−3 (the MODIS-Aqua bias changed from 1.9545 to 1.0058; the VIIRS-SNPP
bias changed from 1.6750 to 1.0589). For the in situ Chl-a concentration > 0.3 mg m−3 group,
the systematic deviation of the two satellites also slightly improved (the MODIS-Aqua bias
changed from 0.9729 to 0.9999; the VIIRS-SNPP bias changed from 0.8066 to 0.8668).
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Table 4. New coefficients of the algorithms of the three sensors based on a 0.3 mg m−3 threshold
Chl-a concentration dividing the two groups.

Coefficients a0 a1 a2 a3 a4

Himawari-8 (<0.3) −0.1955 −4.1326 # # #
Himawari-8 (>0.3) 0.0309 −3.1143 # # #

MODIS-Aqua (<0.3) −0.0449 −2.7701 1.9857 0.2703 −1.2280
MODIS-Aqua (>0.3) 0.1949 −2.5475 2.0539 0.0015 −1.2280
VIIRS-SNPP (<0.3) 0.0064 −2.4903 1.7050 −0.2460 −0.6793
VIIRS-SNPP (>0.3) 0.1773 −2.3933 2.0942 −0.4275 −0.7768

Table 5. Systematic deviation metrics of satellite data before and after algorithm improvement, based
on a 0.3 mg m−3 chlorophyll-a concentration as the threshold. “All” means the total matched data set.

Satellite

Mean Bias MAE

Before
Improvement

After
Improvement In Situ Before

Improvement
After

Improvement
Before

Improvement
After

Improvement

Himawari-8 (<0.3) 0.2642 0.1755 0.1767 1.5092 1.0382 1.6281 1.4236
Himawari-8 (>0.3) 0.278 0.4147 0.4173 0.6547 1 1.5274 1.2007
Himawari-8 (all) 0.2699 0.2733 0.2751 1.0724 1.0224 1.5862 1.3278

MODIS-Aqua (<0.3) 0.3622 0.1934 0.186 1.9546 1.0558 1.9546 1.2839
MODIS-Aqua (>0.3) 0.4803 0.4744 0.4728 0.9729 0.9999 1.3175 1.2635
MODIS-Aqua (all) 0.4264 0.3462 0.3419 1.3378 1.025 1.5774 1.2728
VIIRS-SNPP (<0.3) 0.3141 0.1959 0.1876 1.675 1.0589 1.6943 1.2928
VIIRS-SNPP (>0.3) 0.3952 0.4157 0.4839 0.8066 0.8668 1.3658 1.2871
VIIRS-SNPP (all) 0.3574 0.3132 0.3456 1.1344 0.9516 1.5103 1.2897

Table 6 shows the improvement of the linear regression in terms of statistical variables.
The R2, slope, and intercept of each sensor have significant improvements, especially for
Himawari-8. These statistical data preliminarily prove the effectiveness of the improved
grouping-based optimization method. Chl-a data samples for each sensor were generated
for comparison between the default algorithms and two improved algorithms for each
sensor (Figure 7). The results show clearly different distributions of Chl-a data: the Chl-a
concentration values of the Chlin situ > 0.3 mg m−3 group increase significantly, while the
changes in the Chlin situ < 0.3 mg m−3 group are smaller but still noticeable.

3.4. Establishment of Chl-a Blending Algorithm

The improved algorithms are based on optimization by data groups. Next, we inte-
grated different algorithms to propose a blending algorithm similar to the OCI algorithm [20].
In this study, we selected the default algorithms as the transition between the two improved
algorithms for each sensor and set blending windows for the transitions.

Table 6. Metrics of the linear regression of Chlin situ data and satellite Chl-a data before and after
algorithm improvement.

Satellite

Slope Intercept R2

Before
Improvement

After
Improvement

Before
Improvement

After
Improvement

Before
Improvement

After
Improvement

Himawari-8 0.1628 0.7869 0.2251 0.0569 0.0622 0.7020
MODIS-Aqua 0.6533 0.8159 0.2030 0.0672 0.4257 0.6909
VIIRS-SNPP 0.3756 0.6192 0.2275 0.0992 0.3362 0.7089
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the Chlin situ < 0.3 mg m−3 group, and underestimation in the Chlin situ > 0.3 mg m−3 group is 

Figure 7. Sample satellite images. (a1–a3) are Himawari-8 Chl-a data; (b1–b3) are MODIS-Aqua Chl-a
data; (c1–c3) are VIIRS-SNPP Chl-a data. The images in the first column are drawn by the algorithms
for the in situ Chl-a concentration < 0.3 mg m−3 group for each sensor; the images in the second
column are drawn by the default algorithms; the images in the third column are drawn by the in situ
Chl-a concentration > 0.3 mg m−3 group algorithms.

The blending windows were set according to the application scopes of the different
algorithms (Table 7). Chl-a concentrations from 0.2 mg m−3 to 0.3 mg m−3 generated by the
default algorithm are retained for Himawari-8 because the NPFG is a relatively productive
area and the default Chl-a product of Himawari-8 is underestimated in the group of in
situ Chl-a concentration > 0.3 mg m−3. For MODIS-Aqua, overestimation is obvious in the
Chlin situ < 0.3 mg m−3 group, and underestimation in the Chlin situ > 0.3 mg m−3 group is
not significant. Considering the mean values before improvement of the two MODIS-Aqua
groups (0.3622 mg m−3 and 0.4803 mg m−3), Chl-a concentrations from 0.35 mg m−3 to
0.45 mg m−3 were selected as the application scope for the MODIS-Aqua default algorithm.
For VIIRS-SNPP, overestimation also occurs in the Chlin situ < 0.3 mg m−3 group. In view of
the small improvement in the Chlin situ > 0.3 mg m−3 group and the mean values of the two
VIIRS-SNPP groups (0.3141 mg m−3 and 0.3958 mg m−3), the thresholds of VIIRS-SNPP
were set as 0.3 mg m−3 and 0.4 mg m−3 for the default algorithm in the final products.
The blending algorithms, OCNP algorithms for MODIS-Aqua and VIIRS-SNPP, and the
H8-ChlNP algorithm for Himawari-8, were established after the blending windows had
been determined.

Table 7. Blending windows of different algorithms for each sensor. The interval is the Chl-a concen-
tration in the final product.

Satellite Chlin-situ < 0.3 mg m−3 Algorithm Default Algorithm Chlin-situ > 0.3 mg m−3 Algorithm

Himawari-8 <0.2 mg m−3 0.2–0.3 mg m−3 >0.3 mg m−3

MODIS-Aqua <0.35 mg m−3 0.35–0.45 mg m−3 >0.45 mg m−3

VIIRS-SNPP <0.3 mg m−3 0.3–0.4 mg m−3 >0.4 mg m−3
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Figure 8 shows the linear regression of the in situ data and blending algorithm data.
From Figure 8, the R2, slope, and intercept of the blending algorithms are slightly worse than
the results of the two new algorithms but better than the results of the default algorithms
(Table 6). The result of the H8-ChlNP algorithm shows substantial improvement, and the
MODIS-Aqua OCNP algorithm has the best-fitting performance among the three sensors.
Table 8 shows the systematic deviation of the blending algorithms. Except for the means of
Himawari-8 and VIIRS-SNPP, which deviate slightly, the biases and MAEs are significantly
improved. Figure 9 presents samples of the final products of each satellite based on the
blending algorithms; the original data are the same as those in Figure 7. The products are
generated by the blending algorithms of each sensor, which inherit the advantages of the
improved algorithms and prevent excessive variation of the data.

3.5. Merged Data of Himawari-8, MODIS-Aqua, and VIIRS-SNPP

The biases between sensor data sets were calculated to measure the consistency of the
three sensors’ data (Table 9). The results show that the biases are all closer to 1 than the
initial values, illustrating that the consistency of the three sensors was improved. Therefore,
we sought to integrate the final products from the three sensors and chose the weighted
average method.

The weights of the sensors are shown in Table 10 and are based on the MAEs in Table 8.
The weights of the default algorithms were calculated for further validation. According
to the MAE values of the blending algorithms, the weights changed compared to those of
the default algorithms. The matched Argo data for the three sensors were used to validate
the improvement in the merged data based on the blending algorithms with respect to
the default algorithms. The linear regression of the Argo data and merged data is shown
in Figure 10. The improvement in the merged data based on the blending algorithms is
relatively significant compared with the values for the default algorithms (R2 changed
from 0.2162 to 0.5186). Figure 10 also shows the variation of difference values between
merged data and Argo data with the collection time. The result shows that the Chl-a data
and dispersion degree have significant improvement, but for long-term variation, we still
need more in situ data to study.
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Figure 8. Linear regression of in situ data and blending algorithm data. The black points are the
data retained from the default algorithms. The red hollow points are the default match data, and
the red solid points are the improved data. The black line is the optimized slope. The thick dashed
line is x = y. The thin dashed line is the default algorithm line. The red shaded areas show the 95%
confidence interval range of blending algorithms; the black shaded areas show the 95% confidence
interval range of default algorithms.
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Table 8. Systematic deviation metrics of satellite Chl-a data before improvement and data based on
blending algorithms. “M” stands for MODIS-Aqua; “V” is VIIRS-SNPP.

Blending
Algorithm

Mean Bias MAE

Before
Improvement

After
Improvement In Situ Before

Improvement
After

Improvement
Before

Improvement
After

Improvement

H8-ChlNP 0.2699 0.2668 0.2751 1.0724 1.0413 1.5862 1.3278
OCNP (M) 0.4264 0.3771 0.3419 1.3378 1.1402 1.5774 1.3776
OCNP (V) 0.3574 0.3305 0.3456 1.1344 1.0158 1.5103 1.3956
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Table 9. Cross-consistency between sensors calculated by the bias before and after algorithm im-
provement.

Data Group Himawari-8 to
MODIS-Aqua Himawari-8 to VIIRS-SNPP VIIRS-SNPP to

MODIS-Aqua

Bias before improvement 0.697 0.803 0.8324
Bias after improvement 0.9279 0.967 0.9281

Table 10. Weights of satellites in the data merging process. The weights of three satellites are used
when all three satellites have data in the same location; the weights of two satellites are used when
only two satellites have data in a location.

Satellite

Himawari-8 MODIS-Aqua VIIRS-SNPP

Default
Algorithm

Blending
Algorithm

Default
Algorithm

Blending
Algorithm

Default
Algorithm

Blending
Algorithm

Weights of three satellites 0.3120 0.3540 0.3187 0.3277 0.3693 0.3183
Weights of two satellites 0.4947 0.5192 0.5053 0.4808 # #

0.4580 0.5266 # # 0.5420 0.4743
# # 0.4632 0.5073 0.5368 0.4927
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the data was mitigated, and the accuracy improved. The data are from the August 2019 
monthly data of the three satellites. 

Figure 10. Validation of merged Chl-a data. (a) Linear regression of Argo data and merged data. The
black hollow points are the default matched data, and the red solid points are the data based on the
blending algorithms. The thick dashed line is x = y. The thin dashed line is the default algorithm
merged data line. The black line is the improved fitting line. (b) The variation of difference value
between merged data and Argo data with the collection time. The green dashed line is variation of
the merged data before improvement. The red line is the variation of improved merged data.

Table 11 shows the systematic deviation of the merged data. The Argo data were divided
into two groups based on the threshold Argo Chl-a concentration (ChlArgo) = 0.3 mg m−3 to
illustrate the improvement. Although the mean and bias of the total Argo data are slightly
worse, the MAE is better than before. The two groups of data also show improvements in
the merged data generated by the blending algorithms.

Figure 11 shows the monthly Chl-a data from the three satellites and the resulting
merged Chl-a data. The data coverage was significantly improved. The variation trend of
the data was mitigated, and the accuracy improved. The data are from the August 2019
monthly data of the three satellites.
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Table 11. Systematic deviation of the Argo data. “All” indicates the total Argo data; “>0.3” and “<0.3”
indicate the group data based on a threshold ChlArgo concentration = 0.3 mg m−3.

Data Group
Mean Bias MAE

Before
Improvement

After
Improvement Sample Before

Improvement
After

Improvement
Before

Improvement
After

Improvement

Argo data (<0.3) 0.3012 0.2023 0.1682 1.7754 1.2173 1.9497 1.5386
Argo data (>0.3) 0.3935 0.4263 0.6197 0.5168 0.6491 2.1304 1.6375
Argo data (All) 0.3512 0.3238 0.4131 0.9091 0.8656 2.0460 1.5915
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4. Discussion
4.1. Comparison of the Chl-a Products of Himawari-8, MODIS-Aqua, and VIIRS-SNPP

As a geostationary orbit satellite with a high temporal frequency, Himawari-8 has
a large amount of data on the NPFG. From Table 3, the highest match percent of the in
situ data to Chl-a products reflects the high spatial coverage and temporal resolution of
Himawari-8 in the research area. MODIS-Aqua and VIIRS-SNPP are polar-orbit satellites,
and their operating characteristics lead to a relatively low monitoring frequency and
coverage of the NPFG. However, Himawari-8 is a meteorological satellite with only three
spectral bands in the visible band and one in the near-infrared band, which cover the small
spectral band range used for Chl-a retrieval [46]. Both MODIS-Aqua and VIIRS-SNPP
have nine bands in the visible and near-infrared band ranges. Therefore, MODIS-Aqua
and VIIRS-SNPP have better spectral band and wavelength options for Chl-a retrieval. In
addition, different satellite orbits, zenith angles, azimuth angles, and other observation
parameters lead to different accuracies of satellite retrieval results.

Furthermore, with differences in the spectral bands, the Chl-a retrieval algorithms are
different. The Chl-a products of Himawari-8 are generated through a linear polynomial [46],
while MODIS-Aqua and VIIRS-SNPP use OCx algorithms and quartic polynomials to
generate Chl-a products. Different algorithm models will cause different responses of
the inversion Chl-a concentration to the spectral data, which may also lead to the low
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accuracy of Himawari-8 Chl-a data. It is noteworthy that the NASA ocean color website
provides two types of Chl-a products: one is generated by OCx algorithms, and the other
is generated by OCI algorithms. The OCI algorithms are blending algorithms of OCx
and CI algorithms, with Chl-a concentration = 0.15 mg m−3 as the product threshold [20].
The NPFG is a relatively productive area. From the distribution of the in situ data and
corresponding remote sensing data, the Chl-a concentrations of most data points are greater
than 0.15 mg m−3 (Figure 3). Therefore, Chlocx products are used as the data source in this
paper instead of ChlOCI products. However, the current approach does not preclude the
use of OCI algorithms in future research.

Thus, differences in the characteristics of satellites and in the Chl-a retrieval algorithms
will cause differences in Chl-a products. Himawari-8 Chl-a data have a higher temporal
frequency in observations and coverage of the NPFG than MODIS-Aqua and VIIRS-SNPP
data. The Chl-a products of MODIS-Aqua and VIIRS-SNPP are more accurate but less
spatiotemporally continuous in the NPFG.

4.2. Evaluation of Chl-a Algorithm Coefficient Optimization

In the initial process of algorithm optimization, all of the in situ data were plugged into
the default algorithms to adjust the coefficients. However, the Chl-a products generated by
the first improved algorithms are even worse than the default satellite Chl-a products. The
results of linear regression between Chlin situ and the first improved satellite Chl-a products
showed that the slope (Himawari-8 slope = 0.0984, MODIS-Aqua slope = 0.3600, VIIRS-
SNPP slope = 0.3199) was smaller than those for the Chlin situ and default Chl-a products
(Himawari-8 slope = 0.1628, MODIS-Aqua slope = 0.6533, VIIRS-SNPP slope = 0.3756),
although R2 slightly improved.

A study has shown that OCx algorithms have 15% systematic underestimation in
the Pacific Ocean [22]. Our research finds that the OCx algorithms of MODIS-Aqua and
VIIRS-SNPP exhibit systematic overestimation in the NPFG, especially at low Chl-a concen-
trations; similarly, the OCx algorithms exhibit systematic underestimation at high Chl-a
concentrations. The same results were also reflected in the Himawari-8 Chl-a data (Figure 5).
Researchers have found that the performance of OCx algorithms is unsatisfactory at low
Chl-a concentrations [20,21,28]. Kahru et al. found a difference in deviation in different
Chl-a concentration ranges, and the first and last 25% of the data were taken to improve
the algorithms in their study [34]. Considering both our results and previous studies, we
decided to select an in situ Chl-a concentration of 0.3 mg m−3 as the general dividing
threshold for data grouping to better distinguish the systematic deviation of satellite Chl-a
data. Subsequent optimization was carried out using different data groups.

Tables 5 and 6 show the huge improvements in the fitting results and systematic
deviation for the Chl-a data from the three satellites after grouped coefficient optimization.
Compared with the other two satellites, the fitting results of the improved algorithms for
Himawari-8 show the greatest improvement relative to the original fitting results. The huge
improvements obtained with the grouping algorithms show the effectiveness of such group-
ing for Himawari-8. Another reason for the improvements for Himawari-8 may be the
linear polynomial algorithm, which is used to generate the Chl-a products. The linear poly-
nomial is sensitive to changes in coefficients, and small samples of data may amplify these
changes. The ChlOCx products of MODIS-Aqua have the best original fitting performance
relative to the in situ Chl-a data, but the maximum deviation occurs in the group of in situ
Chl-a concentration < 0.3 mg m−3 (bias = 1.9546). The same problem occurs in VIIRS-SNPP
(bias = 1.6750). Possible reasons for the problem may be that OCx algorithms are more
responsive to changes in Chl-specific backscatter and nonphytoplankton absorption [21],
and the complex marine environment of the NPFG makes this response more intense. The
systematic deviation of the in situ Chl-a concentration > 0.3 mg m−3 group is relatively in-
significant for MODIS-Aqua (bias = 0.9729, MAE = 1.3175) and VIIRS-SNPP (bias = 0.8066,
MAE = 1.3658). From the overall improvement results for MODIS-Aqua and VIIRS-SNPP,
the improvement of VIIRS-SNPP Chl-a products is smaller than that of MODIS-Aqua
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products. The main reason for this may be the small sample of in situ data, which is
not evenly distributed across the Chl-a concentration range in the NPFG, resulting in
the improved algorithms having to retain some original coefficients to avoid large devia-
tion of the improved algorithm in the concentration ranges where samples are deficient.
The characteristics of the sensors and spectral bands used for Chl-a retrieval may also be
factors [47].

Although the optimization results validate the effectiveness of grouping based on the
threshold Chlin situ = 0.3 mg m−3, this threshold of data grouping is not absolute, especially
for MODIS-Aqua and VIIRS-SNPP. From Figure 5, the grouping thresholds of MODIS-
Aqua and VIIRS-SNPP can be even higher than 0.3 mg m−3. However, based on the small
samples of in situ data, an in situ Chl-a concentration of 0.3 mg m−3 was selected as a cutoff
for data grouping in this study. More in situ data are key to further verifying the grouping
threshold of each satellite and improving the performance of algorithms in the NPFG. It
is worth noting that large samples of data may mask the grouping trend [34]. In future
research, algorithm optimization will not be limited to existing empirical algorithms, and
the bio-optical models, machine learning, and artificial neural networks can also be used in
the study of ocean color [33,48,49].

4.3. Influence of Chl-a Algorithm Blending Method

Grouping coefficient optimization leads to different ranges of Chl-a data for algorithm
application. To integrate different algorithms for application, a suitable blending method is
important. We started with the products of the two improved algorithms, integrating the
two types of Chl-a data by averaging or based on a cutoff Chl-a concentration. Figure 12 is
an example of Himawari-8 Chl-a retrieval algorithm blending. The Chl-a concentration data
estimated by the improved algorithms of different data groups covers the whole research
area, including the region where the distribution of the Chl-a concentration range is not
suitable for the improved algorithm, generating error estimates of Chl-a concentration
(Figure 7). Therefore, the average of two types of Chl-a concentration data generated
by improved algorithms may result in greater deviation; when the two types of Chl-a
products are split according to a cutoff value, the final Chl-a concentration product will
show a sudden variation. Considering the distribution of Chl-a data and the method used
to improve the algorithms, it is not feasible to directly blend the final products generated
by the two algorithms for each sensor. In this study, the default algorithms are the basis of
the two groups of improved algorithms. The polynomial form of the improved algorithms
is not changed, which is different from OCI algorithms, which combine CI and OCx
algorithms [20]. Therefore, the default algorithms were chosen to provide a transition
between the two types of new algorithms to generate blending algorithms. The blending
window can be used as a transition between algorithms to ensure a smooth variation of
data and make full use of the advantages of different algorithms [20,21,28]. The size of the
blending window in this paper is based on the distribution and systematic deviation of
satellite Chl-a data.

The satellite Chl-a product accuracy goal in the open ocean is±35%, which is generally
considered acceptable by international missions [12]. Although the OCNP algorithms and
the H8-ChlNP algorithm in this study satisfactorily meet this goal, the results of the OCNP
algorithms and the H8-ChlNP algorithm are slightly worse than the results using the
improved algorithms alone. The retention of data from the default algorithms in the
blending windows are the main reason for the difference in results. Therefore, more in situ
data are necessary for further blending window optimization.

4.4. Variation of NPFG and Kuroshio Extension Represented by the Merged Chl-a Data

Different ocean color sensors exhibit inconsistencies due to differences in discontinu-
ities, calibration strategies, wavelengths, bandwidths, atmospheric correction, and data
processing [28,31,32,50]. The lower the inconsistency between sensors is, the higher the
complementarity between different sensors’ data. Higher cross-sensor consistency can
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allow data from two sensors to complement one another when a sensor ends its mission
cycle, ensuring data continuity. Higher cross-sensor consistency is also the basis for sensor
data merging [32]. In this paper, we tried to improve the consistency through the same in
situ set. Figures 10 and 11 show the advantages of merging data: more accuracy and high
coverage. Additionally, the merged data integrate the advantages of each satellite data and
alleviate the problem that the algorithm improvement may not be comprehensive enough
due to the small in situ data sample size. Although the systematic deviation slightly fluctu-
ates because of the small samples of Argo data, the merged data reflect the improvement
obtained with the blending algorithms and the efficiency of the merging method.
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Figure 12. Example of Himawari-8 Chl-a retrieval algorithm blending. (a) is based on the averaging
of Chl-a data generated by the two improved algorithms; (b) uses blending windows; (c) uses a cutoff
of Chl-a = 0.3 mg m−3 to blend the two improved algorithms.

As an important marine indicator of the primary productivity in the ocean, Chl-a
concentration could reflect the nutrient status and feed distribution, which further affects
the distribution of fishery resources [2,35]. The Pacific saury is one of the primary pelagic
economic species in the NPFG, which is a highly migratory species distributed around
the Kuroshio–Oyashio area with the optimal 15~18 ◦C water temperature [51]. They have
different spawned cohorts, and mainly spawn and overwinter in the Kuroshio warmer
water during winter and early spring. In the summer, the Pacific saury migrates to the
Oyashio colder water for feeding and nursery [35]. The optimal temperature and food are
the main driver for the north–south migration of Pacific saury, even associated with the
long-term abundance variations of the population [2,52]. Therefore, the distribution of
Pacific saury is not fixed, and the fishing operation sites could reflect the distribution of fish
habitats and migration routes, further representing the changes in the fishing ground [53].

As the main source of influencing SST and nutrients in the NPFG, the Kuroshio and
Oyashio currents and Kuroshio extension have huge impacts on marine climates and
oceanographic elements of the NPFG [3,41]. The variation of Kuroshio extension itself and
the influence on fish population have been widely concerned about in the NPFG. SST was
used as the representation of the Kuroshio extension sphere in this paper. SST data and
consistent merged Chl-a data are shown in Figure 13A with isotherms, and the threshold is
set to 18 ◦C consistent with the max optimal temperature of Pacific saury (monthly data
of August 2017). Figure 13A shows that the variation in Chl-a concentration is consistent
with the SST isotherms, and the concentration of Chl-a data shows a certain stratification
trend in different SST ranges, reflecting the influence intensity and range of the Kuroshio
Current [3]. SST and the nutriment carried by Oyashio Current are the main factors affecting
the variations of plankton, which determine Chl-a concentration [6,41]. Therefore, accurate
Chl-a data could also be used to indicate the variation of Kuroshio extension.

The distribution of Pacific saury fishing operation sites in 2017~2019 and the variation
in Chl-a merged data by month are shown in Figure 13B. The fishing ground changed with
variation in Chl-a concentration and was mainly clustered in the Chl-a concentration front,
according to the merged data. From the merged Chl-a data and fishing operation sites,
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the Chl-a concentration fronts were 0.3~0.4 mg m−3, which were consistent with 18 ◦C
SST front and also accord with the optimal temperature of Pacific saury in Figure 13A.
Figure 13C shows that the operation sites are mainly concentrated within 0.5◦ spherical
distance. The season habitat scales changed with the Chl-a fronts and the results could
further explain the conclusions of Tseng et al. [51] that the SST front overlapped with
fishing operation sites and high catch per unit effort (CPUE) during the fishing seasons
from September to December. As for the part of fishing operation site that was not close to
the Chl-a front in August 2017, the main reason was that the vessel was trying to escape
the gale. Additionally, the variation in SST is not dramatic beyond the Kuroshio extension
region where SST is suitable for phytoplankton and Pacific saury, and the Oyashio Current
and related marine bio-geochemical processes predominantly influence Chl-a distribution,
which further affect the distribution of Pacific saury in Oyashio water [6,8,54].
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Figure 13. (A) Comparison of Kuroshio extension (represented by SST) and merged Chl-a variation
(monthly data of August 2017). (B) Monthly merged products of three satellites’ data with Pacific
saury operation sites. The solid lines are the isoconcentrate lines of Chl-a. (a1–a4) are from August
2017 to November 2017; (b1–b4) are from August 2018 to November 2018; (c1–c4) are from August
2019 to November 2019. (C) Histogram of spherical distance statistics between Chl-a fronts and
operation sites.

As the main indicator of plankton in the ocean, Chl-a data is a primary environmental
factor for studying Pacific saury fishing grounds, migration and life history, and establishing
related fishery models [2,51,55]. Additionally, Chl-a data could also be an indicator for
the variation in Kuroshio extension, resulting in mutual verification when combined with
oceanographic environmental factors. The integrity of merged Chl-a data with varying
temporal and spatial characteristics can provide excellent support for related oceanographic
research and fishery resource assessment, which can guide fishing operation and pelagic
fishery in the NPFG.
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4.5. Reflection of Mesoscale Eddies in Merged Chl-a Data

Mesoscale eddies are ubiquitous phenomena in the ocean which play important roles
in global ocean heat budget and ecological and bio-geochemical processes through their
contributions to water and vertical nutrient transport and alteration of the underwater
light field [4,56]. Therefore, mesoscale eddies should exert a strong influence on Chl-a
redistribution and ecosystem balance [39,57]. The convergence of Kuroshio Current and
Oyashio Current makes the NPFG one of the largest eddy kinetic energy region in the
world [3]. Eddy pumping should result in higher (lower) Chl-a concentration within
the eddy center for a cyclone (anticyclone), which is also called warm eddy (cold eddy)
in the ocean; further, wind and the features of currents would also have an impact on
eddies [3,56].

The mesoscale eddies could be reflected through SLA. Figure 14a shows SLA data
(monthly data of August 2017, the consistent merged Chl-a data is shown in Figure 13A).
The mesoscale eddies are circled based on SLA data, for which 0.2 m and −0.1 m are
defined as boundaries of warm eddies and cold eddies [56]. Figure 14b calculates the
average Chl-a concentration and the percentage difference of eddy center and periphery.
The results show the variation in Chl-a concentration with the eddies, demonstrating
a negative correlation between SLA and Chl-a concentration in the Kuroshio extension
region but a positive correlation in the Oyashio area (Figure 14b), which are consistent with
the features of currents and warm eddies and cold eddies [39]. Although the variation
in Chl-a concentration deviation exists in some eddy ranges for the low resolution of
data and effect of other marine processes in some eddy scales, the merged Chl-a data can
accurately reflect the existence and influence of eddies and abnormal sea surface height; this
information can be successfully applied to the exploration of mesoscale eddies mechanisms
and used to quantify their influence on the Chl-a concentration [57]. Additionally, as
shown in Figures 13 and 14, in the mesoscale eddies, especially warm eddies, the different
characteristics (high Chl-a concentration in the eddy center or low Chl-a concentration in
eddy center, and opposite distribution of Chl-a concentration in eddy periphery) exist in
Kuroshio extension range. The main reason of this phenomenon is the interaction of the
Oyashio and Kuroshio currents, upwelling, and different properties of water mass which
affect the distribution of Chl-a concentration in the eddies [39]. Therefore, the characteristics
of the distribution of Chl-a concentration in mesoscale eddies could also be used to describe
the range of the Kuroshio extension.
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4.6. Responses of Merged Chl-a Data to ENSO

ENSO is a naturally occurring anomalous state of tropical Pacific coupled ocean-
atmosphere conditions, which is a primary driver of global climate modulations and
can persist over several seasons and thereby produce severe regional effects [44]. ENSO
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would cause anomalies such as the SST, sea level pressure, and surface wind, which
means abnormal changes of the SST, currents, and wind would occur during ENSO [44,58].
As an indicator of phytoplankton, Chl-a concentration is sensitive to changes of ma-
rine environment, especially SST, and marine current and wind could also affect the
distribution [3,40]. Based on MEI, merged Chl-a data in different ENSO states was used to
calculate the differences of Chl-a concentration after improvement, and the pixels of the
Chl-a differences in different ENSO states and the improvement were recorded, the outliers
of which were removed through the 95% confidence interval to reduce the error (Figure 15).
For the Chl-a data before improvement, Figure 15 shows that the underestimation of Chl-a
concentration mainly occurs at high latitudes, and overestimation occurs at low latitudes.
The results might be related to different properties of water masses and the interaction
with the Kuroshio or Oyashio intrusion, which causes the algorithms to fail to estimate
Chl-a concentration accurately in areas with different optical properties. Meanwhile, the
underestimation of Chl-a during El Niño is more obvious than neutral than in La Niña
periods outside the Kuroshio extension region; the overestimation of Chl-a during La Niña
is more obvious in the NPFG.
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The differences show that the responses of merged Chl-a data are more accurate
and sensitive to marine climatic changes and correspond with the trend of 1997–1998
and 2015–2016 El Niño events [8,50]. Although the relatively short time series and large
interannual variability of Chl-a data would confound long-term climate change-driven
trends which rely on decadal variation trends for detection [11,59], the merged Chl-a data
could aid prompt responses to short-term marine climate anomalies and better distinguish
climate anomalies caused by ENSO with the assistance of SST, current, and wind data [58].
The more-accurate Chl-a data with high-coverage characteristics can also be the basis for
long-term climate change and marine phenomena studies [5,6,10].

5. Conclusions

The NPFG is an important area linked with global ecology and climate change. As
an important basic indicator of marine features, the accuracy of Chl-a data has a significant
impact on many oceanographic studies. This paper compares and evaluates the per-
formance of Himawari-8, MODIS-Aqua, and VIIRS-SNPP Chl-a data in the NPFG. We
established the H8-ChlNP algorithm for Himawari-8 and OCNP algorithms for MODIS-
Aqua and VIIRS-SNPP. The accuracy improved by 3.11%, 19.76%, and 11.86%, respectively.
The weighted average method was used for data merging, and the merged data with
high coverage accurately reflected the relationship between the distribution of the fish-
ing ground and Chl-a concentration. The high-quality merged Chl-a data could provide
excellent support for fisheries and has shown consistent variation with mesoscale eddies
and Kuroshio extension. Furthermore, based on MEI, merged Chl-a data have different
responses to ENSO states, demonstrating a maximum 16.41% difference of Chl-a data
distribution. Future work will collect more in situ data for additional validation and op-
timization to improve the accuracy and methods for Chl-a concentration retrieval and
merging, which can be combined with marine environmental data for further analysis of
these marine phenomena.
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