
Citation: Zhang, B.; Wang, Z.; Li, W.;

Jiang, W.; Shen, Y.; Zhang, Y.; Zhang,

S.; Tian, K. An Improved

Spatiotemporal Weighted Mean

Temperature Model over Europe

Based on the Nonlinear Least Squares

Estimation Method. Remote Sens.

2022, 14, 3609. https://doi.org/

10.3390/rs14153609

Academic Editor: Christopher Kidd

Received: 21 June 2022

Accepted: 26 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

An Improved Spatiotemporal Weighted Mean Temperature
Model over Europe Based on the Nonlinear Least Squares
Estimation Method
Bingbing Zhang 1 , Zhengtao Wang 2 , Wang Li 3, Wei Jiang 1, Yi Shen 1,*, Yan Zhang 1, Shike Zhang 1

and Kunjun Tian 4

1 School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China;
bbzhang@whu.edu.cn (B.Z.); 13101862990@163.com (W.J.); zy15565509353@163.com (Y.Z.);
xynu18cehui@163.com (S.Z.)

2 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; ztwang@whu.edu.cn
3 Faculty of Land Resources Engineering, Kunming University of Science and Technology,

Kunming 650093, China; dr.liwang@foxmail.com
4 School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255000, China;

kjtian@sdut.edu.cn
* Correspondence: shenyi@xynu.edu.cn; Tel.: +86-15063086165

Abstract: Weighted average temperature (Tm) plays a crucial role in global navigation satellite
system (GNSS) precipitable water vapor (PWV) retrieval. Aiming at the poor applicability of the
existing Tm models in Europe, in the article, we used observations from 48 radiosonde stations over
Europe from 2014 to 2020 to establish a weighted average temperature model in Europe (ETm) by
the nonlinear least squares estimation method. The ETm model takes into account factors such as
ground temperature, water vapor pressure, latitude, and their annual variation, semiannual variation
and diurnal variation. Taking the Tm obtained from the radiosonde data by the integration method
in 2021 as the reference value, the accuracy of the ETm model was evaluated and compared with the
commonly used Bevis model, ETmPoly model, and GPT2w model. The results of the 48 modeled
stations showed that the mean bias and root mean square (RMS) values of the ETm model were
0.06 and 2.85 K, respectively, which were 21.7%, 11.5%, and 31.8% higher than the Bevis, ETmPoly,
and GPT2w-1 (1◦ × 1◦ resolution) models, respectively. In addition, the radiosonde data of 12 non-
modeling stations over Europe in 2021 were selected to participate in the model accuracy validation.
The mean bias and RMS values of the ETm model were –0.07 and 2.87 K, respectively. Compared
with the Bevis, ETmPoly, and GPT2w-1 models, the accuracy (in terms of RMS values) increased by
20.5%, 10.6%, and 35.2%, respectively. Finally, to further verify the superiority of the ETm model, the
ETm model, and other Tm models were applied to the GNSS PWV calculation. The ETm model had
mean RMSPWV and RMSPWV/PWV values of 0.17 mm and 1.03%, respectively, which were less than
other Tm models. Therefore, the ETm model has essential applications in GNSS PWV over Europe.

Keywords: weighted average temperature; nonlinear least squares estimation method; GPT2w; Bevis;
root mean square

1. Introduction

Water vapor and its variation are the main driving force of weather and climate change,
which are important factors in the formation and evolution of disastrous weather. The
change in atmospheric water vapor is directly related to precipitation and plays an impor-
tant role in various meteorological changes such as atmospheric energy transfer, weather
system evolution, and global climate change. In recent years, with the wide application of
GNSS technology in meteorology [1], compared with conventional meteorological detection
technology, GNSS meteorological detection technology has the advantages of high temporal
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resolution, high precision, and low observation cost. It is an important innovation of mete-
orological observation technology, which significantly improves small- and medium-scale
numerical weather observation and forecasting capabilities and effectively makes up for
the limitations of conventional meteorological detection technology [2]. Moreover, it is
widely used in the analysis and imminent prediction of extreme weather such as drought,
rainstorms, and typhoons [3]. In the process of GNSS PWV, the water vapor conversion
coefficient is the critical parameter for converting tropospheric zenith wet delay (ZWD)
into atmospheric water vapor [2], which is mainly affected by the atmospheric weighted
average temperature (Tm) [4,5].

Currently, the calculation model of Tm can usually be divided into two categories
according to whether or not in situ meteorological information is needed. The first cate-
gory is the empirical model requiring surface meteorological parameters, which generally
requires the measured surface temperature (Ts) and other meteorological parameters (i.e.,
water vapor pressure and atmospheric pressure). Among them, the Bevis model [1] is one
of the most widely used models. It first explores the linear relationship between Ts and Tm
and establishes a Bevis model suitable for middle latitude (27◦–65◦N) (Tm = 0.72Ts + 70.2).
However, there will be apparent systematic bias when the model is applied to other re-
gions [6]. Therefore, many scholars have studied empirical models based on multiyear
local or global Tm data fitting [6–17] and improved the Bevis model. When surface me-
teorological parameters are available, this model will have a good prediction effect. The
second type is the Tm model without meteorological parameters [18]. This kind of model
is an empirical model based on multiyear local or global Tm data fitting. It is simple to use,
but its accuracy is not very high compared with the Tm model using measured surface
meteorological information. Representative Tm models include GPT2w and GPT3 models
proposed by Boehm [18,19], GWMT, GTm-II, GTm-III, and GTrop models proposed by
Yao [13,20–22] and GGTm model proposed by Huang [23,24]. With the development of
atmospheric science and the progress of detection technology, PWV prediction accuracy is
required to be higher [25,26]. Therefore, the current Tm model cannot satisfactorily meet
the needs of the prediction accuracy of GNSS PWV over Europe [27]. Consequently, it is
necessary to comprehensively use a variety of meteorological factors and spatiotemporal
location information to establish a high-precision spatiotemporal model of Tm over Europe.

Based on data from 60 radiosonde stations in Europe over seven consecutive years
(2014–2020), this paper first analyzed the linear correlation between Tm and ground temper-
ature, water vapor pressure, air pressure, latitude, longitude, and elevation. Then, on this
basis, comprehensively considering the meteorological factors with good linear correlation
and spatiotemporal information, the refined ETm model was established using the nonlin-
ear least squares method. Taking the Tm calculated by the numerical integration method of
modeling and non-modeling radiosonde data over Europe in 2021 as the reference values,
the accuracy of the ETm model was tested and compared with the Bevis model and GPT2w
model. The ETm model was comprehensively evaluated by the bias and the root mean
square (RMS) index. This paper is organized as follows: Section 2 shows the materials and
methods used, Section 3 evaluates the ETm model, Bevis model, and GPT2w by the bias
and RMS values; finally, Section 4 provides a discussion and the conclusion.

2. Materials and Methods
2.1. Study Area

In the article, 60 radiosonde stations in Europe were selected as the research object, of
which 48 radiosonde stations were used for modeling, and 12 radiosonde stations were used
for accuracy validation of non-modeling stations. The 8 year measured data of radiosonde
stations from 2014 to 2021 (the data sampling interval is 12 h, and the data sampling
interval of individual radiosonde stations is 6 h) were adopted. These data can be obtained
from the website, http://weather.uwyo.edu/upperair/seasia.html (accessed on 20 June
2022), including the measured radiosonde data from 2014 to 2020 as modeling data and
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the measured data from 2021 as reference data for accuracy validation. The geographical
distribution of the site is shown in Figure 1.
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2.2. Computing Tm Based on the Numerical Integration Method

The radiosonde data were divided into different pressure level data and surface
data. Every pressure level data included meteorological observations such as relative
humidity, pressure, temperature, and dew point temperature. The surface data included
atmospheric precipitable water vapor and the location of the station. According to different
pressure levels, the Tm values of the radiosonde stations were calculated by the numerical
integration method, which was the most used method with the highest precision recognized
by scholars at home and abroad. The concrete solution was as follows.

The Tm values were obtained by using measurements of the geopotential height, ab-
solute temperature, and relative humidity at each pressure level along the zenith direction.
The specific numerical integration method of Tm is shown in Formula (1):

Tm =

∫
(e/T)dz∫
(e/T2)dz

(1)

where T represents the absolute temperature (K); e is the water vapor pressure (hPa); z
stands for the geopotential height along the zenith direction. As radiosonde observations
provide the relative humidity (RH) and absolute temperature T (K), which can be used to
calculate the e in Equation (2) [25,28]:

e =
RH × 6.11× 10(

7.5×Td
237.3+Td )

100
(2)

In Equation (2), Td stands for the atmospheric temperature in Celsius (T = Td + 273.15).
In practice, Equation (1) is discretized using Equation (3):

Tm =

n
∑
1

ei
Ti

∆zi

n
∑
1

ei
Ti

2 ∆zi

(3)

In Equation (3), ∆zi stands for the thickness of the ith atmosphere layer (m); n stands
for the number of the atmosphere layers; Ti, and ei stands for the mean temperature and
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water vapor pressure of the ith article were directly and uniformly distributed atmosphere
layer, respectively.

2.3. Tm from the Bevis Model

Although the Tm accuracy obtained from the observations of the radiosonde stations
is high, the rare distribution of the radiosonde stations resulted in a limited application.
Therefore, the statistical analysis method was generally used to deduce the statistical
relationship between Tm and Ts. A commonly used empirical equation is the Bevis model,
which estimates Tm through the Ts observations. Bevis believed that there was a good
correlation between the Tm and Ts. Therefore, radiosonde data of the United States
(27◦–65◦N) were used to obtain the following linear regression formula (also known as the
Bevis empirical formula) through statistical analysis.

Tm = 70.2 + 0.72Ts (4)

The Bevis model was established through two years of the observations at 13 ra-
diosonde stations in the United States. The accuracy of the Bevis model was 4.74 K, and the
relative error was less than 2%. In addition, the Bevis model has been widely used in the
world due to the fact of its simplicity and practicality.

2.4. Tm from the ETmPoly Model

Baldysz and Nykiel [16] used 24 years (1994–2018) of radiosonde data from 49 ra-
diosonde stations over Europe to determine reliable coefficients of the Tm and Ts relation-
ship, namely, the ETmPoly model. The Tm values from the ETmPoly model were calculated
through the Equation (5):

Tm = a · Ts + b

a = −10.07t5 + 23.95t4 − 19.08t3 + 5.998t2 − 0.7914t + 0.8436

b = 2985t5 − 7200t4 + 5882t3 − 1923t2 + 256.8t + 35.87

(5)

In Equation (5), t = UT/24, UT stands for the universal time of day. In this article, we
chose the ETmPoly model for participation in the validation.

2.5. Computing the Tm Based on the GPT2w Model

Bohm et al. [18] added two parameters of the water vapor pressure vertical gradient
and atmospheric weighted average temperature into the GPT2 model to obtain the GPT2w
model, which further improved the accuracy of the GPT2w model. The GPT2w model can
provide Tm values by resolutions of 1◦ × 1◦ and 5◦ × 5◦. Tm of the GPT2w model was
calculated through Equation (6):

TmGPT2w = A0 + A1 cos(
DOY

365.25
2π) + B1 sin(

DOY
365.25

2π) + A2 cos(
DOY

365.25
4π) + B2 sin(

DOY
365.25

4π) (6)

In Equation (6), DOY stands for the day of year, the coefficients of A0, A1, A2, B1, and B2
were determined based on a regular grid of 1◦ × 1◦ and 5◦ × 5◦, namely, the GPT2w-1 and
GPT2w-5 models, respectively. In this paper, we chose the GPT2w-1 model to participate
in the validation.

2.6. Construction of a New Tm Model (ETm) over Europe

The variation characteristics of Tm mainly include diurnal, seasonal, surface tem-
perature, water vapor pressure, and latitude over Europe. Therefore, the ETm model is
expressed as a function of the multiplication of three components, namely, the diurnal
variation, annual and semiannual variations of surface temperature, water vapor pressure,
and latitude as shown in Equation (7).

ETm = f (DOY, UT, Ts, es, Latitude) = f1 · f2 · f3 (7)
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f1 = 1 + a1 cos(
2π

24
UT + b1) (8)

f2 = 1 +
2

∑
i=1

ci cos(i
2π

365.25
DOY + di) (9)

f3 = e + f · TS + g · ln es + h · Latitude (10)

Because the weighted average temperature will change over time in one day, therefore,
the diurnal variation of Tm was considered. See Equation (8), in Equation (7), f1 represents
the diurnal variation component of Tm. UT stands for the universal time of day, and a1
and b1 are the coefficient.

The research results show that Tm has noticeable periodic changes (i.e., annual varia-
tion and semiannual variation), which were taken into account when modeling Tm. See
Equation (9), f2 represents the annual and semiannual variation component of Tm. DOY
shows day of year, ci and di are the coefficients, and i = 1, 2.

In addition, in Figure 2, Tm had a good linear correlation with Ts and lnes. The corre-
lation coefficients were 0.90 and 0.86, respectively. Furthermore, the spatial distribution
diagram between the mean Tm and latitude of each station are shown in Figure 2, and we
found that there was a strong negative linear correlation between the mean Tm values and
latitude, and the correlation coefficient reached −0.94. Thus, the Ts, lnes, and latitude in
the article were regarded as influencing factors [29], and this component is expressed in
Equation (10). The four coefficients of e, f, g, and h, were obtained by the nonlinear least
squares method.
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In order to obtain the optimal solution of the ETm model, we considered the problem
of fitting the model coefficients to the observations. The coefficients and observations
are related through the nonlinear equations. Our goal was to determine the values of
the coefficients that best fit the observations in the sense of minimizing the sum of the
squares of the residual errors. This model cannot be solved directly by analytical meth-
ods; therefore, an iterative approach was used for obtaining the ETm model coefficients.
For successive solution steps, a Levenberg–Marquardt method [30,31] was applied. The
Levenberg–Marquardt (LM) optimization method is widely used in nonlinear least squares
optimal estimation [32]. It is insensitive to over parametric problems and can effectively
deal with redundant parameter problems. It has the advantages of both the gradient
method and the Gauss Newton method. The algorithm avoids the problem that the Gauss
Newton method is not positive definite when solving a Hesse matrix, and it solves the
problem when the step size of the gradient descent method is too large [33,34].

For the above consideration, firstly, we selected the observations of 48 radiosonde
stations in Europe from 2014 to 2020. Then, the coefficient values of the new ETm model
in Europe were obtained by fitting calculation with Equations (7)–(10). See Table 1 for the
corresponding reference values of the ETm model coefficients.

Table 1. Coefficients of the ETm model using 48 radiosonde data from 2014–2020 over Europe.

Coefficients Values

a1 0.0052
b1 5.5112
c1 0.0045
d1 2.3179
c2 9.6416 × 10−4

d2 −0.6483
e 126.0365
f 0.5239
g 3.0680
h −0.1568

2.7. Assessment Methods

We evaluated the performance of the Tm models by calculating the bias and RMS
values through Equations (11) and (12), respectively.

RMS =

√√√√ 1
M

M

∑
m=1

(Tmm
model − Tmm

radiosonde)
2 (11)

bias =
1
M

M

∑
m=1

(Tmm
model − Tmm

radiosonde) (12)

In Equations (11) and (12), M stands for the total number of samples, Tmm
model stands

for the Tm values calculated by the Tm model, and Tmm
radiosonde stands for the high-precision

Tm values calculated by the radiosonde observations with the numerical integration method.

3. Results
3.1. Performance Analysis of Different Tm Models at Modeling Stations in 2021

To verify the accuracy and stability of the ETm model, the observations of 48 modeling
radiosonde stations over Europe in 2021 were used. The Tm values obtained by the
numerical integration method were used to verify the accuracy of the ETm model. At
the same time, it was compared and analyzed with the widely used Bevis, GPT2w-1,
and ETmPoly models with better performance at present, and the accuracy indexes of
each model were obtained, respectively. The bias and RMS values are shown in Table 2,
Figures 3 and 4.
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Table 2. Bias and RMS values of four Tm Models in 2021 using 48 modeling radiosonde stations.

Model
Bias/K RMS/K

Max Min Mean Max Min Mean

Bevis 2.42 −2.58 0.83 5.29 2.61 3.64
GPT2w-1 0.67 −4.88 −0.35 6.16 2.84 4.18
ETmPoly 1.88 −1.64 0.66 4.42 2.49 3.22

ETm 1.63 −1.74 0.06 3.97 2.21 2.85
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Table 2 shows the bias and RMS values of four Tm Models in 2021 using 48 modeling
radiosonde stations. It can be seen from Table 2 that the GPT2w-1 model showed a negative
bias in Europe, with a mean bias of −0.35 K. The Bevis and ETmPoly models showed a
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positive bias, with a mean bias of 0.83 and 0.66 K, respectively. The above results showed
that there were apparent systematic biases in the calculation of the Bevis model, the
ETmPoly model, and the GPT2w model over Europe. The maximum bias value of the ETm
model was 1.63 K, the minimum bias value of the ETm model was −1.74 K, and the mean
bias values of ETm model was 0.06 K. Compared with other Tm models, the Tm calculated
by the ETm model had no obvious systematic bias. At the same time, the Tm calculated by
the GPT2w-1 model showed the most significant RMS values, with an average RMS value
of 4.18 K. The average RMS values of Tm from the ETmPoly model and the Bevis model
were 3.22 and 3.64 K, respectively. The accuracy of the Bevis model was better than the
GPT2w-1 model, and the ETmPoly model was better than the Bevis model. The mean RMS
values of the ETm model was 2.85 K, which was 21.7% (0.79 K) higher than the Bevis model
and 31.8% (1.33 K) and 11.5% (0.37 K) higher than the GPT2w-1 model and the ETmPoly
model, respectively. To summarize, the ETm model had the highest prediction accuracy
compared with other selected Tm models over Europe.

Figure 3 shows the bias distribution of the four Tm models at each modeling station in
2021 over Europe. As can be seen from Figure 3, the bias of the Bevis and ETmPoly models
showed obvious positive bias in the central and southeast regions, while they showed
obvious negative bias in the southwest region. The GPT2w-1 models had apparent negative
bias in the southern region of Europe. The bias values of the ETm model were more evenly
distributed around zero over Europe. The bias values of the ETm model at modeling
stations were significantly more stable than that of the other three selected Tm models.

Figure 4 show that the RMS distribution of the four Tm Models at each modeling
stations in 2021. In Figure 4, the Bevis and ETmPoly models showed large RMS values in
the northeast and south regions of Europe. In the central and northeast regions of Europe,
the RMS values of the GPT2w-1 model were obviously higher than those of other regions
over Europe. The RMS values of the ETm model proposed in the article were directly and
uniformly distributed 1–3 cm over Europe, and the overall prediction accuracy was stable
and well.

To further verify the prediction performance of the ETm, GPT2w-1, ETmPoly, and
Bevis models, the histogram of the bias and RMS values at 48 modeling radiosonde stations
over Europe were counted in Figure 5. The Bevis and ETmPoly models showed obvious
positive bias, the GPT2w-1 model showed obvious negative bias, while the bias of the ETm
model was evenly distributed around zero. The RMS values of the Bevis model, GPT2w-1,
ETmPoly, and ETm models were mainly 2–4 cm, 2–5cm, 2–4 cm, and 1–3 cm, respectively.
Whether bias or RMS, the overall performance of ETm over Europe was better than the
other three selected Tm models.
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To test the seasonal performance of four selected models, this paper tested the daily
bias and RMS values of four selected Tm models. The results are shown in Figure 6. In
Figure 6, we can see that the GPT2w-1 model showed significant negative bias during most
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days of the year 2021 over Europe, and larger values were observed during spring and
winter days, which further indicates that the GPT2w-1 model had a significant systematic
bias in calculating Tm. The Bevis and ETmPoly models presented a relatively clear positive
bias during the spring and a relatively significant negative bias during the summer. The
ETm model showed smaller bias values without obvious seasonal variation during most
days of year 2021. In terms of RMS values, all of these models showed relatively clear
seasonal variation, with relatively larger RMS values during spring and winter days and
smaller ones during summer days. This was because most of the selected radiosonde
stations were located in the middle latitudes where Tm changes less in the summer and
more in the winter. In addition, the GPT2w-1 model had a larger RMS value than the
other models for most days of the year in 2021 over Europe. In conclusion, the ETm model
had more stable and smaller RMS values than the other selected Tm models, because it
comprehensively considered the annual variation, semiannual variation, diurnal variation,
etc. The ETm model’s accuracy was less affected by seasonal changes than the other
Tm models.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 6. Results of the four Tm models validated using 48 modeling radiosonde data during dif-
ferent days of the year 2021. 

The above correlation analysis shows that this change had a strong correlation with 
latitude. In order to analyze the variation relationship between bias, RMS, and latitude 
calculated by the Bevis model, GPT2w-1 model, and ETmPoly model. The 48 radiosonde 
stations were classified according to the latitudes 30°−40°N, 40°−50°N, 50°−60°N, and 
60°−70°N, and the results are shown in Figure 7. In Figure 7, the Bevis and ETmPoly mod-
els showed a significant positive bias in the latitude range greater than 40°, and a negative 
bias in the latitude range less than 40°. The GPT2w-1 model showed significant negative 
bias in the latitude range of 30°−50°N and a small positive bias in the latitude range of 
50°−70°N. This shows that with the increase in latitude, the systematic error of the Bevis 
and ETmPoly models became increasingly obvious, which is not suitable for calculation 
in high-latitude areas. The systematic bias of the GPT2w-1 model in mid-latitudes 
(30°−50°N) was large. The bias values of the ETm model in different latitudes was rela-
tively small or even insignificant. In addition, the RMS values of the ETm model in differ-
ent latitudes was smaller than that of the Bevis, ETmPoly, and GPT2w-1 models. Overall, 
the accuracy of the model was better than the other three Tm models among the different 
latitudes over Europe. 

0 50 100 150 200 250 300 350 400
DOY

−5

0

5

10

bi
as

/K

Bevis GPT2w-1
ETmPoly ETm

0 50 100 150 200 250 300 350 400
DOY

0

5

10

15

RM
S/

K

Bevis GPT2w-1
ETmPoly ETm

Figure 6. Results of the four Tm models validated using 48 modeling radiosonde data during different
days of the year 2021.

The above correlation analysis shows that this change had a strong correlation with
latitude. In order to analyze the variation relationship between bias, RMS, and latitude
calculated by the Bevis model, GPT2w-1 model, and ETmPoly model. The 48 radiosonde
stations were classified according to the latitudes 30◦−40◦N, 40◦−50◦N, 50◦−60◦N, and
60◦−70◦N, and the results are shown in Figure 7. In Figure 7, the Bevis and ETmPoly
models showed a significant positive bias in the latitude range greater than 40◦, and a
negative bias in the latitude range less than 40◦. The GPT2w-1 model showed significant
negative bias in the latitude range of 30◦−50◦N and a small positive bias in the latitude
range of 50◦−70◦N. This shows that with the increase in latitude, the systematic error
of the Bevis and ETmPoly models became increasingly obvious, which is not suitable
for calculation in high-latitude areas. The systematic bias of the GPT2w-1 model in mid-
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latitudes (30◦−50◦N) was large. The bias values of the ETm model in different latitudes
was relatively small or even insignificant. In addition, the RMS values of the ETm model
in different latitudes was smaller than that of the Bevis, ETmPoly, and GPT2w-1 models.
Overall, the accuracy of the model was better than the other three Tm models among the
different latitudes over Europe.
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Figure 7. Results of the bias and RMS of the four Tm models at different latitude ranges.

3.2. Performance Analysis of Different Tm Models at Non-modeling Stations in 2021

In Section 3.1, we analyzed the prediction performance of the observations of 48
modeling stations in 2021, where the ETm model was established and concluded that the
ETm model had a good performance at modeling stations. Then, we considered whether
other sites over Europe have good generalization in addition to these sites for model
construction. In this section, to further verify the accuracy performance of the model at
the stations that did not participate in the modeling over Europe, we selected 12 evenly
distributed sites over Europe (the non-modeling stations are shown in the blue triangle
in Figure 1), which are different from the 48 modeling sites, and used the ETm model to
predict their Tm values in 2021. Three traditional models were used to calculate Tm values
for comparison, and their respective bias and RMS values were counted (see Table 3 and
Figure 8).

Table 3. RMS and bias values of four Tm Models in 2021 using 12 non-modeling stations.

Model
Bias/K RMS/K

Maximum Minimum Mean Maximum Minimum Mean

Bevis 2.14 −1.09 0.97 4.89 2.54 3.61
GPT2w-1 0.42 −3.67 −0.57 5.40 3.50 4.43
ETmPoly 1.53 −0.66 0.67 4.38 2.46 3.21

ETm 0.61 −0.81 −0.07 3.54 2.45 2.87
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Figure 8. Results of the bias and RMS of the four Tm models at 12 non-modeling radiosonde stations
in 2021.

In Table 3, the GPT2w-1 model showed an obvious negative bias, with an average of
−0.57 K at the 12 non-modeling radiosonde stations. Both the Bevis and ETmPoly models
showed positive bias, and their mean bias values were 0.97 and 0.67 K, respectively; there
was obvious systematic bias in the calculation of the Bevis, ETmPoly, and GPT2w-1 models.
The mean bias of the ETm model was−0.07 K, which was smaller than the other three
models. In term of RMS, the mean RMS values of the Bevis and GPT2w-1 models were
3.61 and 4.43 K, respectively. The mean RMS value of the ETmPoly model was 3.21 K. The
accuracy of the ETmPoly model was better than that of the Bevis and GPT2w-1 models.
The mean RMS value of the ETm model was 2.87 K. Compared with the Bevis, ETmPoly,
and GPT2w-1 models, the accuracy (in terms of RMS values) increased by 20.5%, 10.6%,
and 35.2%, respectively. In conclusion, the prediction accuracy and stability of the ETm
model are better than the other three selected Tm models.

Figure 8 shows the bias and RMS values of the selected Tm models at 12 non-modeling
radiosonde stations in 2021. In Figure 8, the bias values of the Bevis and ETmPoly models
in most of the radiosonde non-modeling stations were positive, which showed a significant
positive bias. The bias values of the GPT2w-1 model had an obvious negative bias in the
radiosonde non-modeling stations. There were several small positive bias values in the
GPT2w-1 model. The bias values of the ETm model were evenly distributed. The RMS
values of the ETmPoly model were smaller than that of the Bevis model in all non-modeling
stations. The RMS values of the Bevis model were smaller than that of the GPT2w model in
most non-modeling stations, with the exception of one station. The RMS values of the ETm
model was the smallest compared to other three selected Tm models. Compared with the
other three Tm models, the prediction accuracy and stability of the ETm model was the
best in terms of bias and RMS.

3.3. Impact of Tm on GNSS PWV Using Radiosonde Data in 2021

The purpose of establishing a new Tm model in Europe was to improve the calculation
accuracy of Tm, and its ultimate purpose was to improve the calculation accuracy of
GNSS-PWV. However, GNSS stations and radiosonde stations are usually not at the same
location, and the elevation system is also different. Moreover, GNSS stations are mainly
used for geodetic studies and are not equipped with meteorological sensors; thus, it is
difficult to comprehensively and reliably study the impact of Tm on GNSS PWV calculation.
Therefore, this article used the approximate calculation method to validate the influence
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of Tm models on the accuracy of GNSS PWV. The detailed approximate calculation is as
follows [23–25]:

PWV = ΠTm · ZWD (13)

ΠTm =
106

ρwRv(
k3

Tm + k′2)
(14)

ZWD = ZTD− ZHD (15)

Generally, the calculation formula of PWV is shown in Equation (13), where ZWD
is zenith wet delay; ΠTm is a conversion factor between PWV and ZWD. The calculation
formula of ΠTm is shown in Equation (14). In Equation (14), ρw and Rv are the density
of liquid water and specific gas constant for water vapor, respectively; k′2 and k3 are the
atmospheric refractivity constants given in [1]; Tm is the only variable in calculating ΠTm.
The precision of PWV is decided by ZWD and ΠTm. The zenith total delay (ZTD) can
usually be obtained using undifferenced precision point positioning (PPP) technology, and
the zenith hydrostatic delay (ZHD) can be accurately calculated by using the saastamonein
model [35]. Therefore, ZWD with high accuracy can be obtained according to Equation (15),
and the PWV error caused by the ZWD error is only approximately 0.7 mm when the ZWD
error is 5 mm [21]. Therefore, we should consider how to improve the prediction accuracy
of Tm in this case. According to the law of error propagation; the following approximate
formula was obtained by differentiation [36–39].

∆PWV
PWV

=
∆ΠTm

ΠTm
=

1

(1 + k′2
k3

Tm)
· ∆Tm

Tm
(16)

Since k′2
k3
≈ 5.9× 10−9 K−1, and Tm is in the range from 230 to 305 K in the article,

Equation (16) can be simplified into Equation (17) [36–39].

∆PWV
PWV

=
1

(1 + k′2
k3

Tm)
· ∆Tm

Tm
≈ ∆Tm

Tm
(17)

Finally, according to the relationship between PWV and Tm in error Equation (17), we
calculate the influence of Tm on GNSS PWV and analyze the calculation results.

RMSPWV

PWV
=

1

(1 + k′2
k3

Tm)
· RMSTm

Tm
≈ RMSTm

Tm
(18)

In Equation (18), RMSPWV stands for the RMS values of PWV; RMSTm stands for the
RMS values of Tm; Tm and PWV are set to annual mean values; RMSPWV/PWV stands
for the relative error of PWV; k′2 and k3 are the atmospheric refractivity constants given
in [1]. Thus, RMSPWV and RMSPWV/PWV were employed to assess the impact of the
errors in Tm on its resultant GNSS PWV. In this section, 60 radiosonde stations were also
selected throughout Europe, and the distribution of the theoretical results of RMSPWV and
RMSPWV/PWV are shown in Figures 9 and 10, and Table 4.

Table 4. Statistical results of RMSPWV and RMSPWV/PWV in 2021 using 60 radiosonde stations
over Europe.

Model
RMSPWV/ mm RMSPWV/PWV/%

Maximum Minimum Mean Maximum Minimum Mean

Bevis 0.36 0.15 0.21 1.83% 0.92% 1.31%
GPT2w-1 0.42 0.16 0.25 2.13% 0.99% 1.53%
ETmPoly 0.30 0.13 0.19 1.57% 0.89% 1.16%

ETm 0.27 0.11 0.17 1.37% 0.80% 1.03%
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Figure 9 shows the distribution of RMSPWV in 2021 over Europe. The ETm model
shows a smaller RMSPWV in Europe, where the mean value of RMSPWV was 0.17 mm in
the article. According to Equation (18), smaller mean RMSPWV values can be achieved,
although the smaller mean values of Tm were also observed in these regions. For the
GPT2w-1 model, the larger RMSPWV values are observed in Europe. In contrast, for the
Bevis and ETmPoly models, they showed relatively smaller mean RMSPWV values.

From Figure 10, the results show that the Bevis, GPT2w-1, and ETmPoly models had
larger RMSPWV/PWV values at different latitudes over Europe, where the ETm model
showed relatively smaller RMSPWV/PWV values than that of the other three Tm models.
The ETm showed a relatively stable performance over Europe.



Remote Sens. 2022, 14, 3609 14 of 17

In Table 4, the RMSPWV values of the ETm were less than 0.27 mm and with a mean
RMSPWV value of 0.17 mm over Europe; in terms of RMSPWV/PWV, the ETm model had a
mean value of 1.03% and ranged from 0.80% to 1.37%. As the ETm can provide accurate
Tm values for retrieving accurate PWV over Europe. Thus, the ETm model has possible
applications in the forecasting of severe weather conditions (i.e., typhoon, heavy rainfall,
and flood disaster) over Europe.

4. Discussion

In this work, the ETm model was established by considering annual variation, semian-
nual variation, diurnal variation, latitude, Ts, and es comprehensively over Europe. The
ETm model showed a powerful capability to capture the spatiotemporal variations between
the Tm and its associated factors in the development of the ETm models. The ETm and
other Tm models proposed in this study were validations; the results presented in Section 3
show that the ETm model can be used for high accuracy prediction over Europe. There are
multiple reasons for the improvements of the ETm model over other selected Tm models,
as follows.

Firstly, the data for ETm modeling in this study were derived from the atmospheric
profiles measured by the sounding balloons, while the GPT2w-1 model was developed
with the data derived from the ERA-Interim (European Centre for Medium-Range Weather
Forecasts Re-Analysis). These two data sources were different somehow, which leads to
some differences between the GTP2w-1 model and the ETm model. What’s more, the
GPT2w-1 model takes into account the geographical location of the site and has a good
simulation of Tm seasonal variation. However, the variation of Tm was strongly correlated
with meteorological factors, but the GPT2w-1 model did not consider the correlation
between Tm and meteorological factors, as a result, the Tm prediction accuracy of the
GPT2w-1 model in Europe is not high. The ETm model performed better than the GPT2w-1
model over Europe.

Secondly, the Bevis model only considers the linear correlation between Tm and Ts,
which deviated from reality. Compared with the Bevis model, the ETm model not only
takes into account Ts, but also takes into account es, latitude, annual variation, semiannual
variation and diurnal variation. This is exactly the reason why the bias and RMS values
of the Bevis model at the higher latitudes were much larger than the ETm model, just as
shown in Figure 7. The ETm model has high accuracy and uniform distribution at different
latitudes. The results showed that the performance of the ETm model in the different
latitudes was much better than that of the Bevis model over Europe.

Thirdly, the ETmPoly only considers TS and the coefficients varying with UT, which
deviated from reality. Compared with the ETmPoly model, the ETm model comprehen-
sively considered the annual, semiannual, diurnal, vapor pressure and latitude factors of
Tm, It is consistent with the actual situation. This is exactly the reason why the bias and
RMS values of the ETmPoly model at the higher latitudes were much larger than the ETm
model, as shown in Figure 7. The results showed that the performance of the ETm model
in the different latitudes was much better than that of the ETmPoly model.

5. Conclusions

In the article, considering the spatiotemporal information and the surface meteoro-
logical factors with good linear correlation with Tm, we applied nonlinear least square
estimation to build a high-precision spatiotemporal Tm model ETm over Europe. We used
data from 48 radiosonde stations over Europe from 2010 to 2020 to train the model and
used the 2021 data from these stations to test the ETm model performance at modeling
stations over Europe. The bias and RMS values of the ETm model were 0.06 and 2.85 K,
respectively. Compared with the widely used Bevis, GPT2w-1, and ETmPoly models,
the prediction accuracy was improved by 21.7%, 31.8%, and 11.5%. By comparing the
accuracy of the models in different latitude zones, we observed that ETm model was better
than traditional empirical models in overcoming the large Tm estimation error caused by
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high-latitude factors. In addition, to verify the prediction performance of the ETm model
at non-modeling stations over Europe, we selected the data of another 12 non-modeling
radiosonde stations in 2021 to test its accuracy, the bias and RMS values obtained were
−0.07 and 2.87 K, respectively. The applicability and accuracy of the model in all positions
in the modeling area were guaranteed. We analyzed the residual time series diagrams
of four different Tm models (i.e., Bevis, ETm, GPT2w-1, and ETmPoly models), the ETm
model alleviated the effect of altitude and seasonal changes on the model accuracy. Since
the ETm model also have good generalization in non-modeling sites, the models have good
transferability. Additionally, the impact of Tm on GNSS PWV was analyzed, showing that
the mean values of RMSPWV and RMSPWV/PWV were 0.17 mm and 1.03% for the ETm
model, respectively.

The application of the spatiotemporal information and the surface meteorological
factors with good linear correlation with the weighted average temperature to Tm modeling
is highly advantageous. The reason can be explained by the use of multiparameter input
to build the model. Latitude, time information, surface temperature, and water vapor
pressure were all used to simulate the relationship with the output Tm value. Through
the training of a large amount of data, the model fitted the complex nonlinear relationship
between the input and output. Thus, the model had good Tm prediction capability. Another
advantage of the model is that it only needs to measure the temperature of the site as a
meteorological element to obtain a high-precision Tm value, which is convenient for users.
Europe was considered the research area in the article. In future work, we will use deep
learning methods to model Europe data and will not be limited to the Tm prediction on the
surface of the research site.
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