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Abstract: Rice is one of the most important food crops around the world. Remote sensing technology,
as an effective and rapidly developing method, has been widely applied to precise rice management.
To observe the current research status in the field of rice remote sensing (RRS), a bibliometric analysis
was carried out based on 2680 papers of RRS published during 1980–2021, which were collected
from the core collection of the Web of Science database. Quantitative analysis of the number of
publications, top countries and institutions, popular keywords, etc. was conducted through the
knowledge mapping software CiteSpace, and comprehensive discussions were carried out from the
aspects of specific research objects, methods, spectral variables, and sensor platforms. The results
revealed that an increasing number of countries and institutions have conducted research on RRS and
a great number of articles have been published annually, among which, China, the United States of
America, and Japan were the top three and the Chinese Academy of Sciences, Zhejiang University, and
Nanjing Agricultural University were the first three research institutions with the largest publications.
Abundant interest was paid to “reflectance”, followed by “vegetation index” and “yield” and the
specific objects mainly focused on growth, yield, area, stress, and quality. From the perspective
of spectral variables, reflectance, vegetation index, and back-scattering coefficient appeared the
most frequently in the frontiers. In addition to satellite remote sensing data and empirical models,
unmanned air vehicle (UAV) platforms and artificial intelligence models have gradually become hot
topics. This study enriches the readers’ understanding and highlights the potential future research
directions in RRS.

Keywords: rice; remote sensing; bibliometric analysis; research progress; CiteSpace

1. Introduction

Rice (Oryza sativa L.) is one of the most widely cultivated crops, with over half of the
world population regarding it as their staple food [1]. As one of the most important crops
in food safety, rice plays an irreplaceable role in reducing the pressure on food demand
caused by population growth and maintaining social stability [2]. Consequently, real-time
monitoring of rice growth and sustainable management of rice production has practical
research value.

In the past, statistics such as rice area and yield were obtained through field sur-
veys, which were always time-consuming, costly, labor-intensive, and difficult to achieve
large-scale monitoring [3]. Satellite remote sensing appeared in the 1960s and was firstly
deployed in military reconnaissance [4]. With the development of science and technology,
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remote sensing with the characteristics of large coverage and dynamic monitoring has
been gradually used in the agricultural field [5]. Rice, as a critical agricultural vegetation,
has an irreplaceable position in vegetation remote sensing. Rice remote sensing (RRS) is
a research field that applies remote sensing technology to the rice field ecosystem [6]. It
uses multi-platform, multi-sensor, multi-spatiotemporal remote sensing data to provide
quantitative agronomic information of rice plants [6,7]. RRS technology has been widely
utilized by research institutions all over the world since the 1980s. Many studies have used
remote sensing data for rice area extraction, rice planting structure transformation, rice
yield estimation, etc. [6,8]. With the enrichment of data and methods, RRS has become an
indispensable approach to achieving sustainable development of rice nowadays [7]. The
vigorous development of RRS has attracted numerous scientific interest and an increasing
number of publications related to RRS have emerged. In view of this, an efficient literature
analysis method is required to summarize the historical development, explore the hot spots,
and provide support for future research [9]. Bibliometric analysis has powerful quantitative
functions, which owns the characteristics of computer science, math and statistics, etc.,
providing statistical analysis of publications comprehensively and systematically [10]. Bib-
liometric analysis can not only represent the evolutions of research institutions, researchers,
and research teams intuitively but also sort out the key research content and the emerging
hot spots, helping readers enhance their understanding of a certain field [11]. Bibliometric
analysis was widely applied to natural sciences and social sciences [12,13]. Similar studies
have been conducted in rice research such as rice genome [14], rice diseases [15], etc. In the
field of remote sensing, bibliometric analysis was utilized in grassland remote sensing [16],
human health [17], forest remote sensing [18], crop condition monitoring [19], etc.

Although there were a few review publications on RRS research, different scholars
had a varied understanding of the research results, leading to diverse conclusions. Addi-
tionally, the differences in authors’ knowledge structure tended to result in inconsistency
in the literature evaluation methods [19]. This is the exact problem that can be solved by
bibliometric analysis, which is helpful in overcoming the shortcomings of the imperfec-
tion and non-objectivity of review articles [20]. A comprehensive review can be obtained
from extensive documents using bibliometric analysis, which makes the conclusions of
evolutionary progress in a certain research field more reliable.

So far, no bibliometric analysis has been put forward to explore the developing back-
ground and research status of RRS precisely. Therefore, this research mined a large number
of publications using the bibliometric method to (1) reveal and understand the evolutionary
history of RRS; (2) explore the developing trend, including the main research contents,
categories, hot spots, etc. in RRS research; (3) identify the active countries and research
institutions engaged in RRS to strengthen the international collaborations; and (4) discover
the existing issues and current deficiencies to provide support for the further improvement
of RRS.

2. Materials and Methods
2.1. Software Selection

With the fast advent of the quantitative research of documents, scholars have explored
various methods to visualize the knowledge graph of literature, the development of research
theories, and the transformation of research models. The widely used analytical software
are HistCite [21], VOSviewer [22], and CiteSpace [23], etc. The software used in this
article was CiteSpace (ver. 6.1. R2), which is a powerful document visualization analysis
software developed by Professor Chaomei Chen from the School of Information Science
and Technology of Drexel University in the United States of America. This software
was employed for document processing, data mining, and visual quantitative analysis
of RRS. It excavated logical relationships among the collected documents to analyze the
historical development and provide insights into the frontiers in the field [24]. The dynamic
knowledge map presented the development route and research framework of RRS, and
identified the changes of research hot spots more intuitively [25].
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2.2. Data Collection and Methodology
2.2.1. Data Collection

The research focused on the RRS research published by scholars around the world in
the past 42 years (1980–2021). Journal papers were downloaded from the core source of the
Web of Science (WOS) database. All records contained authors, titles, publication resources,
and abstracts.

Boolean expressions were utilized to create search formulas for the advanced search.
The principle of the Boolean search formula setting was as follows: RRS must involve
the word “rice” in the title. “Remote sensing” was represented by many search topics.
When carrying out the trial experiments, we found that separate vocabulary always led
to misunderstanding; therefore, they needed to be changed into phrases. The general
rule of disambiguation was combining multiple words to replace specific words. To
prevent incomplete collections, these topics were divided into several sections before
selection, including:

(1) Remote sensing variables: reflectance, hyperspectral, multi-spectral, back-scattering
coefficient, etc.

(2) Remote sensing platform and sensors: satellites, sensors, unmanned aircraft vehi-
cles (UAVs), and proximal ground platform sensors. Due to the ambiguity of “satellite” in
the search results, “satellite” was not selected as a THEME word, but several commonly
used satellite platforms were selected as alternatives to satellite, including Landsat, Moder-
ate Resolution Imaging Spectrometer (MODIS), Sentinel, etc. Some high-resolution satellites
were taken into account such as WorldView, GeoEye, RapidEye, etc. UAVs included drone,
unmanned aircraft or unmanned aerial vehicle, etc.; the ground platform included ASD,
GreenSeeker, etc.

(3) Remote sensing bands: near-infrared, red-edge, short-wave infrared, microwave
(including “polarization” or ”polarimetric”), etc.

(4) Other: For example, “Image” was a keyword for remote sensing. “Satellite” was
changed into “image and satellite”. “GF and satellite” was used to eliminate the ambiguity
of “GF”. Combinations such as “SPOT and satellite” were employed to avoid the misun-
derstanding of “SPOT”. “HJ and satellite” and “image and OLI” were used to eliminate
ambiguity. “Sensor” was also ambiguous in the search; therefore, the combinations of
satellite and sensor were utilized, such as (image and TM) or (image and ETM+).

The formula analyzed the research content of RRS from many perspectives, aiming to
fully cover its main research content. After the research topic “rice remote sensing” was
repeatedly tested and modified, the final search formula was determined to search for
the publications related to the bibliometric analysis (Table 1). The formula is as follows:
TI = (rice) and TS = (remote sensing OR Landsat OR NOAA OR ASTER OR ENVISAT OR
Sentinel OR UAV OR UAS OR RPAS OR drone OR unmanned aircraft OR unmanned aerial
vehicle OR TRMM OR MODIS OR spectrometer OR ASD OR analytical spectral device
OR (satellite and image) OR (satellite and imagery) OR reflectance OR hyperspectral OR
multispectral OR back-scattering OR microwave OR near-infrared OR red-edge OR short
wave infrared OR radar OR SAR OR Lidar OR polarization OR polarimetric OR (image
and TM) OR (image and ETM+) OR (image and OLI) OR AVHRR OR (HJ and satellite)
OR (GF and satellite) or (satellite and SPOT) OR CBERS OR (WorldView and satellite) OR
(GeoEye and satellite) or (RapidEye and satellite) OR (ALOS and satellite) OR (QuickBird
and satellite) OR (TerraSAR-X Radar) OR (IKONOS and satellite) OR (ZY and satellite)
OR (aerial orthophoto) OR (aerial data) OR (aerial orthoimages) OR synthetic aperture
radar OR NIR OR active sensor OR optical sensor OR GreenSeeker OR proximal ground
platform). The selected document types included articles and review papers.
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Table 1. Search strategy of the Boolean formula.

Search
Plan

Design
Perspective Content Details

Title Rice

Topics

Main Remote sensing

Satellite
platform

“Landsat”, “NOAA”, “ASTER”, “ENVISAT”, “Sentinel”,
“TRMM”, “MODIS”, “radar”, “SAR”, “synthetic aperture
radar”, (satellite and image), (satellite and imagery), (HJ

and satellite), (GF and satellite), (satellite and SPOT),
“CBERS”, (WorldView and satellite), (GeoEye and

satellite), (RapidEye and satellite), (ALOS and satellite),
(QuickBird and satellite), (TerraSAR-X Radar), (IKONOS

and satellite), (ZY and satellite)
UAV

platform
“UAV”, “UAS”, “RPAS”, “drone”, “unmanned aircraft”,

“unmanned aerial vehicle”, “Lidar”

Ground
platform

“spectrometer”, “ASD”, “analytical spectral device”,
“active sensor”, “optical sensor”, “GreenSeeker”,

“proximal ground platform”

Sensors “AVHRR”, (image and TM), (image and ETM+), (image
and OLI)

Wavelength

“reflectance”, “hyperspectral”, “multispectral”,
“back-scattering”, “microwave”, “near-infrared”,

“red-edge”, “short wave infrared”, “polarization”,
“polarimetric”, “NIR”

Images (aerial orthophoto), (aerial data), (aerial orthoimages)

2.2.2. Analysis Methods

In this research, all retrieved data were processed by operations such as deduplication,
sorting, and manual identification. After removing the irrelevant documents, the collected
documents were transported into the CiteSpace software for analysis. Consequently,
2680 records about RRS were obtained.

The indicators of the literature measurement in this study included the number of
documents, research countries, research institutions, keywords, research hot spots, etc.
Among them, the number of documents, discipline categories, countries, and institutions
were obtained from the Web of Science. The information units in the scientific literature
were extracted by a series of algorithms in CiteSpace and were then reconstructed according
to the type and strength. One of the most powerful functions of CiteSpace software is the
analysis of the co-occurrence network. The occurrence of lexical pairs or noun phrases
in the collected documents was utilized to accomplish the co-occurrence network [24].
Co-word networks are formed by counting the frequency of theme words in the same
literature [25]. The first step of the implementation process was to extract the keywords of
the specific analysis object, and then automatically separate and classify the keywords. The
log-likelihood ratio (LLR) algorithm was utilized to generate the clustering tags from the
relevant citations [16,26]. The knowledge structure of a certain study can be revealed by
analyzing the key nodes of the co-occurrence network [27].

Another function is citation burst analysis, which was used to detect the amount
of sharply changing references in a certain period of time. Utilization of the mutation
detection algorithm designed by Kleinberg can identify the emergencies in the frontiers
and extract explosive nodes from big data [28]. Citation burst analysis can demonstrate the
evolutionary progress in a certain period of time. The word frequency analysis function in
CiteSpace was also used in this research, which is inseparable from the above two analysis
processes. Extracting the frequency distribution of keywords condenses the core content
of the literature information. The analysis can express the distribution of keywords of the
core content of the literature, helping clarify the research context [29].

Co-authorship among different countries and institutions was analyzed by choosing
the node types “Country” and “Institution” in the built-in functions of CiteSpace [30].
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Only the first author was considered in the calculation. If only a single author existed,
one needed to be added to the number of publications in the belonging institutions and
countries, respectively. For multi-author papers from different institutions and countries,
the number of papers issued by the corresponding institutions and countries was increased
by one, respectively [24,25]. If one author was cited many times in the same document, the
frequency was calculated only once. The co-authorship analysis can reveal the academic
communities in a specific research field [31].

3. Results and Discussion
3.1. Analysis of Publishing Status

The number of published papers reflects the enthusiasm of scholars in a certain field.
Based on the search results of “rice remote sensing” publications in the past 42 years, statis-
tical analysis was conducted based on the published papers. It is demonstrated in Figure 1
that the number and velocity of papers published on RRS showed an increasing trend. The
number of papers increased from 22 (during 1980–1990) to 133 (during 1990–2000), 445
(during 2000–2010), and finally 2080 (during 2010–2021).
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Figure 1. The number of papers on rice remote sensing published in journals from 1980–2021.

This research field experienced three outbreak periods around 1997, 2006, and 2015.
Before 2000, there were few publications. This period was regarded as the initial stage of
RRS. The large-scale applications of spectrometers, especially ASD, promoted the develop-
ment of rice hyperspectral remote sensing at the canopy level, leading to the first outbreak
in 1997. The theoretical system of RRS began to take shape, and commentary papers began
to appear frequently. With the development of remote sensing technology, the number of
publications increased rapidly in 2006. The MODIS data, with higher temporal resolution
and easy data availability, provided opportunities to monitor rice at the landscape, regional,
and global scales [32]. The third outbreak period occurred in 2015 with the flourishing
trend of publications. Deep learning methods matured during this period. Unmanned
aerial vehicle (UAV) remote sensing has also been widely employed in precise rice observa-
tion [33]. This illustrated that RRS developed vigorously with the advancement of remote
sensing sensors and computer technology.

In conclusion, the rapid development of remote sensing devices and the growing
demand for precision agriculture promoted the vigorous development of RRS. Comparing
the average number of countries and institutions involved in the annual literature through
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the co-authorship analysis, the closer collaborations among international scholars were
found to be closely related to this trend.

3.2. Analysis of Category

The results show that 125 sub-categories were relevant to these documents. The top
10 disciplines are displayed in Figure 2. The graph indicates RRS is a typical interdisci-
plinary subject covering a wide range of disciplines, reflecting the characteristics of multiple
disciplines such as agriculture, geology, ecology, computer science, etc. Agriculture is the
predominant category with the largest publications because rice itself is a vital crop in
agricultural production and food science. Remote sensing is a subject closely related to
imaging science and photographic technology [34]. Nowadays, many engineering pro-
grams such as satellite building and construction of navigation satellite systems have been
proposed, accelerating the research process of RRS [35]. Geographic Information Science
always assists the analysis and mapping in RRS [36]. Monitoring the growth conditions
and chemical properties of rice is also crucial to the environmental ecology and plant
sciences [6,37]. Many technologies in computer science have been introduced into RRS [38].
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Figure 2. Fields covered in the literature of rice remote sensing research in 1980–2021.

3.3. Analysis of Country

The number of papers published by a country represents its needs and scientific
research capabilities in a certain field [39]. Centrality is a quantitative index used to measure
the connecting degree between nodes in the network, which is the most direct indicator for
describing the importance of elements [40]. The greater the number of published papers, the
greater the interest of a country in this field, and higher centrality reflects that more frequent
collaborations are carried out through the node [41]. Precision agriculture has attracted
attention from many countries [42]. In Table 2, the top three countries with the largest
publications are China (n = 1137), the United States of America (n = 374), and Japan (n = 283),
with a total of 1794 issued papers, accounting for more than 50% of the total amount.
It can be inferred that there existed an imbalance in the publications among different
countries. China (centrality = 0.12), the United States of America (centrality = 0.84), and
Japan (centrality = 0.10) showed strong centralities, which signified extensive collaborations
and communications between these three countries with others.

Figure 3 shows the visualization of the number of published documents. China is a
country with big rice production and consumption [43]. The rice-harvesting area is mainly
concentrated in the south-central and northeastern regions of China [44,45]. Policies such as
the grain security line and subsidies for rice planting made rice cultivation reach the level
of national food security [46–48]. Government support assisted the rapid and high-quality
development of RRS in China [49,50].
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Table 2. Top 10 countries in the number of publications.

Rank Countries Publications Centrality

1 People’s Republic of China 1137 0.12
2 The United States of America (USA) 374 0.84
3 Japan 283 0.10
4 India 273 0.05
5 Thailand 142 0.01
6 South Korea 116 0.02
7 Malaysia 77 0.02
8 Australia 74 0.06
8 Italy 74 0.06
9 Brazil 72 0.01

10 Spain 67 0.08
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The United States of America (USA) was the original place of remote sensing and was
one of the prime countries to apply remote sensing to rice monitoring [51]. Rice-planting
areas in the United States are mainly concentrated in the lower reaches of the Mississippi
River, such as Texas and Louisiana, etc. [52]. As the world’s largest and most influential
grain-trading country, the USA has utilized many kinds of satellite remote sensing data
and meteorological data to assess the world’s crop yields, which is helpful for the USA to
adjust its planting structure and agricultural trade policies, and to occupy a more active
position in the global grain market [53,54]. Additionally, the large plains and high-level
agricultural mechanization provided favorable conditions for the development of RRS in
the USA [55].

Rice is widely cultivated throughout Honshu Island [56]. In the mid-to-late 1990s,
Japanese scientific institutions began to carry out the “agriculture machinery emergency
development project of the 21st century” (the 21st Emergency Project), raising technologies
such as RRS to the national strategic level [57].

Figure 4 demonstrates that India (n = 273, centrality = 0.05), as the country with
the largest rice-harvested area, cultivates rice almost all over the country. India with its
monsoon climate and vast planting fields provides a basis for the development of RRS. New
South Wales and Victoria in Australia have advanced rice-growing industries [58,59]. Spain
and Italy, located in the temperate zone of southern Europe, are the major rice-producing
countries in the European Union [60]. The three countries had relatively high centralities
and 215 papers in total, which indicates these countries had great potential in RRS. South
American countries along the Amazon and Paraguay rivers also own a large number
of rice fields [61]. Brazil (n = 72, centrality = 0.01) has been interested in RRS research,
largely due to the excellent local agricultural production conditions [62]. Except for the vast
publications in the above countries, of the remaining, about 30 came from Canada in North
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America; the Netherlands in Europe; the Philippines, Vietnam, Pakistan, Turkey, Indonesia,
and Iran in Asia; and Egypt in Africa. Above all, these countries have similar characteristics:
they either have advanced remote sensing technology (such as The Netherlands, Canada)
or are large rice-producing countries (such as the Philippines, Vietnam, etc.).

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

Figure 4 demonstrates that India (n = 273, centrality = 0.05), as the country with the 
largest rice-harvested area, cultivates rice almost all over the country. India with its mon-

soon climate and vast planting fields provides a basis for the development of RRS. New 

South Wales and Victoria in Australia have advanced rice-growing industries [58,59]. 

Spain and Italy, located in the temperate zone of southern Europe, are the major rice-pro-
ducing countries in the European Union [60]. The three countries had relatively high cen-

tralities and 215 papers in total, which indicates these countries had great potential in RRS. 
South American countries along the Amazon and Paraguay rivers also own a large num-
ber of rice fields [61]. Brazil (n = 72, centrality = 0.01) has been interested in RRS research, 

largely due to the excellent local agricultural production conditions [62]. Except for the 
vast publications in the above countries, of the remaining, about 30 came from Canada in 

North America; the Netherlands in Europe; the Philippines, Vietnam, Pakistan, Turkey, 
Indonesia, and Iran in Asia; and Egypt in Africa. Above all, these countries have similar 
characteristics: they either have advanced remote sensing technology (such as The Neth-

erlands, Canada) or are large rice-producing countries (such as the Philippines, Vietnam, 
etc.). 

 

Figure 4. Global rice-harvesting areas of 2020 (Note: the data was collected from the Food and 
Agriculture Organization (FAO) website). 

In Table 2, six of the top ten countries were Asian countries. The reasons why Asian 
countries published extensive papers are as follows: (1) History: the rice planting industry 

appeared in China more than 6000 years ago, and then spread to other Asian countries 
[63]. Asia has a large rice-harvested area and the local people maintain long-term habits 
in eating rice [64]; (2) climate: Southeast Asia, South Asia, and East Asia with a monsoon 

climate and some regions in Southeast Asia with a tropical rainforest climate are charac-
terized by warm temperatures and abundant precipitation, which provide favorable con-

ditions for rice growth [65]; (3) geography: Rice-planting areas are mostly concentrated 

along the banks of rivers [66]. Asia is located in the middle and low latitudes of Earth with 

abundant water resources, which bring adequate irrigation for rice growth [67]; (4) and 

population: The high-density population in Asia meets the needs of a high-intensity labor 
force for rice cultivation [68]. Above all, the strong demand for rice prompts the vigorous 
development of RRS. 

Figure 4. Global rice-harvesting areas of 2020 (Note: the data was collected from the Food and
Agriculture Organization (FAO) website).

In Table 2, six of the top ten countries were Asian countries. The reasons why Asian
countries published extensive papers are as follows: (1) History: the rice planting industry
appeared in China more than 6000 years ago, and then spread to other Asian countries [63].
Asia has a large rice-harvested area and the local people maintain long-term habits in eating
rice [64]; (2) climate: Southeast Asia, South Asia, and East Asia with a monsoon climate
and some regions in Southeast Asia with a tropical rainforest climate are characterized
by warm temperatures and abundant precipitation, which provide favorable conditions
for rice growth [65]; (3) geography: Rice-planting areas are mostly concentrated along the
banks of rivers [66]. Asia is located in the middle and low latitudes of Earth with abundant
water resources, which bring adequate irrigation for rice growth [67]; (4) and population:
The high-density population in Asia meets the needs of a high-intensity labor force for rice
cultivation [68]. Above all, the strong demand for rice prompts the vigorous development
of RRS.

3.4. Analysis of Institutions

Scientific research institutions are the main force that carry out RRS research, and
scholars play a significant role in the development of a discipline [69]. The author and
institution information from the published papers characterize the social relationships
between scholars in the subject field [70]. An institution with more authoritative scholars
means it has a stronger scientific research capability [71]. This part helps readers understand
the main institutions engaged in RRS and their regional distributions.

In Table 3, the Chinese Academy of Sciences, as one of the highest academic institutions
in China, ranked first, with 220 published papers. It has a strong scientific research ability
and plays an important role in major national scientific and technological tasks. Most of the
papers were contributed by the Institute of Aero Information Research of Science and the
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Institute of Geographic Science and Natural Resources Research. The Institute of botany
also has strong professional strength in RRS research.

Table 3. Statistics of the publications and research attentions of core research forces.

Rank Institutions Publications Focus

1 Chinese Academy of
Sciences (CAS) 220

Rice growth, leaf area index (LAI), Radar,
growth monitoring and yield

estimation, etc.

2 Zhejiang University 152 Rice planting area, chlorophyll, rice yield
estimation, etc.

3 Nanjing Agriculture
University 92

Nitrogen nutrition, rice growth
monitoring and product, rice growth

model, etc.

4

Consultative Group
on International

Agricultural Research
(CGIAR)

71 Rice mapping, rice meteorological remote
sensing, rice phenology, etc.

5 China University of
Geoscience 56 Heavy metal pollution, heavy metal

stress, etc.

5 Chinese academy of
agricultural sciences 56 Temporal and spatial pattern dynamics of

rice, rice yield estimation, etc.

6 Wuhan University 55 Rice heterosis mechanism, data
processing, rice parameters and yield, etc.

7
Indian Council of

Agricultural Research
(ICAR)

54 Rice gene, rice quality, etc.

7
United states

department of
agriculture (USDA)

54 Rice yield, rice quality, rice mapping, etc.

8 China agricultural
University 51 Rice spectrum, rice identification, rice area

extraction, etc.

9
Indian institute of
technology system

(IIT SYSTEM)
46 Rice nitrogen, rice spectrum, etc.

10
National agriculture

food research
organization Japan

43 Rice classification, rice disasters, etc.

Zhejiang University ranked second with 152 published papers. The majority of the
papers were contributed by the Department of Agriculture, Biotechnology, and Environ-
mental Sciences of Zhejiang University. The Key Laboratory of Agricultural Remote Sensing
and Information Technology Application, with Renchao Wang and Jingfeng Huang as the
experts in this research field, carried out a lot of work on rice-planting area extraction, rice
yield estimation, rice grain quality monitoring, rice biophysical parameter monitoring, and
rice monitoring information system construction.

Nanjing Agricultural University, which relies on the National Engineering and Tech-
nology Center for Information Agriculture, with Weixing Cao, Yan Zhu, and Yongchao Tian
as its leading team, ranked third with 92 publications. It developed rapidly in the diagnosis
of nitrogen, growth monitoring, and construction of agricultural information platforms.

Chinese research institutions have a large voice in the field of RRS. Such research
institutions are mainly located in Beijing, the capital of China, and the remaining are mostly
located in rice-producing provinces in southern China such as Jiangsu, Zhejiang, and Hubei,
where RRS provides scientific support for the local rice-planting industry [72,73].

The Indian Council of Agricultural Research (ICAR) and the Indian Institute of Tech-
nology System (IIT SYSTEM), with 54 and 46 publications, respectively, have advanced
technologies in RRS and contribute a lot to the development of rice production in Indian
agricultural management.
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The Consultative Group on International Agricultural Research (CGIAR) is an inter-
national organization that promotes the applications of precise agriculture. They often
adopt remote sensing to monitor changes in rice-planting areas and predict worldwide
rice production. Farmland datasets were produced to strengthen the connectivity of global
farmland, with the aim of reducing the poor population and seeking happiness for hu-
mankind [74].

The United States Department of Agriculture (USDA) is the largest official agricultural
organization in the United States of America [75]. It has an edge in utilizing remote
sensing technologies and artificial statistics to predict crop yields and areas [76]. It provides
statistics on rice production and the planting structure for the government [75]. Cropland
Data Layer (CDL) data is a typical crop-specific coverage data layer, which is produced
for the continental United States, using the annual-medium resolution satellite images and
agricultural ground measurement points [77]. The CDLs were made by the USDA and
other American scientific institutions such as the National Agricultural Statistics Service
(NASS) [78]. Such datasets encourage global scholars to devote themselves to agricultural
scientific research.

3.5. Analysis of Keywords

Keywords are the core of academic papers, which can highly refine the academic
content [79]. Keyword co-occurrence analysis was conducted by merging similar keywords
after statistical analysis [24]. The top 10 keywords are exhibited in Table 4. Publications
represent the number of papers with the keyword. Percentages represent the proportion of
the papers with certain keywords among the top 10. Year stands for the time when the first
paper with the keyword appeared.

Table 4. Statistics of the keywords in the papers on rice remote sensing.

Rank Keywords Publications Percentage Year

1 Reflectance 361 18.44% 1991
2 Vegetation index 272 13.89% 1991
3 Model 248 12.67% 1992
4 Yield 223 11.39% 1996
5 Classification 179 9.14% 1991
6 Leaf area index (LAI) 165 8.43% 1996

7
Moderate Resolution

Imaging Spectrometer
(MODIS)

142 7.25% 2004

8 Biomass 136 6.95% 1993
9 Chlorophyll content 124 6.33% 1994

10 Phenology 108 5.52% 2009

The above table shows that the keyword “reflectance” had the largest outputs with
361 papers, followed by “vegetation index” (272 papers) and “model” (248 papers). Re-
flectance is the basic variable of remote sensing and the premise of quantitative remote
sensing [80]. The reflectance of rice leaves is similar to that of green vegetation [81].
Vegetation indices are generally constructed by different band combinations to enhance
the monitoring capability of vegetation, which respond more sensitively than individual
bands [82]. Vegetation indices were widely applied in RRS due to their simplicity and easy
operability [83]. In the early stage of RRS, vegetation indices were always constructed in a
rather conventional manner. Combinations of two bands and their difference, their ratio, or
normalized type were mostly considered [84]. Further analysis revealed that the normal
difference vegetation index (NDVI) was the most common vegetation index in the iden-
tification of the state of the plant [85,86]. With the deepening of scholars’ understanding,
some innovative approaches such as multi-band (band ≥ 3) vegetation indices and complex
band combination methods gradually appeared [84,87]. To avoid interference information
such as soil background and cloud, improved vegetation indices were invented such as the
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modified soil adjusted vegetation index (MSAVI) [88], atmospherically resistant vegetation
index (ARVI) [89], etc. Monitoring of different vegetation parameters requires varied vege-
tation indices [90]. Some vegetation indices were invented and proved to be more suitable
for monitoring specific research targets, such as PRI for monitoring photosynthesis [91]
and the normalized differential phenology index (NDPI) for monitoring biomass [92].
Visible light and near-infrared bands are widely used in RRS, and red-edge bands play
an increasingly important role in monitoring rice growth [93,94]. For example, the red-
edge position index (REP) [95] and normalized difference red edge index (NDRE) [96] are
proposed to be effective in RRS. The development of hyperspectral remote sensing also
provides possibilities for band selection in vegetation indices [87]. Therefore, the sum of
their occurrences resulted in the leadership of the vegetation index. The top 10 keywords
of RRS provided a preliminary understanding of the research concept: “Vegetation index”,
“reflectance”, and “MODIS” were defined as remote sensing variables. “Yield” (223 papers),
“classification” (179 papers), ”biomass” (136 papers), “chlorophyll content” (124 papers),
and “phenology” (108 papers) were classified as agricultural parameters. The general
definition of RRS can be illustrated by summarizing these ten keywords: Multiple remote
sensing variables, including vegetation indices, reflectance, and MODIS data are used to
establish various models, and these models are utilized to carry out research on rice area
extraction, crop classification and predictions of yield, leaf area index, phenological period,
pigment content, and other parameters, etc.

3.6. Analysis of Research Hot Spots

Research hot spots are regarded as the most active part of the current research field
and an important component in the formation of the knowledge network of a subject [24].
They are expressed in the form of keywords with high publications and strength. Strength
reflects the emergence rate. The higher the strength, the more attention the topic has
received in a certain period of time [97]. The fast growth in the number of publications can
be regarded as a signal of the burst of research interest [98].

The function of statistical measurement in the CiteSpace software was employed to
create the keywords strength map [99,100]. The keyword strength map was categorized
into four types through the analysis of the statistical results, including research objects,
spectral variables, research methods, and sensor platforms.

From the perspective of the research objects (Table 5), the publications were divided
into five research parts: growth, yield, planting area, stress, and quality. Studies on moni-
toring rice growth have mainly focused on the leaf area index (LAI), biomass, chlorophyll,
phenology period, nitrogen, etc. Among them, 108 papers focused on the phenology, with
a strength of 2.97. Identification of the growth stages laid a foundation for monitoring
rice growth [101]. LAI, nitrogen, chlorophyll, and biomass were important parameters for
characterizing rice growth [33,81,87,102]. Monitoring these parameters accurately guided
the rice planting management. Since LAI and biomass could be measured directly, they
were the hot spots in the early research [103]. With the evolution of RRS, monitoring
of chlorophyll (124 papers, strength = 2.15) and nitrogen (103 papers, strength = 4.69)
gradually become research hot spots.

There were 223 publications on rice yield, with an outbreak period occurring in
2006. Rice yield estimations were mainly based on NOAA/AVHRR data at the early
time; however, due to the low spatial resolution, the accuracy of yield estimation was not
ideal. With the wider applications of the medium-resolution Landsat and MODIS data,
the accuracy of rice yield continuously improved. The prerequisite for rice yield remote
sensing is identifying the rice planting fields [104]. Therefore, many publications focused
on rice area extractions (125 papers, strength = 0.41).
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Table 5. The hot spots of rice remote sensing from the perspective of research objects.

Research
Objects Keywords Publications Strength Burst Year

Growth

Leaf area index (LAI) 165 1.97 2003
Biomass 136 5.82 1998

Chlorophyll 124 2.15 2001
Phenology 108 2.97 2015
Nitrogen 103 4.69 2013

Yield 223 2.12 2006

Area
Area extraction 125 0.41 1997
Planting area 22 0.41 1998

Stress

Meteorological disaster 72 2.64 2005
Heavy metal 44 5.10 2016

Pest 44 4.50 2001
Disease 30 2.64 1993

Salinization 8 1.97 2006
Quality 135 3.25 2010

Rice growth responds sensitively to temperature [105] and requires a large amount of
water supply such as rainfall and irrigation, etc. [106]. External environmental interferences
often affect the growth of rice. Remote sensing monitoring of rice stress mainly includes
five types: agro-meteorological disasters (72 papers, strength = 2.64), heavy metals (44 pa-
pers, strength = 5.10), pest diseases (44 papers, strength = 4.50), rice diseases (30 papers,
strength = 2.64), and salinization (8 papers, strength = 1.97). The above stresses in rice
are mostly natural disasters. Agro-meteorological disasters include low-temperature frost
and high-temperature heat damages [107,108] and floods and droughts pose threats to rice
production and economic development [8]. The frequent occurrence of extreme weather
in recent years increased the importance of RRS [107,109,110]. Diseases in rice such as
rice blast, bacterial blight, etc. cause crop failure [111,112]. Rice pests such as brown rice
plant-hopper [113], nematode [114], etc. also pose threats to rice growth. Soil salinity
hinders the nutrient absorption of rice [115,116].

As more attention was paid to food safety, the monitoring of heavy metal stress in rice
became a new research hot spot, with an outbreak in 2016 [117–119]. China Geoscience
University conducted extensive research in this field. Rice quality detection (135 papers,
strength = 3.25) is an essential part of food science, as it affects the taste of rice to a great
extent [120,121].

The hot spots of RRS from the perspective of spectral variables are shown in Table 6.
The reflectance and vegetation index are the most important and frequently used spectral
variables in RRS [122,123], with 361 and 272 published papers and intensities of 1.61 and
2.83, respectively. Reflectance is the basic variable of optical remote sensing [124]. It
contains rich information about pigments, tissue structure and canopy structure, etc. [125].

Table 6. The hot spots of rice remote sensing from the perspective of spectral variables.

Spectral
Variables Publications Strength Begin Burst Year

Reflectance 361 1.61 1991 2001
Vegetation Index 272 2.83 1991 2005
Back-scattering

coefficient 116 2.61 1997 2009

Time series 103 2.97 2010 2018
Red edge 29 1.34 2003 2011

Vegetation indices are widely used in monitoring rice growth and yield predic-
tion [126], especially long time series of vegetation indices, which normally consist of
a series of vegetation indices arranged in chronological order [127]. There were 103 docu-
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ments related to time series of vegetation indices with a strength of 2.97. Some researchers
regarded time-series variables as another type of vegetation index [128]. The dynamic
changes in the time series could characterize the crop phenological phases [129].

Another hotspot is the back-scattering coefficients, which is an optical variable af-
fected by three parts (the bulk scattering, layer scattering, multiple scattering of the
canopy) [130,131]. To explore influencing factors on the rice back-scattering coefficient,
scholars have conducted some research on its mechanism [132]. There were 116 publi-
cations related to back-scattering coefficients with a strength of 2.61. Red-edge spectral,
featured by a sudden change in the reflectivity of leaves, is a sensitive spectral region in
monitoring rice growth [133]. A large number of studies (29 publications, strength = 1.34)
prove the red-edge variables are useful in RRS [94,134].

Various models were actively tried in RRS. The methods used in RRS can be divided
into three categories: mechanic models, empirical models, and semi-empirical models
(Table 7). Statistical models, including linear regression [135] and multiple regression
methods [136], etc., had the largest number of publications. Artificial intelligence models
such as deep learning [137] and machine learning [138] were introduced into RRS. Random
forest [139], neural network [140], support vector [141], decision tree [142], etc. have
achieved great results.

Table 7. Quantitative remote sensing modeling methods.

Models Publications Strength Begin Burst Year

Statistical model 165 2.23 1992 2005
Artificial intelligence method 152 2.02 1994 2009

Radiation transfer model 47 1.30 1996 1999

In the early stage of RRS, statistical models were utilized in most cases. With the
advancement of computer science, artificial intelligence models became increasingly popu-
lar. As artificial intelligence models have a higher fault tolerance, they normally achieve
higher accuracy than statistical models [143]. Especially, the deep neural network fur-
ther enhances the recognition ability of rice [144]. Radiation transfer models such as the
PROSPECT model [145], SAIL model [146], and LEAFMOD model [147] were put forward
to investigate the relationship between the radiation signals and the vegetation parameters.

Sensor platforms for RRS can be categorized into satellite platforms, unmanned aerial
vehicles (UAV) platforms, and ground platforms (Table 8). Initially, ground platforms were
employed in RRS, then satellite platforms gradually occupied a larger proportion of the
publications [148]. In recent years, UAV platforms showed great potential in RRS [149]. It
was worth affirming that joint platforms such as satellite-ground-UAV would be popularly
adopted in future rice sustainable management [150].

Table 8. Analysis of the hot spots of rice research from the perspective of sensor platforms.

Platforms Keywords Publications Strength Begin Burst Year

Satellite

Moderate Resolution
Imaging

Spectrometer
(MODIS)

187 3.84 2004 2012

RadarSat 97 2.94 1999 1999
Landsat 94 1.29 1991 2013
Sentinel 39 5.43 2014 2018

Unmanned
Aerial
Vehicle
(UAV)

60 1.69 2016 2018

Ground
Hyperspectral 71 5.02 1998 2004

Canopy 66 1.55 1996 2009
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In terms of satellite platforms, the accuracies of the research results were significantly
improved with the launch of the medium-spatial resolution Landsat satellites (94 papers,
strength = 1.29) [151], and MODIS (187 papers, strength = 3.84) satellites opened a new
era of large-area, long-term monitoring of rice parameters. With high temporal resolution,
MODIS data was not only utilized in rice classifications but also applied to phenology
extractions [152]. MODIS data has been developed into multiple types of products, bringing
great conveniences to scholars [6]. The launch of the European Sentinel series satellites
(39 papers, strength = 5.43) has further enhanced the capability of RRS in the medium-
resolution level [6,153].

Since the rice growing seasons always coincide with the cloudy and rainy period, these
weather conditions interfere with the quality of optimal images. Radar remote sensing
(97 papers, strength = 2.94) can avoid disturbances from weather and clouds. It is able to
acquire the whole-day images and spectral properties of specific ground objects [154].

UAVs (60 papers, strength = 1.69) are not only economical and practical solutions to
gain the overall information of the rice plant canopy but also new approaches to capture
high-resolution images at the centimeter level without strict restrictions on weather condi-
tions [123]. UAV remote sensing has been gradually used in RRS since 2018. On the ground
platform, hyperspectral sensors were mainly occupied to capture the reflectance of leaves
or canopies. Rich spectral information provides a basis for crop nutrition diagnosis [155].

4. Perspectives

At present, RRS benefits a lot from the advances of vegetation remote sensing. Some
innovative technologies and methods in vegetation remote sensing are widely applied
to RRS. With the development of remote sensing technology, the emergence of high-
spatiotemporal-resolution images, sensors with richer bands, etc. are driving forces in the
development of RRS [156,157]. Lidar can obtain the three-dimensional structure parameters
of rice such as height and volume using an intelligent approach [158]. Big data methods
and mature mechanism models increase the accuracy of rice research [159,160]. Following
the above burst information in Tables 5–8, a conclusion can be drawn that integrating
multiple data resources (such as satellite, UAV, Lidar), multiple methods (such as artificial
intelligence technology and cloud computing), and multiple temporal data (such as time
series) to promote the automation of RRS is a major direction in RRS. In the process,
the problems of the inconsistency of the view illumination, scale conversion, and solar
radiation angle caused by various platforms needs to be considered [161]. How to explain
the black box issues in big data models and how to promote the application of RRS, such
as generating open-access products, establishing universal models, etc., are also research
trends in the future.

Additionally, WebGIS technology opens a new era for establishing real-time mon-
itoring platforms for rice [162]. Integrating rice growth information with multi-source
information into a historical rice database promotes the automation of rice management.

More diversified research objects of RRS will be the focus of future research. Apart from
typical research objects such as yield, area, and growth, monitoring rice heavy metals [163],
disasters [8], nutrients [81], etc. is also of great practical significance.

5. Conclusions

This study used the information analysis software CiteSpace to conduct a comprehen-
sive bibliometric analysis of publications related to RRS during the period of 1980 to 2021.
The research carried out summarization from the perspectives of the involved categories,
countries, institutions, etc., and further analyzed the evolutionary path from the points of
research objects, spectral variables, modeling methods, and sensor platforms.

The results showed that the number of publications presented an increasing trend
over the past 42 years. RRS has interdisciplinary characteristics such as agriculture, geog-
raphy, ecology, engineering, etc. The top three countries with the largest publications are
China, the USA, and Japan, which are either major rice-producing countries or have strong
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technological power in remote sensing. Asian countries have exhibited great enthusiasm
for RRS, followed by countries in North America and Europe. Almost all global institutions
were engaged in RRS and the top three are the Chinese Academy of Sciences, Zhejiang
University, and Nanjing Agricultural University. The first ten keywords can define the main
research contents in RRS as “use multiple remote sensing variables and various models
to conduct research on area extraction and growth monitoring, etc.”. The key monitoring
parameters were growth, yield, plant area, disasters, and quality. RRS models gradually
evolved from statistical models to artificial intelligence models. Satellites were the main
platform occupied in RRS during the past decades while UAVs were widely adopted
due to their performances in obtaining high-resolution data. Ground platforms further
improved the real-time management of rice. Artificial intelligence models support more
accurate monitoring. Heavy metals, nutrient parameters, and disasters of rice attracted
lots of attention. It is anticipated that the combination of multi-platforms, multi-data, and
multi-methods will be the research focus in RRS.

On the whole, the bibliometric and visualized analysis of publications carried out
by this study provides a quantitative and clear concept of RRS to enhance people’s per-
ceptions. The comprehensive summarization of the applications implemented in RRS can
provide references for other crops, helping to achieve wider technological innovations in
precise agriculture.
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