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Abstract: To control the quality of X-band marine radar images for retrieving information and
improve the inversion accuracy, the research on rainfall detection from marine radar images is
investigated in this paper. Currently, the difference in the correlation characteristic between the
rain-contaminated radar image and the rain-free radar image is utilized to detect rainfall. However,
only the correlation coefficient at a position in the lagged azimuth is utilized, and a statistical hard
threshold is adopted. By deeply investigating the difference between the calculated correlation
characteristic and the marine radar images, the correlation coefficient in the lagged azimuth can be
used to constitute the correlation coefficient feature vector (CCFV). Then, an unsupervised K-means
clustering learning method is used to obtain the clustering centers. Based on the constituted CCFV
and the K-means clustering algorithm, a new method of rainfall detection from the collected X-band
marine radar images is proposed. The acquired X-band marine radar images are utilized to verify the
effectiveness of the proposed rainfall detection method. Compared with the zero-pixel percentage
(ZPP) method, the correlation coefficient difference (CCD) method, the support vector machine (SVM)
method and the wave texture difference (WTD) method, the experimental results demonstrate that
the proposed method could finish the task of rainfall detection, and the detection accuracy increases
by 10.0%, 6.3%, 2.0% and 0.6%, respectively, for the proportion of the 25% training dataset.

Keywords: correlation coefficient feature vector (CCFV); K-means clustering algorithm; marine radar
images; rainfall detection

1. Introduction

Due to the low cost of the non-coherent X-band marine radar, it is commonly utilized
for ship navigation and has been widely used to measure sea wave parameters in recent
years [1–3]. The wavelength of the electromagnetic wave of the X-band radar is about 3 cm.
Due to the influence of the ocean and the meteorological environment, the collected X-band
marine radar image is the backscatter echo intensity of the rough sea surface and usually
captures the sea clutter from the observed sea surface. The collected X-band radar image
also contains some non-wave information, such as rainfall interference, since the marine
radar is sensitive to rainfall.

Rainfall determination based on diverse radars has recently attracted more atten-
tion [4]. A fuzzy logic algorithm is used to separate the rainfall and the non-rainfall echo
based on the acquired polarimetric radar data [5]. A composite-weighted algorithm is
utilized to retrieve rainfall for the X-band polarimetric radar data [6]. At a high temporal
resolution of 1 min, the rainfall detection is completed by using rain-induced microwave
attenuation [7]. With the rapid development of artificial intelligence, the convolutional
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neural network, instead of the traditional exponential relation between radar reflectivity
factors and precipitation, is used to estimate the precipitation [8]. However, the weather
radar installation for rain intensity monitoring is strictly limited by the shortage of spec-
trum resources on a ship. Meanwhile, the design of adding a meteorological channel to
a coherent warning radar is deeply troubled by the “radar fingerprint” exposure. When
the shipborne marine radar is used for navigation safety, the obtained radar echo image
can be used for rainfall detection. This is particularly critical for saving ship resources and
controlling equipment costs. Although the non-coherent X-band marine radar only outputs
intensity, the X-band marine radar commonly has a high temporal resolution of the second
order compared to the weather radar. Thus, the research on rainfall detection from the
non-coherent X-band marine radar is developed to control the radar quality for improving
the inversion accuracy and reliability of wave parameters.

When the marine radar illuminates the sea surface, raindrops will change the rough-
ness of the sea surface and affect the propagation of the electromagnetic wave. Meanwhile,
the echo intensity of the radar image increases with the increase in sea surface rough-
ness [9,10]. The existing rainfall interference changes the texture features of the sea wave in
the radar image, which decreases the quality of the radar image and the reliability of the
extracted wave information [11]. Thus, the rain-free radar images are commonly utilized to
extract wave parameters and wind information.

Currently, inversion methods for extracting sea-state parameters and wind informa-
tion from rain-contaminated radar images are being developed. The wind parameters
are obtained from the rain-contaminated radar images based on the ensemble empirical
mode decomposition and the texture feature of the echo intensity [12,13]. Based on the
S-band marine radar, the feasibility of retrieving wave information during precipitation
is investigated [14]. However, the retrieving accuracy of the wave parameters is limited
when the utilized radar image contains rainfall interference. To improve the reliability and
accuracy of wave parameters extracted from a rain-contaminated radar image, a novel
method based on the wavelet transform is utilized to eliminate the influence of rainfall on
the radar image [15].

The inversion technology of retrieving ocean environmental information from rain-
contaminated radar images is different from that from rain-free radar images, since the rain
changes the texture of the images. To control the quality of radar images and improve the
retrieving accuracy, it is necessary to detect whether the collected radar image contains
rainfall interference before retrieving wave parameters. Meanwhile, the research on rainfall
detection from collected X-band marine radar images has recently attracted much attention.
Therefore, we focus on rainfall detection technology from the selected analysis area of the
X-band marine radar images in this paper.

By investigating the influence of rainfall on the backscatter echo characteristics of sea
waves, it is found that the rainfall intensity is proportional to the echo intensity of the
radar image. Moreover, a difference in the spatial texture between the rain-contaminated
image and the rain-free radar image exists. The statistical parameters, such as mean
value, standard deviation and correlation coefficient of the radar image, are used to detect
rainfall [16]. Since the influence of rainfall interference on echo intensity is complex, these
statistical parameters are not entirely suitable for the task of rainfall detection, and the
performance of the rainfall detection needs to be further improved. Based on the fact
that the number of zero intensity pixels varies with the rainfall intensity, a parameter
index of the zero-pixel percentage (ZPP), which is the percentage of the number of zero
intensity pixels in the whole image, is proposed to detect whether the radar image contains
rainfall interference [17]. However, the threshold value needs to be reset for different
radar platforms, which seriously limits the application of the ZPP method. Based on
the rough sea surface model and the radiative transfer model, the backscatter model of
rainfall over the sea surface is developed for the synthetic aperture radar [18]. Based on
the feature that the image echo intensity changes with rainfall intensity, a support vector
machine (SVM) scheme is proposed to detect the rain-contaminated radar image [19]. A
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histogram of the radar echo intensity is utilized to extract the rainfall feature. Based on
the extracted intensity feature and the SVM-based algorithm, the proposed method can
accurately classify rainfall images [20]. Based on the extracted texture feature vector and the
hierarchical agglomerative clustering technology, the difference in the echo intensity is used
to distinguish the low-backscatter region and the rainfall region from the collected X-band
marine radar images [21]. Based on the difference in the average echo intensity between a
rain-contaminated radar image and a rain-free radar image, a rainfall detection method
combining the ZPP and the average echo intensity is proposed in [22]. The detection
accuracy of the method is higher than that of the ZPP method, but the determination of the
threshold value depends on abundant experimental data and the engineering experience.
Based on the correlation characteristic of sea clutter, a new rainfall detection method,
which is called the correlation coefficient difference (CCD) method that uses the difference
in the correlation coefficient in the azimuth between the rain-free radar images and the
rain-contaminated radar images is proposed in [23]. The CCD-based method completes
the task of rainfall detection by analyzing the CCD characteristic of echo intensity in the
collected marine radar images. The experiment demonstrates that the calculated correlation
coefficient of the rain-free radar image is higher than that of the rain-contaminated radar
image. However, only the correlation coefficient at a lagged azimuth is utilized to detect
the rainfall image. Based on the wave texture difference (WTD), a consecutive pixel method
is used to detect the rainfall radar images in [24]. Although the WTD-based method of
rainfall detection has good detection performance, both the threshold value and the wave
direction are required in advance. The wave direction could be retrieved from the rain-free
marine radar image. However, it is difficult to accurately measure the wave direction from
the rain-contaminated radar images.

Recently, an unsupervised machine learning algorithm has been introduced into
X-band marine image processing for rainfall detection and recognition. Since the K-means
clustering learning method is easy to implement and the principle is simple, the K-means
clustering algorithm has been utilized for rainfall detection based on the video data and
the satellite images. Based on the K-means clustering algorithm, a histogram model is
proposed for the application of rainfall detection from the video data [25]. Then, a method
for heavy rain detection and removal from the video image is developed [26]. Because of
the complexity of rainfall in the video image, the pixel of the video image is classified based
on the optimized K-means clustering algorithm. To detect the information change of the
satellite image, a novel approach is proposed by combining principal component analysis,
which is used to extract the feature, and the K-means clustering algorithm [27,28]. Based
on the measurement of the minimum Euclidean distance, rainfall detection is achieved by
assigning each image pixel to different clusters. The monthly precipitation data provided by
the meteorological organization are used to verify the effectiveness of the proposed method.
In [29], an algorithm is proposed to detect the raindrops based on K-means clustering
technology and the median filtering strategy. In [30], based on the K-means algorithm,
a method using the Gaussian mixture model is proposed to predict the rainfall intensity.
The performance of the rainfall prediction is demonstrated based on the obtained satellite
images. Meanwhile, the random-forest-based classification model is used to mitigate the
rain effect, and the clustering model based on the self-organizing map is used to extract
the regions with blurry wave signatures [31]. Then, a convolutional neural network is
used to calibrate the rain-contaminated radar images [32]. Experimental results show
that the proposed scheme could obtain relatively high inversion accuracy. To identify the
rain-contaminated region from the marine radar images, a method based on the texture
features is proposed [33]. The discrete wavelet transform and the Gabor filter are utilized
to generate feature vectors. Based on the collected shipborne marine radars under different
rain conditions, the experimental results show that the proposed method could effectively
detect rain-contaminated pixels of the radar image. Since the rain-contaminated radar
images deteriorate the performance of ocean remote sensing, a novel method is proposed to
detect and segment rain-contaminated regions in the marine radar images based on a deep
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neural network model [34]. For retrieving the wave direction, the ZPP of the occlusion area
of the radar image is utilized to distinguish the rain-free radar images [35].

Although the K-means clustering algorithm could be utilized to detect rainfall inter-
ference from the video data and the satellite images, the imaging mechanism of the sea
wave and rainfall in the X-band marine radar image is different from that of the video
data and the satellite images. At the same time, the characteristic of rainfall in the X-band
marine radar images is different from that of the satellite images. Until now, the K-means
clustering algorithm has not been used to detect rain-contaminated images from collected
X-band marine radar images. Based on the difference in the correlation coefficients between
the rain-free radar image and the rain-contaminated radar image, the correlation coefficient
feature vector (CCFV) could be constructed from the calculated correlation coefficient in
the lagged azimuth. Since a difference in extracted CCFVs between rain-free radar images
and rain-contaminated radar images exists, it is possible to detect the rainfall image based
on the CCFVs. Thus, a method of rainfall detection using the constructed CCFV and an
unsupervised K-means clustering method is proposed in this paper to control the quality
of the radar image. For the rainfall detection of the proposed method, a detection threshold
value is not required since the K-means clustering learning method is adopted.

The organization of the paper is as follows: The radar configuration and radar data are
described in Section 1. Based on the difference in the correlation coefficient characteristic,
the detection method of the rain-contaminated images from the acquired X-band marine
radar images is described in Section 2. Section 3 presents the proposed rainfall detection
method using the constructed CCFV and the K-means clustering algorithm. The effective-
ness of the proposed method is certified based on the acquired X-band marine radar images
in Section 4. Finally, the discussion and conclusion are summarized.

2. Radar Data Overview

The collected radar data based on the 760B marine radar on 14–18 December 2013
were utilized to certify the effectiveness and analyze the performance of the proposed
method. The detailed configuration parameters of the marine radar are shown in Table 1.
The output analog signal of the marine radar is digitized by a 14-bit high-speed acquisition
card. Then, the collected signal, which is called the backscatter echo intensity, is mapped to
the range between 0 and 2.5 V. The original marine radar image acquired on 15 December
at 21:33 with a rainfall rate of 2 mm/5 min is shown in Figure 1. The heading of the radar
image is 6◦ from the north. The wind direction and wind speed are 35◦ and 13.7 m/s,
respectively. The significant wave height of the sea wave is 2.1 m. The fan-shaped area
composed of the red solid line in Figure 1 is the sea observation area of the X-band marine
radar. The yellow part of the fan-shaped area is the superposition of the sea clutter and the
rainfall interference. The blue part is mainly the background noise. From Figure 1, it can be
observed that the X-band marine radar is sensitive to rainfall. The texture feature of the
sea wave cannot be observed clearly due to the influence of the rainfall interference on the
backscatter echo intensity.

Considering the decay of the radar signal in distance and the texture feature of the
observation area, the observation region in the azimuth from 125◦ to 190◦ and at a distance
of 900 m to 1800 m, which is denoted by the black solid line in Figure 1, was selected for
analysis. Meanwhile, the echo intensity of the selected analysis area in the azimuth is
used to obtain the correlation coefficient and calculate the CCFV. The image resolution in
distance is 7.5 m. Thus, 120 sets of the correlation coefficient in the lagged azimuth are
obtained and are averaged to achieve the averaged correlation coefficient and construct the
CCFV for rainfall detection in our experiment.

The simultaneous rainfall rate was recorded by the rain gauge, and the cumulative
rainfall per 5 min as the reference value is presented in Figure 2. The horizontal axis is the
data number. The vertical axis is the simultaneous rainfall rate. The resolution of the rain
gauge is 1 mm/min. The rainfall rate changes from 0 to 7 mm/5 min. Since the rainfall
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intensity changes rapidly, the rain intensity of 5 min is used to minimize the measurement
error for light rain in this experiment.

Table 1. The configuration parameters of X-band marine radar.

Radar Parameters Performance

Electromagnetic wave frequency 9.3 GHz
Antenna angular speed 22 r.p.m.
Antenna height 45 m
Polarization HH
Range resolution 7.5 m
Horizontal beam width 1.3◦

Vertical beam width 21◦

Pulse repetition frequency 1300 Hz
Antenna length 1.8 m
Pulse width 50 ns
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Figure 1. The original rain-contaminated marine radar image.
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Figure 2. The simultaneous rainfall rate during the experiment.
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3. Rainfall Detection Based on the CCD

Since the texture feature of the rain-contaminated radar image is different from that
of the rain-free image, the methods of extracting wave parameters and wind information
from the rain-contaminated image and the rain-free radar image are different. Thus, the
research on rainfall detection from the acquired X-band marine radar images is extremely
necessary and important. In this section, a rainfall detection method based on the CCD
between the rain-contaminated image and the rain-free image is briefly reviewed [23].

3.1. The Calculation of the Correlation Coefficient

The sea clutter in the marine radar image has a strong correlation in the spatial domain
and the temporal domain. The echo intensity of the radar image and the correlation
characteristic of the sea clutter will change when the high-frequency rainfall component
is introduced into the radar image. Thus, the correlation coefficient between the rain-
contaminated radar image and the rain-free radar image should be different. For the
collected X-band marine radar images, the correlation characteristic can be described by the
autocorrelation coefficient in the distance direction and the azimuth direction, respectively.
Then, the radar image, whether or not it is contaminated by rainfall, can be distinguished
by comparing the calculated correlation coefficient with a threshold value.

Since the calculated CCD from the radar images in the azimuth is more dominant
than that in the distance [23], the CCD in the azimuth is used to distinguish the rain-
contaminated radar images. The autocorrelation coefficient of the radar echo image
ρ ∈ [−1, 1] in the azimuth is defined as

ρ(τ) =
E{x(θ + τ)x(θ)}

E{|x(θ)|2} (1)

where x(θ) is the backscatter echo intensity, θ is the azimuth angle, τ is related to the
lagged angle in azimuth, and E(·) denotes the expectation of the echo intensity. When
the correlation coefficient ρ is close to one, the positive correlation characteristic of the
echo signal is strong. However, the correlation characteristic is weak when the correlation
coefficient is close to 0. Based on the X-band marine radar images, the task of rainfall
detection can be finished by utilizing the CCD under different rainfall conditions.

3.2. The Detection Principle of the CCD-Based Method

The radar data in the azimuth are used to analyze the spatial correlation of the sea
clutter images. Based on the correlation characteristic of the sea clutter, the task of rainfall
detection is conducted by comparing the correlation coefficient at a position of the lagged
azimuth with the threshold value 1/e [23]. Thus, the task of rainfall detection is described
as follows

H0 : ρ ≤ γ v.s. H1 : ρ > γ (2)

where γ is the threshold value 1/e, H0 denotes that the radar image is rain-contaminated,
and H1 denotes the rain-free radar image.

4. The Proposed Rainfall Detection Method Based on the Constructed CCFV

Since the CCD between the rain-contaminated radar image and the rain-free image
exists in the lagged azimuth, the feature of the correlation characteristic in the azimuth is
used to constitute the CCFV and execute the task of rainfall detection. The rainfall detection
from the marine radar images can be recognized as the task of classification. Due to the
simple principle and the convenience of the implementation, the unsupervised K-means
clustering learning method is adopted to divide the extracted CCFVs into the rain-free
and rain-contaminated classifications. Based on the CCFV and the K-means clustering
algorithm, a new method for rainfall detection from the collected X-band marine radar
images is proposed in this paper.
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Based on the acquired radar images, the analysis area is selected after filtering the co-
frequency interference noise of the radar images. A method for detecting and suppressing
co-frequency interference noise in X-band marine radar images is proposed in [36]. The
data lines containing co-frequency interference noise in the distance direction are detected
from radar images by using the correlation, and a Laplace enhancement template is used to
traverse the detected data line to locate the noise points. Then, the interpolation method
with the adjacent information is used to repair the located co-frequency interference. Sub-
sequently, the correlation coefficient of the radar image in the azimuth can be calculated
based on Equation (1). The CCFV is established by determining the length of the vector and
selecting the correlation coefficient in the lagged azimuth. For the unsupervised K-means
clustering algorithm, the recorded≈2500 radar images are randomly divided into a training
and a testing dataset. For the proportion of the 50% training dataset, both the training
dataset and the testing dataset have 625 rain-free images and 624 rain-contaminated images.
The CCFVs of the training dataset are used to obtain the clustering centers. After setting
the number of clustering centers, the clustering center of the rain-contaminated images
and the clustering center of the rain-free images can be determined based on the K-means
clustering technology and the training dataset. Eventually, the rain-contaminated radar
images can be detected by comparing the measurement distance between the CCFV of the
testing dataset and the obtained clustering centers. A flowchart of the proposed rainfall
detection method is presented in Figure 3. In our radar system, the received signal is mainly
the system thermal noise when the echo intensity is less than the threshold value of 983 for
the 14-bit acquisition card. For the selected analysis area in Figure 1, which is surrounded
by a black solid line, the low backscatter direction is determined when the mean of the
echo intensity in a distance direction is less than the threshold value of 983. The radar
image is discarded when the low backscatter direction percentage is higher than 90%, since
the correlation coefficient of the sea clutter is used to detect the rain-contaminated radar
image [37,38]. Thus, the control strategy of the image quality in [37,38] is adopted to control
the quality of the marine radar image.

Figure 3. The flowchart of the proposed rainfall detection method.
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4.1. The Determination of the CCFV

Based on the correlation of the sea clutter in the spatial domain and the azimuth
resolution of the marine, the detailed determination of the CCFV is given below. By
statistical analysis of the correlation characteristic of the collected X-band radar images, the
autocorrelation coefficient of the collected radar images in the lagged azimuth is presented
in Figure 4. The horizontal axis and the vertical axis denote the lagged angle in the
azimuth and the calculated correlation coefficient, respectively. The blue solid line with
the circle represents the correlation coefficient of the rain-free radar image, and the red
dotted line with the star represents the correlation coefficient of the rain-contaminated
radar images with the rainfall intensity of 2 mm/5 min. At the same time, the significant
wave height of the sea state is 2.3 m, and the average wind speed of the sea surface is
12.4 m/s. The marine radar antenna is 1.8 m, and the horizontal beamwidth ∆θ is about
1.3◦ in our experiment. The number of data lines of the radar image in the azimuth is
60/22 ∗ 1300 = 3545. However, the antenna angular speed of the marine radar is not even,
due to the influence of the sea surface wind. Meanwhile, the loss of the backscattered echo
exists because of the fluctuation in the sea surface. Thus, the data lines in a radar image are
different in practice. The number of the azimuthal line in a horizontal beamwidth ∆θ is
about 13.

The spatial correlation of the sea clutter is determined by both the correlation feature
of the sea clutter and the horizontal beamwidth ∆θ of the antenna of the observed radar
system [39,40]. The calculated correlation coefficient of the rain-contaminated image in the
azimuth based on Equation (1) is different from that of the rain-free image. Unfortunately,
only the correlation characteristic near the position of the half horizontal beamwidth is
utilized to detect rainfall for the CCD-based rainfall detection method. Moreover, the
correlation coefficient of the rain-contaminated radar image may be higher than the hard
threshold at the position of half horizontal beamwidth, since the backscatter mechanism of
the marine radar image is complex under rainfall conditions.

From Figure 4, it can be observed that the autocorrelation coefficient of the rain-free
radar image in the azimuth is larger than that of the rain-contaminated image when the
lagged azimuth is less than 1.4◦, which is close to the horizontal beamwidth ∆θ of the radar
antenna. When the lagged azimuth is less than the horizontal beamwidth ∆θ, both the
rain-contaminated images and the rain-free images have a high correlation coefficient, since
the illumination area of the marine radar in a horizontal beamwidth ∆θ partially overlaps.
However, when the lagged azimuth is greater than 1.4◦, the correlation coefficient of the
rain-contaminated radar image is close to that of the rain-free radar image. In this paper,
the obtained CCFV in the lagged azimuth instead of the correlation coefficient at a fixed
position in azimuth is used to execute the task of rainfall detection. Thus, the correlation
coefficient of the lagged azimuth less than 1.4◦ can be selected to establish the CCFV.

From Figure 4, we found that the difference in the correlation coefficient between the
rain-contaminated radar images and the rain-free radar images is relatively large, from
0.1◦ to 1.1◦ in the azimuth. When the established CCFV contains the element where the
difference between the rain-contaminated images and the rain-free images is small, it is
disadvantageous for distinguishing the rain-contaminated radar image. The correlation
coefficient of the rain-contaminated images may be close to the correlation coefficient of the
rain-free images when the lagged azimuth is less than 0.3◦. The correlation coefficient in
the azimuth from 0.3◦ to 1.1◦ is selected to constitute the feature vector. Hence, the selected
CCFV contains eight bins in this paper.
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Figure 4. The correlation coefficient in the lagged azimuth under different rainfall conditions.

4.2. The Unsupervised K-Means Clustering Learning Algorithm

The task of rainfall detection can be considered as classifying the radar images into
rain-free and rain-contaminated clusters. The marine radar images are used to constitute
both the training dataset and the testing dataset, which contain the rain-contaminated
radar images and the rain-free radar images. Based on the technology of the K-means
clustering algorithm, the obtained CCFV of the training dataset can be used to achieve the
clustering centers of the rain-contaminated and the rain-free images. Subsequently, the
CCFV of the testing datasets can be classified into the cluster of rain-free or the cluster of
rain-contaminated images. Then, the rainfall images can be detected by measuring the
distance between the CCFV and each cluster center.

The main idea of the K-means clustering algorithm is to divide the training dataset
into different categories through the iterative process to optimize the criterion function,
which is used to evaluate the clustering performance. For the K-means clustering algorithm,
the cost function is used to evaluate the clustering performance. Supposing the training
dataset S contains K cluster subsets s1, s2, · · · , sK, the cost function is given as

V =
K

∑
i=1

∑
sj∈Ci

||sj −mi||2 (3)

where mi(i = 1, 2, · · · , K) is the clustering center of the i-th cluster, and the data point sj
belongs to the cluster Ci. The clustering process, which is used to seek the best clustering
center mi, is subject to minimizing the cost function V. To obtain the cost function V, it
is necessary to calculate the square sum of the Euclidean distance from the CCFV in each
cluster to each clustering center. Then, the cost function V is achieved by summing the
K distance square. The K clustering process of dataset S is commonly finished when the
value of the cost function V is lowest. The general step of the K-means clustering algorithm
is given below [41–43]:

1. Input the training dataset S = {s1, s2, · · · , sK}, which is the extracted CCFV from
the X-band marine radar images, and set the number of categories K. The feature
dataset should be divided into categories of the rain-contaminated radar images and
the rain-free radar images.
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2. Initialize the clustering center. Select K elements {m1(0), m2(0), · · · , mK(0)} from
the extracted dataset S as the initial clustering center of the cluster {C1, C2, · · · , CK},
where mi(n) denotes the new clustering center of the cluster Ci after n iterations.

3. Categorize the obtained CCFV. The Euclidean distance between each CCFV and each
clustering center can be calculated in turn. Based on the criterion of the minimum
distance, each CCFV will be divided into the cluster where the CCFV is nearest to the
clustering center.

4. Update the K clustering centers. For cluster Ci, the obtained clustering center mi(j)
after j iterations is

mi(j) =
1
ni

∑
sm∈Ci

sm (4)

where ni is the number of the chosen CCFVs of the clustering cluster Ci. The K-means
clustering algorithm is trying to seek the clustering centers of the rain-contaminated
radar images and the rain-free radar images based on the testing dataset.

5. Determine whether the classification ends. If mi(j) = mi(j− 1), the K-means algo-
rithm converges, and the clustering process ends. Otherwise, we continue to perform
the clustering adjustment in steps 3 and 4. In practice, the condition mi(j) = mi(j− 1)
is not easy to satisfy. Commonly, we set the number of iterations in advance or
suppose that the process of the iteration ends when the absolute error between the
clustering center mi(j) and the clustering center mi(j− 1) is close to zero.

Based on the above K-means clustering algorithm, the clustering centers of the rain-
contaminated radar images and the rain-free radar images can be determined by using the
training dataset.

4.3. Calculate the Distance between CCFV and Clustering Centers

Based on the achieved K clustering centers from the CCFVs in the training dataset, the
Euclidean distance between the CCFV sm in the testing dataset and the cluster centers mi
can be described as

di(sm, mi) = ||sm −mi|| (5)

where di denotes the Euclidean distance between the CCFV and the clustering center i-th.
For the task of rainfall detection from the acquired marine radar images, it is important

to distinguish whether the collected radar image is rain-contaminated. Supposing that
mi and mj are respectively the clustering center of the rain-contaminated images and the
clustering center of the rain-free images, the task of rainfall detection can be implemented
by distinguishing the Euclidean distance between the CCFV and the clustering center of
the rain-contaminated radar images. When the Euclidean distance between the CCFV of
the testing dataset and the clustering center of the rain-contaminated radar images is less
than that between the CCFV and the clustering center of the rain-free radar images, the
radar image is recognized as rain-contaminated; otherwise, vice versa.

4.4. The Determination of the Number of the Clustering Centers

To determine the number of clustering centers K, 300 rain-contaminated images and
300 rain-free images were randomly selected to generate the clustering centers based on
the constructed CCFV and the K-means clustering algorithm, respectively. Figure 5 shows
the generated clustering centers based on the randomly selected radar images for K = 2.
For the rain-free images, the generated clustering centers are presented in Figure 5a. The
distance between the two clustering centers is relatively close. Figure 5b is the obtained
clustering centers based on the rain-contaminated images. From Figure 5, it can be observed
that the difference of clustering centers of the rain-contaminated radar images is larger than
that of the rain-free radar images.
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Figure 5. The generated clustering centers: (a) the clustering centers of rain-free images; (b) the
clustering centers of rain-contaminated images.

For the task of rainfall detection, it is necessary to detect whether the collected radar
image is rain-contaminated. Based on the constructed CCFV of the training dataset and the
K-means clustering algorithm, the calculated clustering centers are presented in Figure 6.
Figure 6a,b are the obtained clustering centers for K = 2 and K = 3, respectively, based on
the training dataset. In Figure 6a, the blue solid line with the cross is clustering center 1,
which denotes the clustering center of the rain-free radar images. The red solid line with the
circle is clustering center 2, which denotes the clustering center of the rain-contaminated
radar images. From Figure 6a, it can be found that the detection performance of the
proposed method is not ideal when the number of the clustering center K is set to 2. Since
the variation range of the rainfall rate is large, the difference between the CCFV of the radar
image with heavy rain and the CCFV of the radar image with light rain is larger than that
between the CCFV of the rain-free radar image and the CCFV of the radar image with light
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rain. Thus, one obtained clustering center based on the CCFV is the rain-contaminated
radar image with heavy rain. The other clustering center is the rain-free radar image
and the radar image contaminated by light and moderate rain, since the clustering center
of the rain-free radar image is close to that of the radar image contaminated by light or
moderate rain.
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Figure 6. The obtained clustering centers by using the CCFVs: (a) the obtained clustering centers for
K = 2; (b) the obtained clustering centers for K = 3.

In Figure 6b, the blue solid line with the cross is clustering center 1, which denotes the
clustering center of the rain-free radar images. The red solid line with the circle is clustering
center 2, which denotes the clustering center of the marine radar images contaminated
by light and moderate rain. The black solid line with the triangle is clustering center 3,
which denotes the clustering center of the marine radar images contaminated by heavy rain.
From Figure 6, it can be observed that the difference in the correlation coefficient between
clustering center 1 and clustering center 2 is still relatively large. Thus, clustering center
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1 and clustering center 2 can be easily separated. Since the difference in the correlation
coefficient between clustering center 1 and clustering center 3 is large, it is easy to detect the
radar images with heavy rain from the acquired marine images. The software of Matlab and
the K-means functions are used to execute the K-means clustering process. The maximum
number of iterations is set to 100, and the iteration process is ended in advance when the
absolute error of the extracted clustering centers is zero.

Compared with Figure 5, we observed that the obtained clustering center of the rain-
free images in Figure 6b is similar to that of rain-free images in Figure 5a, and the clustering
centers of the rain-contaminated images could perfectly denote that of rain-contaminated
images in Figure 5b. However, it is hard to accurately distinguish radar images when the
extracted CCFV is between clustering center 1 and clustering center 2 for K = 2. Therefore,
we set the number of the clustering centers K = 3 to distinguish the rain-free and the
rain-contaminated radar images under different rainfall rates.

4.5. Rainfall Detection Principle of the Proposed Method

Based on the obtained Euclidean distance di, i ∈ {1, 2, 3}, between the CCFV and the
clustering center i, the task of rainfall detection for the number of the clustering center
K = 3 can be described as

H : d1 < d2 ∩ d1 < d3 (6)

where d1 is the Euclidean distance between the CCFV and the clustering center 1 of the
rain-free images. Since d2 and d3 are the distance between the CCFV and the clustering
centers of the rain-contaminated images, the task of rainfall detection is induced to detect
the rain-free radar images. When the Euclidean distance between the CCFV of the radar
image of the testing dataset and clustering center 1, which is the clustering center of the
rain-free radar images, is the lowest, the radar image is rain-free; otherwise, the radar
image is rain-contaminated.

5. Experimental Results and Analysis

Compared with the record of the simultaneous rain gauge, the effectiveness of the
proposed method for rainfall detection is certified in this section. First, the analysis area
is selected from the radar image to calculate the correlation coefficient. Then, the CCFV
is constructed by using the obtained correlation coefficient and is used to generate the
clustering centers based on the randomly selected training dataset and the K-means clus-
tering algorithm. Finally, the task of rainfall detection is completed by comparing the
calculated Euclidean distances between the clustering centers and the CCFV of the testing
dataset. Meanwhile, the performance of the rainfall detection is analyzed by comparing the
proposed method with the ZPP method, the CCD-based method, the SVM-based method
and the WTD-based method. In the experiment, the radar data are randomly divided
into a training dataset and testing dataset. The training radar data are used to obtain the
clustering centers for the number of clustering centers K = 3, and only the testing radar data
are used to evaluate the performance of the method. The radar data for rainfall detection
and the detailed detection results are given below.

5.1. Experimental Results

From 14–18 December, we acquired about 2500 marine radar images, including 50%
rain-free and rain-contaminated images, respectively, which were selected to verify the
effectiveness of the proposed rainfall detection method.Meanwhile, the percentage distri-
bution of the rain-contaminated radar images under different rainfall rates is presented
in Table 2. The rain-contaminated radar images with rainfall rates between 1 mm/5 min
and 3 mm/5 min are dominant. To ensure that the clusters are represented in a balanced
way for the rain-contaminated images, the number of rain-contaminated radar images with
1 mm/5 min is approximately equal to that of the remaining rain-contaminated radar im-
ages. Since the rain-contaminated radar images with a rainfall rate greater than 3 mm/5 min
are less, two clusters could represent the clustering centers of the rain-contaminated radar
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images well. With the increase in the rainfall rate, the correlation coefficient and the CCFV
of the rain-contaminated decrease. Thus, it is easy to detect the rain-contaminated images
with heavy rain.

Table 2. The percentage distribution of the rain-contaminated radar images under different rain-
fall rates.

Rainfall Rates (mm/5 min) 1 2 3 4 5 6 7

Percentage of the rainfall images 50.1% 29.6% 11.5% 4.7% 3.1% 0.7% 0.3%
Percentage of rain-contaminated images for the training dataset 50.2% 29.1% 11.5% 4.5% 3.5% 0.8% 0.3%
Percentage of rain-contaminated images for the testing dataset 50.0% 30.1% 11.5% 4.9% 2.7% 0.6% 0.3%

The randomly selected 50% of the available radar images is used to build up the
training dataset. Then, the remaining radar images are applied to constitute the testing
dataset. Both the training dataset and testing dataset have balanced rain-free and rain-
contaminated images. For the proportion of 50% of the training dataset, the percentage of
rain-contaminated images for the training and testing dataset is presented in Table 2. In
this paper, the difference in the correlation coefficient in the lagged azimuth is selected to
generate the CCFV, and the proposed rainfall detection method uses the CCFV to complete
the task of rainfall detection. Based on the extracted CCFV and the K-means clustering
algorithm, the clustering centers can be extracted by using the training dataset. Meanwhile,
the Euclidean distance between the CCFV and the clustering centers can be calculated
based on the testing dataset.

For a testing dataset with a proportion of 50 % radar images, the Euclidean distance
between the CCFV and the clustering centers is shown in Figure 7. The first-half data and
the second-half data are the rain-free images and the rain-contaminated images, respectively.
The horizontal axis denotes the data number during the experiment. The vertical axis
denotes the calculated Euclidean distance. The blue solid line, red solid line and black solid
line denote the Euclidean distance between the calculated CCFV and clustering center 1,
clustering center 2 and clustering center 3, respectively. When the calculated Euclidean
distance from the extracted CCFV is closest to a clustering center, the collected radar images
belong to this cluster. Cluster 1 denotes the distance between the CCFV and the clustering
center of the rain-free radar images. Cluster 2 and Cluster 3 denote the distance between
the CCFV and the clustering center of the rain-contaminated radar images. Thus, the task
of rainfall detection from the X-band marine radar images is deduced to detect the rain-free
radar images from the collected dataset. For K = 3, the rain-free radar images can be
detected by judging whether the calculated Euclidean distance between the CCFV of the
testing dataset and the clustering center 1 is the smallest.

The detection result of the proposed method is presented in Figure 8. The vertical
axis is the detection result. When the detected radar image is rain-contaminated, the radar
image is labeled as 1. Otherwise, the radar image is labeled as 0. For the testing dataset, the
detection success rate is 94.2% by using the obtained clustering centers from the training
dataset, where the detection success rate of the rain-free radar images is 96.8% and the
detection success rate of the rain-contaminated radar images is 91.7%. By comparing the
detection performance between the rain-free radar image and the rain-contaminated radar
image, it can be found that the detection accuracy of the rain-free radar images is higher
than that of the rain-contaminated radar images.

In addition, the calculated Euclidean distance and the detection performance for all
the collected radar datasets are presented in Figure 9 and Figure 10, respectively. From
Figure 9, it can be observed that the fluctuation of the calculated distance of Cluster 1, which
is denoted by the blue solid line, is similar to the simultaneously recorded rainfall rate
compared with the rainfall rate in Figure 2. For the rain-free radar images, the calculated
distance to Cluster 1 is almost the least, and the distance to Cluster 3 is the largest. On the
other hand, the calculated distance to Cluster 1 is the largest for the rain-contaminated
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images. Meanwhile, it can be observed that both the radar images contaminated by the
light rain and the rain-free radar images can be distinguished when the number of the
clustering center K = 3. From Figure 10, it can be observed that the proposed method could
well finish the detection task and distinguish the rain-contaminated radar images and the
rain-free radar images compared with the rainfall rate in Figure 2.
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Figure 7. The calculated Euclidean distance between the CCFV of the testing dataset and the
clustering centers.
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Figure 8. The detection result based on the proposed detection method.
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Figure 9. The calculated Euclidean distance for all the datasets.
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Figure 10. The detection result for all the datasets.

To further verify the effectiveness of the proposed rainfall detection approach, the
detection result is compared with that of the ZPP method, the CCD-based method, the
SVM-based method and the WTD-based method. The calculated ZPP of the selected
analysis area from the radar image is given in Figure 11. The red solid line denotes the
obtained optimal detection threshold value 48.5% based on the training dataset. Since the
determination of the threshold depends on the engineering experience and the threshold
value changes for different radar systems, the strategy in [20] is used to determine the
threshold value. From Figure 11, it can be observed that the calculated ZPP of the radar
image changes with the rainfall. The ZPP is relatively small when the radar image is
contaminated by heavy rain. The ZPP of the radar image increases with the decrease in
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the rain rate. When the calculated ZPP is less than the threshold value, the radar image is
defined as rain-contaminated for the ZPP detection method.
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Figure 11. The calculated ZPP percentage.

The detection result of the ZPP method is presented in Figure 12. When the detected
radar image is contaminated by rainfall, the radar image is labeled as one. Otherwise, the
radar image is labeled as zero. The detection success rate of the testing dataset is 84.5%.
The detection success rate of the rain-free radar images is 87.3% and is higher than that of
the rain-contaminated radar images at 81.6%. Although the optimal detection threshold is
selected based on the training dataset, the detection performance of the training dataset is
not ideal, since the ZPP of the radar images contaminated by light rain fluctuates near the
threshold value. Further study is needed to improve the detection accuracy of the radar
images, especially in the case of light rain.

Based on the CCD method in [23], the achieved correlation coefficient is presented in
Figure 13. The correlation coefficient at a lagged azimuth is selected to detect the rainfall
interference from the collected radar images. The vertical axis denotes the calculated
correlation coefficient at the lagged azimuth. The blue solid line is the calculated correlation
coefficient from the collected radar images. The red solid line is the threshold value. For the
CCD-based method, the task of rainfall detection is executed by comparing the obtained
correlation coefficient to the optimal threshold, which is determined based on the training
dataset. From Figure 13, it can be observed that the calculated correlation coefficient from
the testing dataset is above the threshold value in most cases when the rainfall does not
exist. Moreover, it can be observed that the calculated correlation coefficient at the lagged
azimuth changes with the rainfall. For the collected rain-free radar image, the calculated
correlation coefficient, which depends on the backscatter echo, is relatively large. In the
case of rain-free images, the correlation coefficient of the sea clutter increases with the
increase in the sea state. When the correlation coefficient is less than the threshold, the
radar image is considered as rain-contaminated for the CCD-based method.

The detection result based on the CCD method is presented in Figure 14. For all the
testing datasets, the detection success rate is 88.1%, which is 3.6% higher than the ZPP
method. The detection success rate of the rain-free images and rain-contaminated image is
89.1% and 87.2%, respectively. By comparing the detection performance to the ZPP method,
the detection accuracy of rain-contaminated and rain-free radar images is increased by 5.6%
and 1.8%, respectively.
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Figure 12. The detection result of the ZPP method.

Figure 13. The calculated correlation coefficient based on the CCD method.

The rainfall detection of the SVM-based method is completed using the statistical
histogram of the radar images. The radar images of the training dataset are utilized to
obtain the structure of the SVM. The detection result of the SVM-based method is described
in Figure 15. From Figure 15, it can be observed that the detection result is excellent,
especially for the rain-contaminated radar images, compared to the ZPP method and the
CCD-based method. However, some rain-free radar images of the testing dataset are
recognized as rain-contaminated radar images. The detection success rate of the SVM-
based method for the rain-free images and the rain-contaminated images is 92.8% and
96.6%, respectively. The detection accuracy of rain-contaminated images is higher than
the proposed detection method. However, the detection accuracy of rain-free images is
lower than the proposed method based on the CCFV and the clustering algorithm. The
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detection success rate is 94.4%, which is close to that of the proposed method in this paper.
The recorded radar image is rain-contaminated and labeled as one when the corresponding
rainfall rate is non-zero. The correlation coefficient between the detection result of the
SVM-based method and the reference value is 0.89. Since the variation range of the rainfall
rate is relatively large, the feature of the statistical histogram of the rain-contaminated
radar images is captured well. The training dataset may be less, and the performance of
the SVM-based method cannot be presented well for the rain-free images. Meanwhile, the
19 bins may not be enough to describe the detailed information of the statistical histogram
of the marine radar images when the 14-bit acquisition card instead of 8-bit is utilized.
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Figure 14. The detection result of the CCD-based method.

Based on the WTD and the consecutive pixel detection, the rain-contaminated radar
images could be detected. Since the threshold value and the wave direction are required,
the obtained feature WTD of the training dataset is used to obtain the optimal threshold
value and the wave direction of manual observation inputs to the WTD-based rainfall
detection method. The detection result of the WTD-based method is presented in Figure 16.
From Figure 16, it can be observed that the detection result is excellent, especially for
the rain-free radar images, compared to the ZPP method, the CCD-based method, and
the SVM-based method. However, some rain-contaminated radar images of the testing
dataset are recognized as rain-free radar images. The detection success rate of the WTD-
based method for the rain-free images and rain-contaminated images is 96.3% and 91.7%,
respectively. The detection success rate of the rain-free radar images is higher than that
of the rain-contaminated radar images. The detection accuracy of both the rain-free and
rain-contaminated radar images is close to that of the proposed rainfall detection method
based on the CCFV and the clustering algorithm. Although the detection success rate of the
WTD-based method is 94.0%, which is close to that of the proposed method in this paper,
an initial hard threshold value should be determined in advance based on the median
of the statistical histogram of the WTD. In addition, the wave direction is required for
consecutive pixel detection. Currently, it is difficult to obtain an accurate wave direction
from rain-contaminated radar images, and this limits the application of the WTD-based
method in practice.
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Figure 15. The detection result of the SVM-based method.
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Figure 16. The detection result of the WTD-based method.

5.2. Performance of the Rainfall Detection

To further evaluate the performance of the rainfall detection algorithm, the detection
accuracy of the ZPP method, the CCD-based method, the SVM-based method, the WTD-
based method and the proposed method for a different proportion of the training dataset is
presented in Table 3. For the proposed rainfall detection method, the training data with the
proportion of 25%, 50% and 75% are used to extract the clustering centers, and the testing
data with the remaining proportion of 75%, 50% and 25% are used to verify the detection
performance. Based on the achieved threshold and the clustering centers from the training
dataset, the accuracy of the ZPP method, the CCD-based method, the SVM-based method,
the WTD-based method and the proposed method is analyzed by using the remaining
testing dataset.
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Table 3. The comparison of the rainfall detection accuracy.

Proportion of Training Dataset 25% 50% 75%

ZPP

rain-free data 87.7% 87.3% 90.1%

rain-contaminated data 81.2% 81.6% 83.0%

all testing data 84.5% 84.5% 86.5%

CCD

rain-free data 88.7% 89.1% 89.4%

rain-contaminated data 87.7% 87.2% 87.8%

all testing data 88.2% 88.1% 88.6%

SVM

rain-free data 87.9% 92.8% 92.0%

rain-contaminated data 97.1% 96.0% 95.8%

all testing data 92.5% 94.4% 93.9%

WTD

rain-free data 95.1% 96.3% 92.6%

rain-contaminated data 92.6% 91.7% 92.1%

all testing data 93.9% 94.0% 92.4%

Proposed method

rain-free data 97.0% 96.8% 96.2%

rain-contaminated data 92.0% 91.7% 94.2%

all testing data 94.5% 94.2% 95.2%

From Table 3, it can be observed that the proposed rainfall detection method in this
paper has higher detection accuracy than the ZPP method, the CCD-based method and the
SVM-based method for the 25% training dataset. The proposed method has the highest
detection accuracy for rain-free radar images among these detection methods. However,
the detection accuracy of rain-contaminated radar images for the proposed method is a
little lower than that of the SVM-based method. With the increase in the proportion of
the training dataset, the detection success rate increases and then decreases for the SVM
method. Although the detection success rate of the proposed method is close to the SVM
method for the proportion of the 50% training dataset, the detection accuracy is 9.7%
higher than that of the ZPP method and 6.1% higher than that of the CCD method. For
the proportion of the 25% and 75% training datasets, the performance of the proposed
method is a little higher than that of the SVM method. The detection accuracy of the
WTD-based method for the proportion of the 50% training dataset is higher than that of
the proportion of the 25% and 75% training datasets. Although the optimal threshold
value is obtained based on the training dataset, the rainfall detection accuracy of both the
rain-free radar images and the rain-contaminated radar images is lower than that of the
proposed rainfall detection method. The detection accuracy of rain-contaminated images
of the proposed method has the highest detection accuracy for the proportion of the 75%
training dataset. The detection accuracy of rain-free images decreases with the increase of
training dataset proportion. For the proportion of 25%, 50% and 75% training datasets, the
detection accuracy of the proposed rainfall detection method is relatively high, and the
difference is slight. Thus, the proposed rain detection method based on the CCFV and the
K-means clustering algorithm could effectively detect rain-contaminated images from the
collected X-band marine radar images.

From Table 3, it can be observed that the detection accuracy of the rain-contaminated
radar images does not seem ideal and can be further improved, compared with the SVM-
based method. Since the measuring mechanism of the rainfall of the radar images is
different to that of the rain gauge, the rain gauge may not output the change in the
rainfall when the rainfall intensity is light or moderate. The rainfall detection based on
the radar images could reflect the change in the rainfall intensity in real time. Meanwhile,
the installation position of the rain gauge is far from the observation area of the radar.



Remote Sens. 2022, 14, 3600 22 of 25

However, for the training dataset, it can be observed that both the rain-contaminated radar
images and the rain-free radar images can be effectively detected.

6. Discussion

Although the ZPP method is commonly used to detect rainfall interference from
X-band marine radar images, the detection accuracy of the ZPP method depends on the
threshold value. For the CCD-based method, the determination of the threshold value
depends on the engineering experience, and only the information at a fixed position
in the lagged azimuth is utilized to detect rainfall interference. Rainfall images can be
effectively detected with a hard threshold value compared to the ZPP method. Based on
the unsupervised K-means clustering strategy, the threshold value for rainfall detection
is not required. Compared to the CCD-based method, the proposed method adequately
uses the difference in the correlation coefficient by constructing CCFV and overcomes the
drawback of determining the detection position in the lagged azimuth.

For the SVM-based method, the analysis area close to the radar antenna is selected.
In the near range of the radar images, the echo intensity of the sea wave is relatively large
under high sea conditions. For the dataset, the significant wave height of the rain-free radar
images is between 1.1 m and 4.2 m. However, the significant wave height of the collected
rain-contaminated radar images is between 2.8 m and 3.1 m. In addition, the rainfall rate of
the rain-contaminated images is mainly 1 mm/5 min. The echo intensity and the feature
of the statistical histogram of some rain-free radar images under high sea conditions are
similar to that of rain-contaminated radar images. Due to the high sea conditions, some
rain-free images may be recognized as rain-contaminated images for training the SVM
structure. Thus, the accuracy of rain-contaminated images is better than that of rain-free
images for the SVM-based method.

Since the whole sea observation area of the radar is used to calculate the ZPP, the
accuracy of the ZPP method is lower for rain-contaminated images. The echo intensity
of the sea clutter decays in the distance. The attenuation of the electromagnetic wave in
the distance may influence radar imaging. The spatial distribution of rainfall intensity is
complex, and the rainfall is uneven in radar images, which may be part of the regional
distribution. Meanwhile, the percentage of rain-contaminated images with rainfall of
1 mm/5 min is prominent. Thus, the ZPP may not be sensitive to a change in rainfall with
light rain when the whole sea observation area of the radar is used.

Although the threshold value is not required for the proposed rainfall detection
method in this paper, it is vitally important to determine the appropriate number of the
clustering centers of the K-means clustering algorithm based on the acquired radar images.
The sea state was relatively stable, and the change was not obvious during the experiment,
but the rainfall changed rapidly. There are great differences in the correlation coefficient of
the rain-contaminated radar images with different rainfall rates. A clustering center could
not accurately describe the characterization of the rain-contaminated radar images based
on the acquired radar images. The number of clustering centers could be changed for the
collected radar data under complicated rainfall conditions. In addition, the training and
the testing dataset should have balanced rain-free and rain-contaminated radar images to
accurately achieve the clustering centers, which are the characterization of the rain-free and
rain-contaminated radar images, and evaluate the effectiveness of the proposed rainfall
detection method.

The distribution of the rainfall on the radar images is uneven and the echo intensity
of the rain-contaminated radar images is sensitive to the size of the raindrop. Thus, the
detection performance based on radar images is not ideal, and a large error exists compared
to the rain gauge. Since the annual rainfall at the experiment site and the number of rainfall
days is less, the training data are not sufficient to achieve better clustering centers for
the proposed method in this paper. Thus, more radar data can be collected to generate
the training dataset and improve the detection performance of the proposed method in
the future.
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The recorded rain rate of the rain gauge is the accumulation of rainfall over a few min-
utes. The rain gauge records an original rainfall rate every minute. In this paper, the
averaged rainfall rate over 5 min is utilized. The recorded rainfall rate of the rain gauge
could not rapidly reflect the change in rainfall, especially for the case of light rain. The
scanning period of the marine radar is about 2.3 s in our experiment. The instantaneous
rain information in the marine radar is captured. The sequence of 32 radar images for
retrieving wave parameters and rainfall detection is collected and stored about every 4 min
due to the large volume of radar data. From the continuously observed radar images,
we found that the change in the rainfall rate is complex and rapid. Since the detection
mechanism between the rain gauge and the X-band marine radar is different, it is not easy
to improve the detection accuracy compared with the SVM-based method or to further
improve the detection accuracy of the proposed detection method compared with the rain
gauge. Thus, the detection error may exist between the data number of the rain gauge and
the radar images.

7. Conclusions

When rainfall interference exists in X-band marine radar images, the reliability of
the inversion results is greatly reduced for retrieving wave and wind information. It is
necessary to detect the rainfall before retrieving the wave parameters from the collected
radar images. Therefore, rainfall detection from the collected X-band marine radar images
is investigated in this paper.

Since the correlation coefficient of the sea clutter will change when the echo intensity
of the radar image is rain-contaminated, a method of rainfall detection based on an un-
supervised machine learning strategy is proposed in this paper. The CCFV is extracted
from the marine radar images based on the calculated correlation coefficient in the lagged
azimuth. Compared with the existing ZPP-based and CCD-based rainfall detection meth-
ods, the detection accuracy, respectively, increases by 9.7% and 6.1% for the proportion of
the 50% training dataset. Meanwhile, the proposed method does not require the threshold
value, since the unsupervised K-means clustering technology is introduced. Based on the
collected radar images, the experimental results demonstrate that the detection accuracy of
the proposed method is, respectively, 2.0% and 1.3% higher than that of the SVM-based
method and is, respectively, 0.6% and 2.8% higher than that of the WTD-based method for
the proportion of the 25% and 75% training dataset. For the proportion of the 50% training
dataset, the performance of the proposed method is close to that of the SVM-based method
and the WTD-based method.

In this paper, the length of the selected CCFV is experientially determined based on the
difference in the correlation coefficient. The influence of the length of the extracted feature
on the detection accuracy can be further evaluated in the future. Meanwhile, since the
clustering centers depend on the rainfall intensity and the training dataset, a perfect strategy
for determining the number of the clustering centers should be developed. Although the
proposed method has the ability to detect the rainfall images, the performance and the
accuracy of the proposed method should be further verified based on the radar images
collected from different radar systems and under different sea conditions.
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