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Abstract: In this paper, a 3D semantic segmentation method is proposed, in which a novel feature
extraction framework is introduced assembling point initial information embedding (PIIE) and
dynamic self-attention (DSA)—named PIIE-DSA-net. Ideal segmentation accuracy is a challenging
task, since the sparse, irregular and disordered structure of point cloud. Currently, taking into account
both low-level features and deep features of the point cloud is the more reliable and widely used
feature extraction method. Since the asymmetry between the length of the low-level features and
deep features, most methods cannot reliably extract and fuse the features as expected and obtain
ideal segmentation results. Our PIIE-DSA-net first introduced the PIIE module to maintain the
low-level initial point-cloud position and RGB information (optional), and we combined them with
deep features extracted by the PAConv backbone. Secondly, we proposed a DSA module by using
a learnable weight transformation tensor to transform the combined PIIE features and following a
self-attention structure. In this way, we obtain optimized fused low-level and deep features, which is
more efficient for segmentation. Experiments show that our PIIE-DSA-net is ranked at least in the top
seventh among the most recent published state-of-art methods on the indoor dataset and also made a
great improvement than original PAConv on outdoor datasets.

Keywords: 3D semantic segmentation; point cloud; feature extraction; self-attention

1. Introduction

In recent years, the development of 3D point-cloud-processing technology has been
greatly promoted for its wide urban applications, such as urban 3D modeling [1], power
line inspection [2], simultaneous positioning and mapping [3] and self-driving cars [4]. 3D
semantic segmentation is to classify each 3D point to one specific category [5], which is one
of the most important 3D point-cloud-processing tasks. Airborne laser scanner (ALS) [6],
mobile laser scanning (MLS) [7], terrestrial laser scanning (TLS) [8,9] and unmanned aerial
vehicle (UAV) photogrammetry [10] are the most popular methods to collect urban 3D
point clouds from indoor and outdoor scenes.

Irregular and disordered structure of 3D point clouds is one of the greatest chal-
lenges for 3D feature extraction and further semantic segmentation [11–15]. Therefore,
more efficient feature extraction methods are needed. At present, most of point cloud
feature extraction methods and their corresponding semantic segmentation methods can
be grouped into three kinds: point cloud projection-based methods [16–18], voxel-based
methods [19–23] and point-based methods [24–26]. Since both the projection-based meth-
ods and the voxel-based methods may lose information during projection or voxelization,
most researchers focus on point-based methods.

To solve the disorder problem, point-grouping methods and point-representation
methods are widely researched for optimized local and global feature extraction. Point-
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net [25] is one of the milestones on point-based methods. It has a framework that uses the
spherical space with a set radius to search for the neighbor points of each specific point.
Convolution-based methods are used to further obtain the local and global features of
different positions. Many methods have followed this framework and that of the improved
version Pointnet++ [5,26]. RSnet [27] uses a data slicing operation to cut the point cloud
into different parts, extract the local features respectively and then aggregate these local
features to obtain the global features.

The feature extraction method of RSnet has less computational complexity and can be
trained end-to-end. In Pointweb [28], an adaptive feature adjustment module for adjusting
local features is proposed. For local point clusters in spherical space, the network is
used to learn the influence of each point on the other points to thus improve the local
features. An efficient feature sampling structure Shellnet [29] is proposed to optimize the
sampling of the point cloud. It divides spherical space with different radii and performs
corresponding feature extraction and pooling operations on the features of spherical space
within the radius.

In [30], an anisotropic separable set abstraction (ASSA) module was proposed to
improve PointNet++. Triangular representation was proposed in RepSurf-U [31], and a
high-efficiency plug-and-play module for point cloud was constructed. PointNeXt [32]
is an improved training strategy that can be widely used in the point cloud domain; it is
considered as the next generation version of PointNets. In PointASNL [33], a processing
method based on nonlocal neural networks with adaptive sampling was proposed and
obtained state-of-art (SOTA) results. Although points can be grouped and represented in
different ways, no methods can be accepted as the most robust and efficient yet.

Simultaneously, many researchers attempt to find better ways of convolution and
feature encoding. PointCNN [34] is a framework for dealing with point-cloud problems
from a convolution perspective, and a feature integration for the point features around
each representative point was proposed to replace the conventional convolution operation,
and good results have been achieved on the 3D segmentation task. In KPConv [35], the
authors proposed a spatially adaptive deformable convolution kernel suitable for point
clouds, which learns the spatial position offset of each node of the convolution kernel while
learning the parameters of the convolution kernel, and thus effective features can still be
extracted when facing different spatial locations of the point cloud.

RandLA-Net [36] employed an efficient point cloud downsampling strategy and local
spatial location encoding, which can achieve high segmentation accuracy and processing
speed. Continuous convolutions for point-cloud processing proposed by ConvPoint [37] is
also an efficient method. PAConv [38] introduced a general convolution operation position
adaptive convolution and obtained SOTA performance. The key idea of PAConv is to
build convolution kernels by dynamically combining basic weight matrices stored in the
weight library, where the coefficients of these weight matrices are adaptively learned from
point locations via ScoreNet. In this way, the kernel is built in a data-driven manner,
giving PAConv greater flexibility than 2D convolution to handle irregular and disordered
point-cloud data. Novel methods of convolution and feature encoding are various, and
none can be recognized as the best.

Moreover, most researchers focus on new structures of backbone networks, and
different kinds of attention-mechanism-based methods are also employed in different
backbones [39–43], including channel attention, spatial attention, self-attention and multi-
attention. Most of these methods can enhance the feature extraction and achieve higher
accuracy. Self-organizing mapping was proposed in SO-net [44] and explicitly uses the
spatial distribution of point cloud to extract the features of different layer structures of a
single point and self-organizing mapping node. PointTransformer [45] attempted to prove
that self-attention can completely replace convolutions in point-cloud-processing.

PatchFormer [46] proposed a linear attention mechanism in the point-cloud analy-
sis paradigm: Patch ATtention (PAT), which is faster than PointTransformer. Stratified
Transformer [47] builds a strong transformer tailored for 3D point cloud segmentation by
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enlarging the effective receptive field and building direct long-range dependency. Most
X-Transformer-based methods have a good performance on accuracy but also have high
computational costs.

Furthermore, some new works are dedicated to enhancing features of point cloud
in different ways. First, graph-based methods were proposed for feature augmentation.
In [48], an edge convolution based on Pointnet was proposed. It attempts to extract edge
features using graph convolution to optimize the problem of insufficient local features of
Pointnet. A local spectral convolution [49] was proposed to learn the structure information
of each point. The local spectral convolution layer is realized by constructing a dynamic
graph, dynamically calculating the Laplace operator and pooling hierarchy, and the features
at the graph nodes are aggregated by recursive clustering spectral coordinates.

A graph-structured method based on deep metric learning [50] also obtains high-
ranking performance in different datasets. In [51], a multi-resolution graph neural network
was proposed, which focuses on large-scale segmentation. Graph-based feature extraction
methods enhance the relationship between points; however, these methods still need
to be further developed for more robust results. CGA-Net [52] has a two-path feature
augmentation architecture based on category information.

BAAF-Net [53] has an adaptive feature fusion module and a bilateral block to augment
the local context of the points. Indeed, most recent published works, which obtained SOTA
results, benefited from different novel feature augmentation strategies. However, current
SOTA methods pay insufficient attention to low-level features, most of the SOTA backbones
extract a long feature vector, and the low-level feature vector is always short. Since the
asymmetry between the length of the low-level features and deep features, it is difficult to
properly fuse the features as expected and obtain ideal segmentation results.

Although many SOTA methods have made great progress using different strate-
gies [54–57], the accuracy of 3D semantic segmentation is still low on most of the new
datasets. Our work is also based on the idea of feature augmentation. The contributions of
this paper are as follows: PIIE-DSA-net is proposed for 3D semantic segmentation based
on PAConv. (1) Point initial information embedding (PIIE) module was employed to keep
the low-level initial point-cloud position and RGB information (optional) and combine
them with deep features extracted by PAConv encoder. (2) A dynamic self-attention (DSA)
module was proposed by using a learnable weights transformation tensor to transform the
combined features and following a self-attention structure to generate more effective fused
features for 3D segmentation.

The following of the paper is organized as follows: In Section 2, the detailed methodol-
ogy of PIIE-DSA-net is introduced. In Section 3, we test the performance of PIIE-DSA-net on
both an indoor and an outdoor datasets. Additionally, the ablation experiments and module
analysis are given. We discuss the results and summarize the work in the final section.

2. Methodology
2.1. Framework of PIIE-DSA-Net

The framework of our PIIE-DSA-net is shown in Figure 1. Our PIIE-DSA-net can be
divided into four main modules: (1) Pre-processing. (2) Point initial information embedding
(PIIE). (3) Dynamic self-attention (DSA). (4) Segmentation decoder. Both training and
testing data must follow all the calculation processes of the four modules. First, pre-
processing of the point-cloud data is needed before they are input into the framework. The
same pre-processing method in PAConv [38] is used for the point grouping, color mapping
and normalization of coordinates.
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Figure 1. The framework of PIIE-DSA-net.

Secondly, PIIE is introduced to efficiently extract and assemble features extracted in
different ways. Thirdly, DSA is proposed for optimized organizing the extracted features
by PIIE to generate the optimized features. A residual connection is used between the
features from the backbone in PIIE and the features from DSA for more reliable training.
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Finally, the semantic segmentation decoder [38] decodes the features, up-samples layer by
layer and outputs the predicted category point by point. The PIIE and DSA modules are
introduced as follows.

2.2. Point Initial Information Embedding

Point initial information (PII) includes the position (X, Y, Z) and the color information
(R, G, B) of each point. The PII of the input Ni points form a Ni × 6 matrix. To efficiently
extract and assemble features at different levels, PIIE processes the point-cloud data by
two branches: In branch one, Pointnet++ [5,26] based SOTA backbones can be employed
to extract deep features from the Ni input points, and the PAConv encoder [38] is used in
our framework. As down-sampling happens during PAConv encoder, we create a point ID
index to memorize the IDs of all N kept points and (Ni − N) dropped points.

Deep features of the N kept points extracted by PAConv are formed as Equation (1), where
CD is the length of deep feature of each point, and CD is 64 from the PAConv encoder output.

DF = {DF1, DF2, . . . , DFN}N×CD
(1)

Then, the point initial information (PII) of the N kept points are re-picked and input
into the other branch. An expansion-dimension net (EDN) is used to expand the PII (six
dimensions) to a higher dimension and generate PII features as Equation (2), where CP is the
length of each PII feature of each point. EDN is introduced mainly to balance the dimension
difference between PII feature and deep feature; thus, CP = 64 is used in this paper.

PF = {PF1, PF2, . . . , PFN}N×CP
(2)

The structure of the used EDN is shown in Figure 2. PII is encoded by four different
cascaded ‘Conv(1 × 1) + Batch Normalization (BN)’.
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DF and PF are combined by a concatenated operation in the channel splicing module
and generate an N × (CD + CP) feature PIIE_F, which contains the initial position, color
information and deep features of the initial points.

2.3. Dynamic Self-Attention

The self-attention mechanism [58] is derived from text feature extraction. It is used to
adaptively learn the correlation between different features and the importance of different
features. By back-propagation learning, the weights to different features were assigned,
which achieves optimized feature extraction. Similar to shown in Figure 1, the structure of
conventional self-attention mechanism directly uses the original data or extracted features
as input, and the three matrices Queries (Q), Keys (K) and Values (V) were the products of
the input and each learnable weights WQ, WK and WV.

The product of matrix Q and transpose of matrix K characterizes the cross-correlation
between features. After that, an attention matrix is obtained through the soft-max layer.
The attention matrix describes the weight distribution of different degrees of importance
to the input. The attention matrix is multiplied with the matrix V and finally obtains the
feature matrix. In this way, the weights of the features that input into Q, K and V are the
same and fixed.
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The dynamic self-attention module is designed for optimized organizing the extracted
PIIE_F. Different from the structure of a conventional self-attention mechanism, a transfor-
mation tensor TLWT is proposed to make the weights learnable, which multiplies with the
input PIIE_F before inputting into Q, K and V. TLWT is a 3 × (CD + CP) × CD tensor formed
as {TLWT_1, TLWT_2, TLWT_3}, and TLWT_1, TLWT_2 and TLWT_3 are (CD + CP) × CD matrices.
TLWT is initialized by the method of ‘He initialization’ [59] before forward-propagation and
is updated during back-propagation. The input self-attention Q, K and V matrices (N × CD)
are generated by the products TLWT_1, TLWT_2 and TLWT_3 with PIIE_F, respectively, as
shown in Equation (3):

Q = WQ(PIIE_F× TLWT_1)
K = WK(PIIE_F× TLWT_2)
V = WV(PIIE_F× TLWT_3)

(3)

The Q, K matrices are multiplied with WQ and WK and then reshaped to QR (CD × N)
and KR (CD × N), respectively and then generate AR (CD × CD) as in Equation (4). The
attention matrix A (CD × CD) is the normalized AR by a softmax layer.

AR =
QR × KT

R√
CD

(4)

The final fused feature F (N × CD) used for semantic segmentation is calculated by V
(N × CD) and A (CD × CD) by Equation (5):

F = V × A (5)

In addition to the conventional single-head self-attention structure [58] used in our
PIIE-DSA-net, there is also a multi-head self-attention mechanism [60]. We tested different
self-attention mechanisms in the experiments.

2.4. Loss Function Used in PIIE-DSA-Net

The loss functions used in PIIE-DSA-net include cross-entropy loss Lce and matrix
similarity loss Lms. As in Equation (6), λce and λms are weight coefficients.

L = λceLce + λmsLms (6)

The cross-entropy loss Lce constrains the correctness of probability prediction in multi-
classification. As in Equation (7), Nt is the number of samples, i represents the i-th sample,
c is the c-th class, yic is 1 when the correct predict i-th sample is the c-th class, otherwise
yic = 0. pic is the probability of predicting i-th sample as the c-th class. When the more
correct predicted samples are, the higher the probability of correct predicted samples is, the
smaller the cross-entropy is and vice versa.

Lce = −
1

Nt
∑

i

classes

∑
c=1

yic log(pic) (7)

The matrix similarity loss Lms is defined according to the weight regularization used
in PAConv [38]. However, we use it in the learnable weights transformation tensor TLWT. It
maintains the independence of the feature extraction methods learned by multiple weight
matrices after initialization and constrains the correlation between different weights to
minimize the redundancy and duplication of extracted features. As shown in Equation (8),
B represents the sets of the defined weight matrices, Bi and Bj respectively represent two
different weight matrices. When the similarity between the weight matrices is smaller, the
loss is smaller and vice versa.

Lms = ∑
Bi ,Bj∈B,i 6=j

∣∣∑ BiBj
∣∣

‖Bi‖2
∥∥Bj

∥∥
2

(8)
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3. Experiments

In this section, experiments on 3D semantic segmentation are performed on three
datasets respectively to verify the effectiveness of PIIE-DSA-net. In Section 3.1, the detailed
descriptions of datasets are introduced. In Section 3.2, evaluation metrics used in the
experiments are given. In Section 3.3, 3D semantic segmentation performances of different
methods are compared in two datasets, and ablation experiments are further analyzed.

3.1. Description of the Datasets

Experiments of 3D semantic segmentation are performed on the indoor dataset
S3DIS [61], outdoor datasets SensatUrban [62] and Hessigheim 3D [63].

Statement of the Datasets

1. Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS)

Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) was proposed by Stanford
University. It is an indoor scene benchmark dataset in the task of 3D semantic segmentation.
The point cloud was collected by a Matterport camera. As shown in Figure 3, the high-
resolution aerial imagery sequences were captured by fixed-wing drone Ebee X, and the
dense image matching method was used [61]. It consists of 271 rooms scanned from
11 kinds of buildings including office, conference room, hallway, auditorium, open space,
lobby, lounge, pantry, copy room, storage and WC.
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Figure 3. Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [61].

The official dataset is divided into six areas with a total of 273 million points. The
dataset is labeled into 13 categories as ‘ceiling’, ‘floor’, ‘wall’, ‘beam’, ‘column’, ‘window’,
‘door’, ‘table’, ‘chair’, ‘sofa’, ‘bookcase’, ‘board’ and ‘clutter’. The data is pre-processed
according to the processing steps of PAConv [38], and the points of each room are divided
into several 1 m× 1 m blocks according to the horizontal direction. A total of 4096 points are
randomly picked from each block. Each point contains six-dimensional initial information,
including normalized XYZ coordinates and RGB colors.

In the experiment, all six areas were used by its official grouped training, verifying and
testing sets. Specially, Area5 is an officially designated area that could be used for separate
testing. Random scaling, selection and random jittering are used for data augmentation
during training.

2. SensatUrban dataset

The airborne SensatUrban dataset was released in CVPR2021 with nearly 3 billion
labeled points. The point cloud was obtained by UAV photogrammetry technology, which
covers large areas of two British cities: Birmingham and Cambridge, covering about
6 square kilometers of the urban area, including the 1.2 square kilometers of Birmingham
and the 3.2 square kilometers of Cambridge. As is shown in Figure 4, the point clouds
are labeled into 13 categories, including ‘ground’, ‘vegetation’, ‘building’, ‘wall’, ‘bridge’,
‘parking’, ‘rail’, ‘car’, ‘footpath’, ‘bike’, ‘water’, ‘traffic road’ and ‘street furniture’. The
dataset uses the registered optical image mapping RGB information for 3D point clouds.
In the experiments, the point-cloud data is divided into multiple 30 m × 30 m blocks
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according to the horizontal direction. A total of 4096 points are also randomly picked
from each part. Each point also contains six-dimensional initial information, which are
normalized XYZ coordinates and RGB colors. The data augmentation steps during training
are the same as S3DIS.
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Since the competition of SensatUrban dataset is over, the labels of the competition
testing set are not published, and thus the testing set cannot be used for evaluation anymore
currently. Thus, in our experiments, we divided the competition training set of SensatUrban
and redefined the training and testing sets. The competition training set of SensatUrban
contains 37 blocks from the two cities, which are all published with labels. To be fair, only
part of them are selected to make the ratio of training set and testing set similar to the
competition dataset. The blocks (number 3, 6, 7, 9 and 10) in Birmingham and the blocks
(number 3, 4, 6, 8, 14, 18, 19, 20, 21, 23, 25, 28 and 33) in Cambridge are selected as our new
training set. The blocks (number 1 and 5) in Birmingham and the blocks (number 7, 10, 12
and 17) in Cambridge are selected as our new testing set.

3. Hessigheim 3D dataset

The Hessigheim 3D dataset (H3D) was proposed by University of Stuttgart and is
a benchmark in the task of 3D semantic segmentation [63]. The H3D dataset, shown
in Figure 5, consists of High density LiDAR data of 800 points/m2 enriched by RGB
colors of on board cameras incorporating a ground sample distance (GSD) of 2–3 cm.
Multi-temporal datasets are available for four different epochs. The dataset is labeled
into 11 categories: ‘Low Vegetation’, ‘Impervious Surface’, ‘Vehicle’, ‘Urban Furniture’,
‘Roof’, ‘Facade’, ‘Shrub’, ‘Tree’, ‘Soil/Gravel’, ‘Vertical Surface’ and ‘Chimney’. A total
of 4096 points are randomly picked from each part. Each point contains six-dimensional
initial information, including normalized XYZ coordinates and RGB colors.
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3.2. Evaluation Metrics

The mean intersection over union (mIoU), mean accuracy (mAcc) and overall accuracy
(OA) are the most widely used for evaluation 3D semantic segmentation of point cloud.

IoU is defined in Equation (9), where Ppre and PGT represent the predicted category and
ground truth category, respectively. mIoU is defined in Equation (10), where IoUi represents
the IoU of the i-th category, and C represents the number of categories.

IoU =
Ppre ∩ PGT

Ppre ∪ PGT
(9)

mIoU =

C
∑
i

IoUi

C
(10)

As in Equation (11), mAcc is calculated by the proportion of correct predictions on each
category and averages it according to the number of categories. C represents the number
of categories, and Ni is the number of points in the i-th category. Ppre_j and PGT_j are the
predicted category and ground truth category of the j-th point in the i-th category.

mAcc =

C
∑
i

1
Ni

Ni
∑
j

Ppre_j = PGT_j

C
(11)

OA =
TP + TN

TP + FP + TN + FN
(12)

The True Positive (TP), False Positive (FP), True Negative (TN) and False Negative
(FN) are used to define overall accuracy (OA) as in Equation (12).

3.3. 3D Semantic Segmentation Experiments

The 3D semantic segmentation experiments were performed on a Silver with 4210R
CPU, NVIDIA RTX 3090 GPU and 40GB RAM. To train our PIIE-DSA-net, the batch size
of training samples is set to 16, and the initial learning rate is set to 0.05, the number of
iterations is set to 80, the weight decay is set to 0.00005, 16 weight matrices are set in
PAConv encoder, and the SGD optimizer is used.

3.3.1. Performance of PIIE-DSA-Net on Indoor Dataset S3DIS

First, we tested the performance of PIIE-DSA-net on all six areas of S3DIS. As shown
in Table 1, the IoUs of each category obtained by PIIE-DSA-net are listed. Overall, PIIE-
DSA-net can give high evaluation values in Area1, Area3 and Area6, and the results were
relative lower in the other three areas. In particular, in different areas, the higher OA
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shows most of the points were correctly segmented, and the relative lower mIoU can
further indicate segmentation results of the categories with fewer points are not ideal.
It can also be reflected by the mAcc. In Table 2, the most recent published works and their
six-fold experiments performance on S3DIS are listed with form of overall ranking. Our PIIE-
DSA-net is seventh of the current top ten methods. The ranking is from the website (https:
//paperswithcode.com/sota/semantic-segmentation-on-s3dis, accessed on 10 July 2022).

Table 1. The six-fold experiments on the S3DIS dataset (%).

Categories/Test Area Area1 Area2 Area3 Area4 Area5 Area6

ceiling 97.98 90.67 95.94 93.26 93.27 96.31
floor 97.24 77.66 98.30 97.38 98.51 97.33
wall 93.61 79.62 83.00 78.11 82.75 85.31

column 86.87 31.80 23.26 34.58 28.42 62.85
beam 93.05 15.25 62.10 0.87 0.00 81.75

window 94.30 54.55 82.96 33.23 62.26 85.63
door 94.51 65.72 91.93 64.12 67.63 89.64
table 86.91 60.48 77.70 63.04 79.01 78.01
chair 93.30 28.54 83.90 72.64 88.86 80.95

bookcase 94.59 28.00 75.13 63.02 60.65 53.52
sofa 90.26 47.55 75.53 54.61 74.51 75.46

board 93.18 19.75 90.21 45.20 74.98 81.26
clutter 88.27 37.13 75.53 58.72 58.86 71.66
mIoU 92.62 48.98 78.11 58.37 66.90 79.98
mAcc 96.23 62.41 86.46 68.15 73.90 88.35
OA 96.77 79.46 91.59 85.86 89.44 92.24

Table 2. Current overall TOP-10 ranking of the six-fold experiments on the S3DIS dataset (%).

Rank Methods mIoU mAcc OA

1 RepSurf-U [31] 74.3 82.6 90.8
2 PointNeXt [32] 74.9 83.0 90.3
3 PointTransformer [45] 73.5 81.9 90.2
4 DeepViewAgg [54] 74.7 83.8 90.1
5 CBL [55] 73.1 79.4 89.6
6 BAAF-Net [53] 72.2 83.1 88.9
7 PIIE-DSA-net (OURS) 71.66 81.24 88.89
8 PointASNL [33] 68.7 79.0 88.8
9 ConvPoint [37] 68.2 N/A 88.8

10 JSNet [56] 61.7 71.7 88.7

The detailed performance of PIIE-DSA-net can be further found in the individually
testing on Area5. Since our PIIE-DSA-net is an improved method based on PAConv, we
mainly show the visualized results of PAConv for comparison. Figure 6(a1–a3) are the
original input PII data of three different scenes; Figure 6(b1–b3) are the ground truths of
the input data; Figure 6(c1–c3) are the prediction results by PAConv; and Figure 6(d1–d3)
are the predicted result by PIIE-DSA-net.

PIIE-DSA-net has improved performance on S3DIS in the detailed prediction of cate-
gories, such as ‘ceiling’, ‘door’, ‘sofa’, ‘table’ and ‘chair’. Specifically, as the circled areas in
Figure 6(c1), a part of the ‘ceiling’ area is incorrectly predicted to ‘beam’ by PAConv, while
this area can be correctly predicted by PIIE-DSA-net as shown in Figure 6(d1). A group of
points are incorrectly predicted in ‘sofa’ areas by PAConv; however, these points can be
correctly predicted by PIIE-DSA-net. In Figure 6(c2,d2), PIIE-DSA-net improves the predic-
tion in the circled ‘wall’ part, which is incorrectly predicted by PAConv. In Figure 6(c3,d3),
PAConv performs poorly in the circled ‘tables’ and ‘chairs’ areas; however, PIIE-DSA-net
improves the results. PIIE-DSA-net obtained better segmentation completeness on the
areas of the same category with more points.

https://paperswithcode.com/sota/semantic-segmentation-on-s3dis
https://paperswithcode.com/sota/semantic-segmentation-on-s3dis
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We re-performed the Area5 experiments of the following typical methods: PointNet,
PointNet++, PointCNN, KPconv rigid, RandLA-Net and PAConv and listed the IoU of each
class in Table 3. PIIE-DSA-net obtained the best IoU on six categories of all the 13, which
were ‘wall’, ‘beam’, ‘chair’, ‘sofa’, ‘board’ and ‘clutter’. The best mIoU and mAcc were
obtained by PIIE-DSA-net compared with other six methods. Furthermore, we collected
the most recent published works and their Area5 experiments performance on S3DIS from
the website and listed them in Table 4. Our PIIE-DSA-net is sixth of the current top ten
methods. The ranking is from the website: (https://paperswithcode.com/sota/semantic-
segmentation-on-s3dis-area5, accessed on 10 July 2022).

https://paperswithcode.com/sota/semantic-segmentation-on-s3dis-area5
https://paperswithcode.com/sota/semantic-segmentation-on-s3dis-area5
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Table 3. The Area5 experiments on the S3DIS dataset (%).

Categories/Methods PointNet PointNet++ PointCNN KPconv Rigid RandLA-Net PAConv PIIE-DSA-Net

ceiling 88.80 91.31 92.31 92.6 91.69 94.55 93.72
floor 97.33 96.92 98.24 97.3 96.90 98.59 98.51
wall 69.80 78.73 79.41 81.4 78.45 82.37 82.75

column 3.92 15.99 17.60 16.5 27.07 26.43 28.42
beam 0.05 0.00 0.00 0.00 0.00 0.00 0.00

window 46.26 54.93 22.77 54.5 64.19 57.96 62.26
door 10.76 31.88 62.09 69.5 37.53 59.96 67.63
table 52.61 83.52 80.59 90.1 73.97 89.73 79.01
chair 58.93 74.62 74.39 80.2 83.94 80.44 88.86

bookcase 40.28 67.24 66.67 74.6 66.39 74.32 60.65
sofa 5.85 49.31 31.67 66.4 67.94 69.80 74.51

board 26.38 54.15 62.05 63.7 61.96 73.50 74.98
clutter 33.22 45.89 56.74 58.1 50.37 57.72 58.86
mIoU 41.09 57.27 57.26 65.4 61.57 66.58 66.90
mAcc 49.98 63.54 63.86 70.9 71.50 73.00 73.90

Table 4. Current overall TOP-10 ranking of Area5 experiments on the S3DIS dataset (%).

Rank Methods mIoU mAcc OA

1 StratifiedFormer [61] 72.0 78.1 91.5
2 PointNeXt [32] 71.1 77.2 91.0
3 PointTransformer [45] 70.4 76.5 90.8
4 CBL [55] 69.4 75.2 90.6
5 RepSurf-U [31] 68.9 76.0 90.2
6 PIIE-DSA-net (OURS) 66.9 73.9 89.44
7 BAAF-Net [53] 65.4 73.1 88.9
8 MuG-net [51] 63.5 N/A 88.1
9 SSP + SPG [50] 61.7 68.2 87.9
10 HPEIN [57] 61.85 68.3 87.18

• Ablation experiments on the indoor dataset

Area5 of S3DIS was taken to perform the ablation experiments, and the results are
given in Table 5. First, we compared original PAConv, PAConv with only PIIE module
(PAConv + PIIE) and PIIE-DSA-net. Except for the case that PAConv + PIIE won mAcc,
PIIE-DSA-net obtained the highest mIoU. Secondly, before the self-attention part, there
are also different methods to transform PIIE for effective feature extraction. Convolution
transformation, full-connection transformation and matrix transformation are compared.

Table 5. Ablation experiments on the indoor dataset (%).

S3DIS

Module Ablation PIIE Transformation Methods Selection of Multi-Head
Attention Operation

PIIE-DSA-Net
PAConv PAConv + PIIE Convolution

Transform
Full-Connection

Transform
Two-Head
Attention

Four-Head
Attention

ceiling 94.55 93.67 93.63 94.01 92.58 94.90 93.72
floor 98.59 98.50 98.21 98.05 98.51 98.44 98.51
wall 82.37 82.63 82.27 82.36 82.30 82.14 82.75

column 26.43 32.62 20.04 21.49 26.41 17.34 28.42
beam 0.00 0.00 0.00 0.00 0.00 0.00 0.00

window 57.96 59.55 59.50 60.93 59.50 57.52 62.26
door 59.96 65.92 67.95 68.72 62.80 54.77 67.63
table 80.44 79.64 79.13 77.29 79.31 80.10 79.01
chair 89.73 88.34 86.13 85.68 88.21 88.54 88.86

bookcase 74.32 60.92 64.12 59.67 58.23 61.02 60.65
sofa 69.80 74.40 72.28 71.20 73.89 75.49 74.51

board 73.50 71.67 72.36 69.55 75.71 73.67 74.98
clutter 57.72 59.12 58.36 58.48 56.96 58.82 58.86
mIoU 66.58 66.69 65.69 65.19 65.72 64.83 66.90
mAcc 73.00 73.98 71.96 71.65 72.13 70.87 73.90
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The method of matrix transformation, used in the DSA module, obtained higher mIoU
and mAcc compared with the others. Thirdly, in the DSA module, we also compared the
performance when using different multi-head attention operations. Single-head attention,
two-head attention and four-head attention were tried in the DSA module. Single-head
attention used in our PIIE-DSA-net was more effective than the other ways. The PIIE
module made a greater impact in PIIE-DSA-net on the indoor dataset.

3.3.2. Performance of PIIE-DSA-Net on the Outdoor Dataset SensatUrban and H3D

1. Result analysis of SensatUrban dataset

Some examples of the segmentation results on SensatUrban are shown in Figure 7,
where Figure 7(a1–a4) are the original input PII; Figure 7(b1–b4) are the ground truth;
Figure 7(c1–c4) are the prediction results by PAConv; Figure 7(d1–d4) are the prediction
results by PIIE-DSA-net. Since the point clouds of SensatUrban are collected from airborne
sensors, ‘ground’, ‘parking’, ‘footpath’ and ‘traffic road’, which have similar heights, are
always confusing categories. As in Figure 7(c1), a large area of ‘traffic roads’ and ‘ground’
are incorrectly divided into ‘parking’ by PAConv. In Figure 7(c2), some ‘ground’ and
‘footpath’ are misclassified into each other, and some ‘ground’ and ‘traffic road’ are wrongly
divided into ‘parking’. Similar bad predictions also appeared in Figure 7(c3,c4). In contrast,
when using PIIE-DSA-net, the above problems are improved, as shown in Figure 7(d1–d4).
Similarly, PIIE-DSA-net obtained better segmentation completeness in the areas of the same
category with more points.

2. Ablation experiments on the outdoor dataset

The SensatUrban dataset was taken to perform ablation experiments of the outdoor
dataset, and the results are given in Table 6. First, in the comparisons between original
PAConv, PAConv with only PIIE module (PAConv + PIIE) and PIIE-DSA-net, PIIE-DSA-net
obtained the highest mIoU and mAcc. Secondly, the method of matrix transformation
also won higher mIoU and mAcc than the convolution transformation and full-connection
transformation. Thirdly, single-head attention used in PIIE-DSA-net was more effective
than the two-head attention and four-head attention.

Table 6. The experiments on the SensatUrban dataset (%).

SensatUrban

Module Ablation PIIE Transformation Methods Selection of Multi-Head
Attention Operation

PIIE-DSA-Net
PAConv PAConv + PIIE Convolution

Transform
Full-Connection

Transform
Two-Head
Attention

Four-Head
Attention

ground 72.11 73.53 73.10 74.48 74.43 73.37 73.92
vegetation 97.54 97.30 97.11 97.72 97.86 97.56 97.69
building 93.01 92.90 91.98 93.65 92.92 93.22 93.05

wall 44.43 49.98 49.68 47.22 50.71 49.69 49.81
bridge 5.78 3.77 2.42 0.01 2.01 6.73 17.43

parking 39.94 40.21 37.51 43.27 43.11 41.52 40.60
rail 0.00 0.00 0.00 0.00 0.00 0.00 0.00
car 73.04 77.87 77.09 75.90 77.66 77.56 77.75

footpath 21.78 23.75 21.68 24.31 24.66 22.58 24.57
bike 0.00 0.00 0.00 0.00 0.00 0.00 0.00

water 57.97 63.87 60.22 58.62 62.87 62.47 57.10
traffic road 58.78 63.00 59.97 62.96 62.99 62.07 61.45

Street
furniture 29.42 33.78 33.64 32.54 32.52 32.68 31.38

mIoU 45.68 47.69 46.49 46.98 47.82 47.65 48.09
mAcc 53.76 55.03 53.73 54.79 54.83 54.98 55.16
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dataset, and the results are given in Table 6. First, in the comparisons between original 
PAConv, PAConv with only PIIE module (PAConv + PIIE) and PIIE-DSA-net, PIIE-DSA-
net obtained the highest mIoU and mAcc. Secondly, the method of matrix transformation 
also won higher mIoU and mAcc than the convolution transformation and full-connection 
transformation. Thirdly, single-head attention used in PIIE-DSA-net was more effective 
than the two-head attention and four-head attention. 

Table 6. The experiments on the SensatUrban dataset (%). 

SensatUrban  
Module Ablation PIIE Transformation Methods Selection of Multi-Head Attention Oper-

ation 
PIIE-DSA-Net 

PAConv PAConv + PIIE Convolution 
Transform 

Full-Connection 
Transform Two-Head Attention Four-Head Attention 

ground 72.11 73.53 73.10 74.48 74.43 73.37 73.92 
vegetation 97.54 97.30 97.11 97.72 97.86 97.56 97.69 
building 93.01 92.90 91.98 93.65 92.92 93.22 93.05 

Figure 7. 3D semantic segmentation on the SensatUrban dataset. (a1) Data of Scene 1. (b1) Ground
Truth. (c1) PAConv. (d1) PIIE-DSA-net. (a2) Data of Scene 2. (b2) Ground Truth. (c2) PAConv.
(d2) PIIE-DSA-net. (a3) Data of Scene 3. (b3) Ground Truth. (c3) PAConv. (d3) PIIE-DSA-net.
(a4) Data of Scene 4. (b4) Ground Truth. (c4) PAConv. (d4) PIIE-DSA-net.

3. Result analysis for the H3D dataset

To further verify the performance of PIIE-DSA-net, the H3D dataset was tested. Since
the ground truth of the testing set of H3D is not published, the verifying set was used
for testing. As is shown in Figure 8(a1–a4), some typical scenes are visualized, and their
ground truths are shown in Figure 8(b1–b4). Similar to the experiment results on S3DIS
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and SensatUrban, PAConv obtained poor performance in the circled areas in the four
different scenes as shown in Figure 8(c1–c4), especially on the edge areas between different
categories and on categories with few numbers of points. In contrast, PIIE-DSA-net greatly
improved the results in these areas as shown in Figure 8(d1–d4).
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(c1) PAConv; (d1) PIIE-DSA-net; (a2) Data of Scene 2; (b2) Ground Truth; (c2) PAConv; (d2) PIIE-
DSA-net; (a3) Data of Scene 3; (b3) Ground Truth; (c3) PAConv; (d3) PIIE-DSA-net; (a4) Data of Scene
4; (b4) Ground Truth; (c4) PAConv; (d4) PIIE-DSA-net.
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For the published testing dataset of H3D (without labels), we used PAConv and PIIE-
DSA-net obtaining the testing data and submitted them to the official website of H3D and
obtained the evaluation results. Since the ground truth of the testing set of H3D is not
available to us, we do not show the visualized results. The results are shown in Table 7,
where only data accurate to 1% are given by their website. Apart from the given OA, we
also calculated mIoU by ourselves. A similar conclusion can be found in that, although
PAConv won in some of the specific categories, PIIE-DSA-net greatly improved the overall
performance compared with PAConv. Better segmentation completeness on the areas of
the same category with more points was obtained by PIIE-DSA-net.

Table 7. The experiments on the H3D dataset (%).

Categories PAConv PIIE-DSA-Net

Low vegetation 74 81
Impervious Surface 90 84

Vehicle 66 75
Urban Furniture 43 48

Roof 94 94
Facade 77 71
Shrub 55 63
Tree 96 95

Soll/Gravel 41 58
Vertical Surface 68 74

Chimney 100 85
mIoU 64.09 75.27
OA 74 81

4. Conclusions and Discussion

In this paper, we proposed PIIE-DSA-net for 3D semantic segmentation on urban
indoor and outdoor datasets. Most of the recently published SOTA works of 3D semantic
segmentation benefited from different novel feature augmentation strategies. However,
they did not pay sufficient attention to low-level features, and the asymmetry between
the length of the low-level features and deep features led to poor results of feature fusion
and further segmentation. Our PIIE-DSA-net was based on PAconv. The PIIE module
was employed to enhance the low-level features, and the DSA module was proposed to
optimize the fusion of the extracted low-level features and deep features.

Overall, the results of the experiments on one indoor dataset and two outdoor datasets
proved the reliability and advancement of PIIE-DSA-net. Compared with the original
PAConv, PIIE-DSA-net had more reliable results on edge areas between different categories.
Moreover, it was also more effective in the categories with few points. Furthermore, the
segmentation completeness of PIIE-DSA-net was good on the areas of the same category
with more points.

In the ablation experiments on both indoor and outdoor datasets, we found that the
PIIE module had more contributions on the segmentation results, and the DSA module
also improved the results. Moreover, the method of matrix transformation and single-head
attention were more effective than other tricks.

Our work verified the importance of low-level features for 3D semantic segmentation.
The idea of PIIE-DSA-net can be modified and used in other backbones for 3D segmentation.
The feature augmentation methods of low-level features and the fusion methods of low-
level and deep features can be researched in greater depth in the future. Finally, by
optimizing the parameter settings, fully tuning and training PIIE-DSA-net may result in
further potential improvement.



Remote Sens. 2022, 14, 3583 17 of 19

Author Contributions: Conceptualization, F.G. and Y.Y.; methodology, Y.Y.; software, H.L. and R.S.;
validation, F.G. and Y.Y.; data curation, H.L. and R.S.; writing—original draft preparation, F.G.;
writing—review and editing, F.G. and Y.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation, grant number 62071136.

Data Availability Statement: As illustrated in the statement of the datasets, the datasets used in
our work are public datasets. The three datasets can be downloaded from following links. S3DIS
dataset: http://buildingparser.stanford.edu/dataset.html#Download, accessed on 19 July 2022.
SensatUrban dataset used in our experiments: https://drive.google.com/file/d/1ckFhM_Qe_j9
YvxCUTurIchHg5f9vlbI7/view, accessed on 19 July 2022. H3D dataset: https://ifpwww.ifp.uni-
stuttgart.de/benchmark/hessigheim/default.aspx, accessed on 19 July 2022. Our work can been
download from Github: https://github.com/WrenchShi/PIIE-DSA-net, accessed on 4 July 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, Q.; Wang, S.; Fu, C.; Ai, M.; Yu, D.; Wang, W. Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture

via Multiple Laser Scanner Integration. Remote Sens. 2016, 8, 270. [CrossRef]
2. Siranec, M.; Höger, M.; Otcenásová, A. Advanced Power Line Diagnostics Using Point Cloud Data-Possible Applications and

Limits. Remote Sens. 2021, 13, 1880. [CrossRef]
3. Çakir, A.; Akpancar, S. 3D Simultaneous Positioning and Mapping in Dark, Closed Spaces with an Autonomous Flying Robot.

Acta Polytech. Hung. 2020, 17, 7–23. [CrossRef]
4. Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Cao, D.; Li, J.; Chapman, M.A. Deep Learning for LiDAR Point Clouds in Autonomous Driving:

A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3412–3432. [CrossRef] [PubMed]
5. Chen, Y.; Liu, G.; Xu, Y.; Pan, P.; Xing, Y. PointNet++ Network Architecture with Individual Point Level and Global Features on

Centroid for ALS Point Cloud Classification. Remote Sens. 2021, 13, 472. [CrossRef]
6. Elsner, P.; Dornbusch, U.; Thomas, I.; Amos, D.F.; Bovington, J.T.; Horn, D. Coincident beach surveys using UAS, vehicle mounted

and airborne laser scanner: Point cloud inter-comparison and effects of surface type heterogeneity on elevation accuracies. Remote
Sens. Environ. 2018, 208, 15–26. [CrossRef]

7. Mathias, L. Mobile Laser Scanning Point Clouds. Gim International. Available online: https://www.gim-international.com/
content/article/mobile-laser-scanning-point-clouds (accessed on 3 August 2017).

8. Zhu, J.; Xu, Y.; Ye, Z.; Hoegner, L.; Stilla, U. Fusion of urban 3D point clouds with thermal attributes using MLS data and TIR
image sequences. Infrared Phys. Technol. 2021, 113, 103622. [CrossRef]

9. Babahajiani, P.; Fan, L.; Kämäräinen, J.; Gabbouj, M. Comprehensive Automated 3D Urban Environment Modelling Using
Terrestrial Laser Scanning Point Cloud. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 652–660.

10. Poli, D.; Caravaggi, I. 3D modeling of large urban areas with stereo VHR satellite imagery: Lessons learned. Nat. Hazards 2013,
68, 53–78. [CrossRef]

11. Xie, Y.; Tian, J.; Zhu, X.X. Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci. Remote
Sens. Magzine 2020, 8, 38–59. [CrossRef]

12. Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep learning on 3D point clouds. Remote Sens. 2020, 12, 1729. [CrossRef]
13. Han, X.; Jin, J.S.; Wang, M.; Jiang, W.; Gao, L.; Xiao, L. A review of algorithms for filtering the 3D point cloud. Signal Process.

Image Commun. 2017, 57, 103–112.
14. Cheng, S.; Chen, X.; He, X.; Liu, Z.; Bai, X. PRA-Net: Point Relation-Aware Network for 3D Point Cloud Analysis. IEEE Trans.

Image Process. 2021, 30, 4436–4448. [CrossRef]
15. Chen, Y.; Liu, X.; Xiao, Y.; Zhao, Q.; Wan, S. Three-Dimensional Urban Land Cover Classification by Prior-Level Fusion of LiDAR

Point Cloud and Optical Imagery. Remote Sens. 2021, 13, 4928. [CrossRef]
16. Wang, Y.; Shi, T.; Yun, P.; Tai, L.; Liu, M. PointSeg: Real-Time Semantic Segmentation Based on 3D LiDAR Point Cloud. arXiv

2018, arXiv:1807.06288.
17. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet ++: Fast and Accurate LiDAR Semantic Segmentation. In Proceedings of

the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp.
4213–4220.

18. Lyu, Y.; Huang, X.; Zhang, Z. Learning to Segment 3D Point Clouds in 2D Image Space. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 12252–12261.

19. Poux, F.; Billen, R. Voxel-based 3D Point Cloud Semantic Segmentation: Unsupervised Geometric and Relationship Featuring vs
Deep Learning Methods. ISPRS Int. J. Geo Inf. 2019, 8, 213. [CrossRef]

20. Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-Voxel CNN for Efficient 3D Deep Learning. arXiv 2019, arXiv:1907.03739.

http://buildingparser.stanford.edu/dataset.html#Download
https://drive.google.com/file/d/1ckFhM_Qe_j9YvxCUTurIchHg5f9vlbI7/view
https://drive.google.com/file/d/1ckFhM_Qe_j9YvxCUTurIchHg5f9vlbI7/view
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx
https://github.com/WrenchShi/PIIE-DSA-net
http://doi.org/10.3390/rs8040270
http://doi.org/10.3390/rs13101880
http://doi.org/10.12700/APH.17.7.2020.7.1
http://doi.org/10.1109/TNNLS.2020.3015992
http://www.ncbi.nlm.nih.gov/pubmed/32822311
http://doi.org/10.3390/rs13030472
http://doi.org/10.1016/j.rse.2018.02.008
https://www.gim-international.com/content/article/mobile-laser-scanning-point-clouds
https://www.gim-international.com/content/article/mobile-laser-scanning-point-clouds
http://doi.org/10.1016/j.infrared.2020.103622
http://doi.org/10.1007/s11069-013-0583-4
http://doi.org/10.1109/MGRS.2019.2937630
http://doi.org/10.3390/rs12111729
http://doi.org/10.1109/TIP.2021.3072214
http://doi.org/10.3390/rs13234928
http://doi.org/10.3390/ijgi8050213


Remote Sens. 2022, 14, 3583 18 of 19

21. Graham, B.; Engelcke, M.; Maaten, L.V. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 9224–9232.

22. Le, T.; Duan, Y. PointGrid: A Deep Network for 3D Shape Understanding. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9204–9214.

23. Meng, H.; Gao, L.; Lai, Y.; Manocha, D. VV-Net: Voxel VAE Net With Group Convolutions for Point Cloud Segmentation. In
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 10–17 October 2019;
pp. 8499–8507.

24. Triess, L.T.; Peter, D.; Rist, C.B.; Zöllner, J.M. Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020;
pp. 1116–1121.

25. Qi, C.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85.

26. Qi, C.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Advances in
Neural Information Processing Systems 30 (NIPS 2017); Neural Information Processing Systems Foundation, Inc.: La Jolla, CA, USA,
2017; Volume 30.

27. Huang, Q.; Wang, W.; Neumann, U. Recurrent Slice Networks for 3D Segmentation of Point Clouds. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2626–2635.

28. Zhao, H.; Jiang, L.; Fu, C.; Jia, J. PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 5560–5568.

29. Zhang, Z.; Hua, B.; Yeung, S. ShellNet: Efficient Point Cloud Convolutional Neural Networks Using Concentric Shells Statistics.
In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 10–17 October 2019;
pp. 1607–1616.

30. Qian, G.; Hammoud, H.A.; Li, G.; Thabet, A.K.; Ghanem, B. ASSANet: An Anisotropic Separable Set Abstraction for Efficient
Point Cloud Representation Learning. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021); Neural Information
Processing Systems Foundation, Inc.: La Jolla, CA, USA, 2021; Volume 34, pp. 28119–28130.

31. Ran, H.; Liu, J.; Wang, C. Surface Representation for Point Clouds. arXiv 2022, arXiv:2205.05740.
32. Qian, G.; Li, Y.; Peng, H.; Mai, J.; Hammoud, H.A.; Elhoseiny, M.; Ghanem, B. PointNeXt: Revisiting PointNet++ with Improved

Training and Scaling Strategies. arXiv 2022, arXiv:2206.04670.
33. Yan, X.; Zheng, C.; Li, Z.; Wang, S.; Cui, S. PointASNL: Robust Point Clouds Processing Using Nonlocal Neural Networks With

Adaptive Sampling. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 13–19 June 2020; pp. 5588–5597.

34. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution On X-Transformed Points. In Advances in Neural Information
Processing Systems 31 (NeurIPS 2018); Neural Information Processing Systems Foundation, Inc.: La Jolla, CA, USA, 2018; Volume 31.

35. Thomas, H.; Qi, C.; Deschaud, J.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution
for Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea,
10–17 October 2019; pp. 6410–6419.

36. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, A.; Markham, A. RandLA-Net: Efficient Semantic Segmentation
of Large-Scale Point Clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11105–11114.

37. Boulch, A. ConvPoint: Continuous convolutions for point cloud processing. Comput. Graph. 2020, 88, 24–34. [CrossRef]
38. Xu, M.; Ding, R.; Zhao, H.; Qi, X. PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds.

In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA,
20–25 June 2021; pp. 3172–3181.

39. Deng, S.; Dong, Q. GA-NET: Global Attention Network for Point Cloud Semantic Segmentation. IEEE Signal Process. Lett. 2021,
28, 1300–1304. [CrossRef]

40. Chen, X.; Li, Y.; Fan, J.; Wang, R. RGAM: A novel network architecture for 3D point cloud semantic segmentation in indoor scenes.
Inf. Sci. 2021, 571, 87–103. [CrossRef]

41. Geng, X.; Ji, S.; Lu, M.; Zhao, L. Multi-Scale Attentive Aggregation for LiDAR Point Cloud Segmentation. Remote Sens. 2021, 13, 691.
[CrossRef]

42. Marsocci, V.; Scardapane, S.; Komodakis, N. MARE: Self-Supervised Multi-Attention REsu-Net for Semantic Segmentation in
Remote Sensing. Remote Sens. 2021, 13, 3275. [CrossRef]

43. Chen, Z.; Li, D.; Fan, W.; Guan, H.; Wang, C.; Li, J. Self-Attention in Reconstruction Bias U-Net for Semantic Segmentation of
Building Rooftops in Optical Remote Sensing Images. Remote Sens. 2021, 13, 2524. [CrossRef]

44. Li, J.; Chen, B.M.; Lee, G.H. SO-Net: Self-Organizing Network for Point Cloud Analysis. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9397–9406.

45. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point Transformer. In Proceedings of the 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 16239–16248.

http://doi.org/10.1016/j.cag.2020.02.005
http://doi.org/10.1109/LSP.2021.3082851
http://doi.org/10.1016/j.ins.2021.04.069
http://doi.org/10.3390/rs13040691
http://doi.org/10.3390/rs13163275
http://doi.org/10.3390/rs13132524


Remote Sens. 2022, 14, 3583 19 of 19

46. Cheng, Z.; Wan, H.; Shen, X.; Wu, Z. PatchFormer: An Efficient Point Transformer with Patch Attention. In Proceedings of the
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.

47. Lai, X.; Liu, J.; Jiang, L.; Wang, L.; Zhao, H.; Liu, S.; Qi, X.; Jia, J. Stratified Transformer for 3D Point Cloud Segmentation. arXiv
2022, arXiv:2203.14508.

48. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM
Trans. Graph. (TOG) 2019, 38, 1–12. [CrossRef]

49. Wang, C.; Samari, B.; Siddiqi, K. Local Spectral Graph Convolution for Point Set Feature Learning. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

50. Landrieu, L.; Boussaha, M. Point Cloud Oversegmentation With Graph-Structured Deep Metric Learning. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 7432–7441.

51. Xie, L.; Furuhata, T.; Shimada, K. Multi-Resolution Graph Neural Network for Large-Scale Pointcloud Segmentation. arXiv 2020,
arXiv:2009.08924.

52. Lu, T.; Wang, L.; Wu, G. CGA-Net: Category Guided Aggregation for Point Cloud Semantic Segmentation. In Proceedings of
the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 11688–11697.

53. Qiu, S.; Anwar, S.; Barnes, N. Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive
Fusion. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN,
USA, 20–25 June 2021; pp. 1757–1767.

54. Robert, D.L.; Vallet, B.; Landrieu, L. Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic Segmentation.
arXiv 2022, arXiv:2204.07548.

55. Tang, L.; Zhan, Y.; Chen, Z.; Yu, B.; Tao, D. Contrastive Boundary Learning for Point Cloud Segmentation. arXiv 2022,
arXiv:2203.05272.

56. Zhao, L.; Tao, W. JSNet: Joint Instance and Semantic Segmentation of 3D Point Clouds. In Proceedings of the AAAI Conference
on Artificial Intelligence, New York, NY, USA, 7–12 February 2020.

57. Jiang, L.; Zhao, H.; Liu, S.; Shen, X.; Fu, C.; Jia, J. Hierarchical Point-Edge Interaction Network for Point Cloud Semantic
Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea,
10–17 October 2019; pp. 10432–10440.

58. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-Attention with Relative Position Representations. arXiv 2018, arXiv:1803.02155.
59. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 1026–1034.

60. Voita, E.; Talbot, D.; Moiseev, F.; Sennrich, R.; Titov, I. Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy
Lifting, the Rest Can Be Pruned. arXiv 2019, arXiv:1905.09418.

61. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.K.; Fischer, M.; Savarese, S. 3D Semantic Parsing of Large-Scale Indoor
Spaces. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 1534–1543.

62. Hu, Q.; Yang, B.; Khalid, S.; Xiao, W.; Trigoni, A.; Markham, A. Towards Semantic Segmentation of Urban-Scale 3D Point Clouds:
A Dataset, Benchmarks and Challenges. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 4975–4985.

63. Kölle, M.; Laupheimer, D.; Schmohl, S.; Haala, N.; Rottensteiner, F.; Wegner, J.D.; Ledoux, H. The Hessigheim 3D (H3D)
Benchmark on Semantic Segmentation of High-Resolution 3D Point Clouds and Textured Meshes from UAV LiDAR and
Multi-View-Stereo. arXiv 2021, arXiv:2102.05346. [CrossRef]

http://doi.org/10.1145/3326362
http://doi.org/10.1016/j.ophoto.2021.100001

	Introduction 
	Methodology 
	Framework of PIIE-DSA-Net 
	Point Initial Information Embedding 
	Dynamic Self-Attention 
	Loss Function Used in PIIE-DSA-Net 

	Experiments 
	Description of the Datasets 
	Evaluation Metrics 
	3D Semantic Segmentation Experiments 
	Performance of PIIE-DSA-Net on Indoor Dataset S3DIS 
	Performance of PIIE-DSA-Net on the Outdoor Dataset SensatUrban and H3D 


	Conclusions and Discussion 
	References

