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Abstract: COSMIC-2 is a remote sensing satellite mission that mainly provides scientific data for
weather forecasting, ionosphere, and climate research. High precise orbit is the basis for the appli-
cation of remote sensing satellite data. In order to realize the precise orbit determination (POD) of
COSMIC-2, we have assessed the quality of space-borne GPS observation in detail, including the
utilization of GPS observations, cycle slip ratio (o/slps), multipath error, single-noise ratio (SNR) and
ionospheric delay rate (IOD) of the data, realized the POD of COSMIC-2 with the reduced dynamic
(RD) method, and evaluated the accuracy of the solved orbit by means of the carrier-phase residual,
overlapping orbit comparison and the reference orbit comparison. The data quality assessments
show that the data is less affected by the multipath effect, the utilization of the data is low, cycle slips
occur frequently, and the carrier-phase data is often interrupted. The POD results indicate that the
root mean square (RMS) values of the carrier-phase residuals of six COSMIC-2 satellites are between
6.0 mm and 7.5 mm, The mean RMS values of the overlapping orbit are better than 0.92 cm, 1.33 cm
and 1.03 cm in the radial (R), tangential (T) and normal (N) directions respectively, and the mean
RMS values of the six satellites in the 3D direction are between 1.38 cm and 1.75 cm. The mean RMS
values in R, T and N directions orbit determination accuracy of the reference orbit comparison are
better than 5.61 cm, 6.59 cm and 2.29 cm respectively, and the mean RMS values of the six satellites in
the 3D direction are between 7.35 cm and 8.79 cm.

Keywords: COSMIC-2; space-borne GPS; quality assessment; reduced dynamic method; precise
orbit determination

1. Introduction

FORMAT-7/COSMIC-2 (Constellation Observing System for Meteorology, Ionosphere,
and Climate-2 and Formosa Satellite Mission 7) (COSMIC-2) satellite mission was launched
on 25 June 2019, started weather forecasting, monitoring and other tasks in February 2020,
and completed all orbit adjustment work in May 2021 [1,2]. This is a remote sensing satellite
mission jointly developed by the National Space Organization (NSPO), Taiwan and the
National Oceanic and Atmospheric Administration (NOAA), USA. It is a continuation of
COSMIC-1 mainly used to collect atmospheric data for weather prediction, ionosphere and
gravity research [3,4]. COSMIC-2 constellation contains six satellites, the designed orbit
inclination is 24 degrees with occultations primarily distributed from 45◦N and 45◦S, the
designed life is 5 years, the initial orbit altitude is 750 km, and the final orbit is 525 km,
and it takes about 100 min to fly around the earth per circle [1,5]. In order to realize
the scientific function of the constellation and provide the basis for scientific data, each
satellite is equipped with the advanced Tri-GNSS radio occultation (RO) system (TGRS)
receiver, and its two orbit determination antennas are POD + X and POD − X respectively.
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POD + X is located in the satellite flight direction, and POD − X is back in the satellite
flight direction [6]. TGRS receiver can track the GPS signal and navigation signal of the
GLONASS system, to provide data for the POD of COSMIC-2 [6–8].

At present, there are few studies on the POD of COSMIC-2. Ho et al. (2020) evaluated
the neutral atmosphere data quality of COSMIC-2 using the GPS occultation data [9]. Weiss
(2021) realized the orbit determination of COSMIC-2 with the RD method, and its 3D orbit
determination accuracy was within 10 cm [10]. Jaeggi et al. (2021) solved the orbit of
COSMIC-2 with the RD method and found that the accuracy of the overlapping orbits is
about 10 cm [11]. Li et al. (2014) carried out orbit determination for COSMIC-1, analyzed
the satellite orbit and satellite clock offset, and the 3D orbit determination accuracy was
about 10 cm [12]. Hwang et al. (2009) used RD and kinematics to solve the orbit and
analyzed the overlapping orbit, the accuracy of the overlapping orbits of the two methods
was almost at the same level, both of which were 2–3 cm [13]. Hwang et al. (2006) used
the space-borne GPS data of a single antenna to realize the POD of COSMIC-1 by RD
and kinematic methods, and the RMS of the average orbit difference between the two
methods of satellite FM1-FM6 is 6 cm, and the RMS values of the overlap orbit difference
and the orbit difference between the resolved and the reference are about 5 cm and 10 cm,
respectively [14]. Kuang et al. (2008) applied GPS data of two antennas to determine the
orbit of COSMIC-1, and the three-dimensional accuracy of the orbit was about 6 cm [15].
For the LEO satellite, the required orbit accuracy for COSMIC-2 occultations is about
30 cm [16]. TACC (Taiwan Analysis Center) determined the orbit of COSMIC-2 and used the
overlapping orbit comparison method for orbit verification, and the satellite orbit position
accuracy was below 15 cm, and the velocity accuracy of the satellite was below 0.15 mm/s
(https://tacc.cwb.gov.tw/v2/trops_download.html) (accessed on 12 March 2021). It can
be seen that the RD method is mostly used for orbit determination of COSMIC satellite
missions, and the 3D orbit accuracy is about 10 cm. There are mainly three POD methods
such as kinematic, dynamic and RD methods. The kinematic method is based on PPP
(precise point positioning) using GNSS data [17–19] and the dynamic one is mainly based
on the dynamic models, while the RD method has combined the advantages of the first
two methods. Therefore, we also apply the RD method to carry out POD for COSMIC-2.

Due to the small amount of GLONASS data received by POD − X [1], all tests in this
study are based on GPS data of the rear POD (POD − X) antenna, and the main purpose
of this paper is to carry out a detailed quality assessment of the space-borne GPS data
for six COSMIC-2 satellites, and realize the POD with the RD method, and evaluate the
orbit accuracy by carrier-phase observation residual, overlapping orbits comparison and
reference orbit comparison. Section 2 introduces the content of data quality analysis in
detail, including the utilization of GPS observations, cycle slip ratio (o/slps), multipath
error, SNR and IOD. Section 3 shows the relevant theories of the reduced dynamic method
and the orbit determination strategy of six COSMIC-2 satellites, determines the orbit of
COSMIC-2 with the reduced dynamic and evaluates the orbit accuracy using the carrier-
phase residual, overlapping arcs comparison and the reference orbit comparison. Section 4
gives the relevant conclusions.

2. Quality Assessment of COSMIC-2 GPS Observations

In this study, the GPS observation data of the COSMIC-2 satellite rear antenna (−X
(rear) POD antenna) provided by the Central Weather Bureau, Taiwan (https://tacc.cwb.
gov.tw/) (accessed on 12 March 2021) are used. The time length of observation data is
five days from 18 to 22 May 2021 (day of the year (DOY) 138–142), and the GPS pre-
cise ephemeris and GPS satellite clock error files applied are downloaded from CODE
(http://ftp.aiub.unibe.ch/CODE/) (accessed on 12 March 2021) with 15 min and 30 s
sampling interval, respectively. The structure of COSMIC-2 is shown in Figure 1 [1].

https://tacc.cwb.gov.tw/v2/trops_download.html
https://tacc.cwb.gov.tw/
https://tacc.cwb.gov.tw/
http://ftp.aiub.unibe.ch/CODE/
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LEO satellites move at high speed in space and are susceptible to the influence of the
complex surrounding environment, and the quality of observation data is the key to the
accuracy of satellite orbit determination. Therefore, it is essential to analyze the quality
of observation data. The main factors affecting the quality of observation data include
the visibility of GNSS satellites, the utilization of GPS observations, cycle slip ratio, SNR
(SNR1, SNR2), multipath effect error (MP1, MP2) and IOD [20–22]. SNR1 and SNR2, and
MP1 and MP2 are SNR and multipath errors on L1 and L2 frequencies respectively. The
ratio of the total number of observations to the number of observations with cycle slip is
called the cycle slip ratio, which reflects the situation of data cycle slips. The larger the ratio
is, the fewer slips occur, and vice versa. The integrity of data reflects the performance of
the space-borne GPS receiver and the observation environment [23]. In order to assess the
quality of COSMIC-2 space-borne GPS data, the above indexes are studied in detail by the
public software TEQC [24]. There are a large number of missing data for the two days of
DOY140 and DOY141 for Sat–1, so the quality assessment of the data of Sat–1 on these two
days will not be carried out.

2.1. GPS Satellite Visibility

The visibility of the GPS satellites of six COSMIC-2 satellites on DOY 138 is shown in
Figure 2. The statistical information on the percentage of visible satellites of DOY 138–142
is listed in Table 1.

Table 1. Percentage statistics of the visible number of GPS satellites for the six COSMIC-2 satellites,
DOY 138–142, 2021.

≤3
(%)

4~6
(%)

7~10
(%)

≥11
(%)

Mean
(Number)

Sat–1 0.10 18.50 81.17 0.23 7.56
Sat–2 0.10 20.44 79.24 0.22 7.54
Sat–3 0.20 15.57 83.80 0.42 7.67
Sat–4 0.36 18.56 81.04 0.03 7.55
Sat–5 0.30 12.90 86.12 0.68 7.71
Sat–6 0.05 16.42 83.16 0.38 7.60
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As seen in Figure 2 and Table 1, the number of GPS satellites tracked by the space-
borne GPS receiver is mostly in the range of 7–10, and there are few epochs with the number
of the tacked GPS satellite below 3. The average number of visible satellites for all six
COSMIC-2 satellites is larger than 7, which indicates that the space-borne GPS receiver has
a good observation performance.

2.2. Utilization of GPS Observations

Data utilization refers to the ratio of the actual epochs of data to the theoretical epochs,
which is defined as follows:

η =
nh
ne

(1)

where nh is the actual number of epochs, ne is the number of theoretical epochs. This
indicator can reflect the utilization of observation data and the observation environment
around the receiver [25]. Table 2 shows the utilization of the observed data of six COSMIC-2
satellites of DOY 138–142.

Table 2. Utilization of GPS observations of COSMIC-2, DOY 138–142, 2021 (%).

DOY Sat–1 Sat–2 Sat–3 Sat–4 Sat–5 Sat–6 Mean

138 27 33 28 28 27 28 29
139 26 35 30 27 30 28 29
140 31 32 30 37 27 27 31
141 43 30 34 38 33 28 34
142 28 31 29 34 30 27 30

Mean 31 32 30 33 29 28 —
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From Table 2, it can be seen that the highest average observation efficiency is in
DOY 141, and the observation efficiency of Sat–4 is relatively higher than that of other
COSMIC-2 satellites in DOY 138–142. It can be seen that the effectiveness rate of COSMIC-2
space-borne observation data is lower than 40%, which indicates that the quality of the
observation environment around the receiver is not well.

2.3. Cycle Slip Ratio

The cycle slip ratio is the ratio of the total number of actual observations to the number
of cycle slips, which is used to explain the cycle slip of observation data. The satellite
receiver is moving at high-speed. Due to the fast speed of satellite movement, the poor
space environment of the satellite receiver, the influence of the multipath effect and other
reasons, it will cause the discontinuity of observation data or the loss of lock of GPS signal,
resulting in a cycle slip of observation data [26]. The larger the cycle slip ratio is, the less
the cycle slip occurs in the data, and vice versa. The statistical information of the cycle slip
ratio of the observation of six COSMIC-2 satellites is listed in Table 3.

Table 3. Cycle slip ratio of observation of COSMIC-2, DOY 138–142, 2021.

DOY Sat–1 Sat–2 Sat–3 Sat–4 Sat–5 Sat–6 Mean

138 7 9 8 8 7 7 8
139 8 10 9 9 8 8 9
140 7 10 9 9 6 7 8
141 10 10 11 9 8 7 9
142 8 11 11 10 9 7 9

Mean 8 10 10 9 8 7 —

Table 3 indicates that the average cycle slip ratio of DOY 138–142 is 8 or 9, and the
cycle slip ratio of six COSMIC-2 satellites is generally lower than that of the receiver on
the surface of the Earth. Sat–2 and Sat–3 own the highest cycle slip ratio among the six
COSMIC-2 satellites, with a ratio of 10, and Sat–6 owns the lowest one, with a ratio of 7. The
above analysis shows that the frequency of cycle slips of COSMIC-2 during the observation
period is large, and the number of cycle slips is large.

2.4. Single Noise Ratio

The signal-noise ratio (SNR) is the ratio of the carrier signal intensity received in the
receiver to the noise intensity. That can reflect the signal quality of the carrier. The higher
the SNR is, the smaller the error is [27]. In the process of TEQC detection, SNR1 and SNR2
are the average signal-noise ratios on L1 and L2 carriers respectively, and the thresholds are
set to 6 and 4 respectively [28,29]. The mean SNR of every COSMIC-2 satellite every day
and the mean SNR of six COSMIC-2 satellites every day in 5 days is plotted in Figures 3
and 4 respectively.

As can be seen from Figures 3 and 4, both SNR1 and SNR2 of the six COSMIC-2
satellites for 5 days are much larger than the threshold value, the SNR is relatively smooth,
and there is no significant fluctuation, besides, SNR1 is somewhat larger than SNR2, which
indicates that the signal quality of L1 is better than that of L2.
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2.5. Multipath Effect

In the process of satellite signal propagation, due to the influence of the surrounding
environment, the signal of the surrounding reflectors will enter the receiver with the
satellite signal, resulting in a deviation between the observed value and the true value,
this phenomenon is called multipath effect [30–32]. The multipath error is mainly due
to pseudo-ranges and can be determined by the linear combination of pseudo-range and
phase observations, and its calculation formula is:

MP1 = P1 − (1 +
2

α − 1
)ϕ1 + (

2
α − 1

)ϕ2 (2)

MP2 = P2 − (
2α

α − 1
)ϕ1 + (

2
α − 1

− 1)ϕ2 (3)

where MP1 and MP2 are multipath errors on L1 and L2 bands respectively, α = f1
2

f2
2 ( f1

and f2 are the frequency values of L1 and L2 bands respectively), P1, P2 are pseudo-range
observations and ϕ1, ϕ2 are the phase observations on both frequencies, respectively.
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The thresholds of RMS for MP1 and MP2 in TEQC are set as 0.5 m and 0.75 m
respectively, and the smaller RMS indicates that the observed data are less affected by
multipath effects [28,33]. The mean multipath errors of every COSMIC-2 satellite are
plotted every day in Figure 5, and the mean multipath error of six COSMIC-2 satellites
every day over 5 days is shown in Figure 6.
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As can be seen from Figures 5 and 6, the RMS of MP1 and MP2 of these satellites are
within the index value range. Among them, the RMS of MP1 is generally less than MP2,
except for Sat–5 in DOY 141, but it is still within the limit, so it has little impact on data
quality.

2.6. Ionospheric Delay Rate

The change rate of ionospheric delay refers to the change of ionospheric delay in unit
time [34]. Influenced by the ions in the ionosphere, the propagation speed and propagation
path of the signals emitted by GPS satellites change as they pass through the ionosphere,
which has an effect on the time of signal propagation, thus changing the geometric distance
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between the source and the receiver [30]. The ionospheric delays on the L1 and L2 carriers
are obtained by making a difference between the dual-frequency carrier-phase observations,
assuming that the carrier waves of both frequencies have the same propagation path in the
atmosphere [26]:

I1 =
1

α − 1
(λ1 ϕ1 − λ2 ϕ2 − n1λ1 + n2λ2) (4)

I2 =
α

α − 1
(λ1 ϕ1 − λ2 ϕ2 − n1λ1 + n2λ2) (5)

where, ϕ1, ϕ2 are the phase observations. IOD is computed in TEQC as follows [30]:

IOD =
α

α − 1
[(L1 − L2)i − (L1 − L2)j−1]/(tj − tj−1) (6)

when IOD ≥ 400 cm/min, it is considered that the ionosphere jumps [25,35,36]. If the
data of a whole day is selected, the 24-h window will make the image too dense to clearly
display the changes. Therefore, the time period of 21:00:00–21:59:59 of Sat–2 is selected to
analyze the ionospheric delay change rate, as shown in Figure 7.
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It can be seen from Figure 7, where when no cycle slips are present, the IOD is quite
smaller than 400 cm/min [36], that since at the 500 km~525 km (height of the COSMIC-2),
the observed ionosphere effect is only a small fraction of the total effect. It is also apparent
from Figure 7, the IOD increases significantly at the end of the data acquisition cycle. And
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that the main reason for this phenomenon is the discontinuity of carrier phase data and the
emergence of abnormal values [37].

From the above GPS data quality analysis, it can be seen that the number of the visible
GPS satellites of six COSMIC-2 satellites in the five days is mostly 7–10, and there are
few epochs with the number of the tacked GPS satellite below 3; The low utilization of
observations indicates that the quality of the surrounding observation environment is not
high; The average cycle slip ratios of five days is relatively low, which indicates that the
frequency of cycle slip of COSMIC-2 is high and the number of cycle slips is large during
the observation period; In terms of SNR, the average value of six COSMIC-2 satellites
is more than 300, and SNR1 and SNR2 are far greater than the threshold. In terms of
multipath error, the RMS of MP1 and MP2 of COSMIC-2 are within the index value range,
indicating that the satellite signal is less subject to multipath interference. In terms of
IOD, it is obviously found that the IOD changes greatly at the end of the data acquisition
cycle, mainly due to the discontinuity of carrier-phase data and the emergence of outliers.
Generally speaking, the GPS observation data quality of DOY 138–142, for five days, is
general, the data loss is serious, and the cycle slip occurs frequently, but its signal-noise
ratio is high, and the error caused by the multipath effect is small.

3. Reduced Dynamic Orbit Determination of COSMIC-2
3.1. Reduced Dynamic Method

LEO satellites are affected by various perturbations when they move around the
earth, including conservative forces and non-conservative forces. The conservative forces
mainly include non-spherical gravitation perturbations, multi-body perturbation, earth
tide perturbation, relativistic effects, and non-conservative forces include solar radiation
pressure, earth’s albedo, and atmospheric drag force. The motion equation of an LEO
satellite considering these perturbations in the geocentric inertial system is [30,38]:

..
r = −GM

r
r3 + f1(t,

.
r,

..
r, q1 . . . , qd) (7)

where: r,
.
r,

..
r are the position, velocity and acceleration of the satellite, respectively;

The initial condition is r0(t) = r(a, e, i, Ω, ω, T0; t0),
.
r(t0) =

.
r(a, e, i, Ω, ω, T0; t0), Where,

(a, e, i, Ω, ω, T0; t0) are Kepler six elements at the reference epoch t0; f1 is disturbance ac-
celeration; q1 . . . , qd are the unknown dynamic orbit parameters; GM is the gravitational
constant of the earth.

Assuming that the prior orbit r0(t) of the satellite is known, the Taylor series expansion
of r(t) is carried out at the reference epoch t0 to eliminate the unknown disturbing force
parameters. The corrected value of the prior orbit parameter pi0 is obtained in the least
square processing of GPS carrier-phase observation data of the LEO satellite. The expression
of the final orbit r(t) is [38]:

r(t) = r0(t) +
n

∑
i=1

∂r0(t)
∂pi

(pi − pi0) (8)

where: pi is the track parameter; pi0 is a priori orbit parameter.
LEO satellites will be affected by atmospheric drag force when they move around the

earth. Due to the complex space environment, it is difficult to model the atmospheric drag
force. Therefore, the un-modelled atmospheric drag force will degrade the orbit determi-
nation accuracy with the dynamic method [39]. The RD orbit determination method is to
introduce pseudo-random pulse parameters into the satellite motion equations, adopts the
geometric information of the GPS observations and the dynamic information of the satellite,
and balances the geometric and kinematic information by a priori weights [39,40]. A priori
weight can keep the pseudo-random pulse parameters from deviating from the expected
value, and it can effectively absorb the dynamic model errors and the un-modelled pertur-
bation errors, so as to improve the RD orbit determination accuracy for LEO satellites [4,39].
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3.2. Orbit Determination Strategy for COSMIC-2

In this study, the RD method POD for six COSMIC-2 satellites with five-day space-
borne GPS observation is carried out with Bernese 5.2 software [41]. The orbit determination
arc section is 24 h. Due to the serious lack of observation data on DOY 140 and DOY 141
of Sat–1, the orbits of this satellite in these two days are not solved. In order to evaluate
the accuracy of the solved orbits of COSMIC-2 using the RD method, three orbit accuracy
analysis methods are applied, these three methods include the analysis of carrier-phase
observation residuals, and the comparison of overlapping orbits and the comparison with
reference orbits. The orbit determination strategy is shown in Table 4.

Table 4. RD orbit determination strategies of COSMIC-2.

Models/Parameters Description

Mean earth gravity EGM2008_SMALL
N-body JPL DE405

Relativity IERS2010XY
Ocean Tides FES2004

Solid-earth tides TIDE2000
GPS precise ephemeris ftp://ftp.aiub.unibe.ch/CODE (accessed on 12 March 2021)
GPS precise clock offset ftp://ftp.aiub.unibe.ch/CODE (accessed on 12 March 2021)
Antenna PCO and PCV Igs14.atx

Elevation cutoff 5◦

Sampling interval 10 s

Pseudostochastic pulses 6 min

Arc length of orbit
determination 24 h

3.3. Assessment of Orbit Accuracy

In this study, the accuracy validation methods of the RD orbit of COSMIC-2 include
internal validation and external validation. The former is carried out by carrier-phase
residuals and overlapping orbit comparison, and the latter is performed by comparison
with the reference orbit.

3.3.1. Analysis of Carrier-Phase Residuals

The carrier-phase residuals mainly contain the modelled and un-modelled errors, and
the RMS of the residuals can, to a certain extent, reflect the set strategies and whether
selected mechanics models are suitable or not, so the RMS of the residuals can be used as
one of the indicators for the evaluation of the internal conformity accuracy of POD [42].
The smaller the RMS of the residual is, the higher the accuracy of the internal confor-
mity is. Table 5 shows the statistical results of the RMS of the carrier-phase residuals for
the six COSMIC-2 satellites with the RD orbit determination method for each day from
18–22 May 2021 (DOY 138–142).

Table 5. Statistical results of RMS of carrier-phase residuals (mm).

DOY Sat–1 Sat–2 Sat–3 Sat–4 Sat–5 Sat–6

138 6.4 6.0 6.4 7.0 6.6 6.6
139 6.7 6.2 6.3 6.0 6.7 7.0
140 — 6.5 6.6 6.3 6.8 6.8
141 — 6.4 6.9 6.2 6.7 7.2
142 6.1 6.6 6.0 6.2 6.5 7.5

Mean 6.4 6.0 6.4 7.0 6.6 6.6

It can be seen from Table 5 that the RMS values of the carrier-phase residuals of the
six COSMIC-2 satellites vary between 6.0 mm and 7.5 mm, and the mean RMS values of
the residual for Sat–2 in the five days is the smallest and that of Sat–4 is the largest. The

ftp://ftp.aiub.unibe.ch/CODE
ftp://ftp.aiub.unibe.ch/CODE
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mean residual RMS values of the six COSMIC-2 satellites in DOY 138–142 vary between
6.0 mm and 7.0 mm, which indicates that the observations measured by the space-borne
GPS receiver are relatively stable.

3.3.2. Overlap Orbit Validation

In order to evaluate the orbit determination accuracy for the six satellites using the
overlap validation method, two-orbit determination arc sections are set every day, and the
time spans are 00:00:00–17:59:59 and 12:00:00–23:59:59 respectively. The overlap time is 6 h.
Although the observations of the two overlapping orbits are the same, the two orbits are
solved by two independent orbit determination processes [43]. Therefore, the overlapping
orbits of the two orbit determination arcs for 6h are not related to each other. In order to
avoid the boundary effect, the overlapping arc of 4h from 13:00:00 to 16:59:59 are selected
for comparison [39,44]. The overlapping orbit difference of six COSMIC-2 satellites in R,
T and N directions is shown in Figure 8, and the mean RMS values of orbit difference
between overlapping orbits during DOY 138–142 are given in Table 6.
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Table 6. Mean RMS of differences between overlapping orbits for COSMIC-2 (cm).

R T N 3D

Sat–1 0.60 1.20 0.93 1.66
Sat–2 0.92 1.02 0.53 1.51
Sat–3 0.71 1.12 0.73 1.53
Sat–4 0.60 1.07 1.03 1.64
Sat–5 0.79 1.33 0.70 1.75
Sat–6 0.65 0.98 0.62 1.38

It can be seen from Figure 8 that the RMS values in the R, T and N directions of the
4 h overlapping orbit difference in the five days are smaller than 3 cm, and the RMS in
the T direction is significantly larger than that in R and N directions. Table 6 and Figure 8
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show that the mean RMS values of the overlapping orbit differences of the six COSMIC-2
satellites during DOY 138–142 fluctuate between 1.38 cm and 1.75 cm in the 3D direction,
and the mean RMS of Sat–6 in the 3D direction is the smallest and that of Sat–5 in the
3D direction is the largest. The overlapping orbit validation indicates that mean the RMS
values in 3D of the six COSMIC-2 satellites are all better than 2 cm. Obviously, our orbit
determination accuracy is higher than that of TACC of 15 cm, and the result meets the orbit
determination accuracy requirements of COSMIC-2.

3.3.3. Validation with Reference Orbits

In this study, we carried out an orbit comparison between the resolved orbits with the
RD method and the reference orbit released by Central Weather Bureau and evaluated the
external coincidence accuracy of the RD orbit according to the RMS values of the differences
between them. The RMS values of differences between the RD orbits and external reference
orbits during DOY 138–142 are shown in Figure 9, and the corresponding mean RMS values
for each day are shown in Table 7.
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Table 7. Mean RMS of difference between the solved orbits and the reference ones (cm).

R T N 3D

Sat–1 5.23 5.98 2.20 8.26
Sat–2 4.97 5.55 1.78 7.67
Sat–3 4.23 5.68 1.93 7.35
Sat–4 5.44 6.59 2.04 8.79
Sat–5 5.33 6.44 2.13 8.64
Sat–6 5.61 6.36 2.29 8.79

It can be seen from Table 7 and Figure 9 that the mean RMS values of the orbit
differences of the six COSMIC-2 satellites fluctuate between 7.35 cm and 8.79 cm during
DOY 138–142 in the 3D direction, and the mean RMS value of Sat–3 in the 3D direction
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is the smallest and the ones of Sat–4 and Sat–6 are 8.79 cm, which is the largest among
the six satellites. The orbit difference of the six COSMIC-2 satellites in the N direction in
these five days is smaller than that in the T and R directions. The mean RMS of difference
between the RD orbit and the reference orbit of DOY 138–142 for five days are below
5.61 cm, 6.59 cm and 2.29 cm in R, T and N directions, respectively. The mean RMS of 3D
of the six COSMIC-2 satellites is better than 9 cm, which meets the orbit determination
accuracy requirements of COSMIC-2.

4. Conclusions

This paper focuses on evaluating the space-borne GPS data and achieving POD for
COSMIC-2. Based on TEQC, the observation data quality evaluation for COSMIC-2 was
carried out from aspects of satellite visibility, utilization of GPS observations, SNR, cycle
slip ratio, multipath error and IOD. The results show that the proportion of 7–10 GPS
satellites tracked by the six space-borne GPS receivers in each epoch is more than 79%, the
average value of SNR is greater than 300, the data is less affected by the multipath effect,
and SNR1 is better than SNR2 in signal-noise ratio. However, it is found that the utilization
of the observation data is low and cycle slips occur frequently. The analysis of the change
rate of ionospheric delay proves that the carrier-phase data is often interrupted.

The POD was carried out based on the RD method using the five-day space-borne
GPS observation of COSMIC-2, and the accuracy of the solved orbit is evaluated by three
methods: carrier-phase residual analysis, overlapping orbit comparison and reference
orbit comparison. (1) According to the residual analysis of carrier-phase observations, it is
found that the residual RMS of carrier-phase observations for the RD orbit determination
of six COSMIC-2 satellites is between 6.0 mm and 7.5 mm. (2) 4 h overlapping orbits are
compared, and the test results show that the RMS values of the differences between the
4 h overlapping orbits in the three directions of R, T and N in five days are below 3 cm,
and the mean RMS of six COSMIC-2 satellites in 3D are better than 2 cm, which indicates
that this result is better than the overlapping orbit verification accuracy released by TACC.
(3) According to the comparison between the solved orbit and the reference orbit, the results
show that the RMS values of the orbit differences between the above two orbits of the six
COSMIC-2 satellites in the R, T and N directions are all within 8 cm, and the mean RMS
values of the 3D of the six COSMIC-2 satellites are smaller than 9 cm, which meets the orbit
determination accuracy requirements of COSMIC-2. It can be seen that we have achieved
the POD for COSMIC-2, and the orbit determination results can meet the requirements of
the application of its science data.
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