
Citation: Lee, D.-G.; Ahn, K.-H.

Assessment of Suitable Gridded

Climate Datasets for Large-Scale

Hydrological Modelling over South

Korea. Remote Sens. 2022, 14, 3535.

https://doi.org/10.3390/rs14153535

Academic Editor: Chung-yen Kuo

Received: 15 June 2022

Accepted: 20 July 2022

Published: 23 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessment of Suitable Gridded Climate Datasets for
Large-Scale Hydrological Modelling over South Korea
Dong-Gi Lee and Kuk-Hyun Ahn *

Department of Civil and Environmental Engineering, Kongju National University, Cheon-an 31080, Korea;
ehdrl1117@gmail.com
* Correspondence: ahnkukhyun@gm.kongju.ac.kr

Abstract: There is a large number of grid-based climate datasets available which differ in terms of
their data source, estimation procedures, and spatial and temporal resolutions. This study evaluates
the performance of diverse meteorological datasets in terms of representing spatio-temporal climate
variabilities based on a national-scale domain over South Korea. Eleven precipitation products,
including six satellite-based data (CMORPH, MSWEP, MERRA, PERSIANN, TRMM, and TRMM-
RT) and five reanalysis-based data (ERA5, JRA-55, CPC-U, NCEP-DOE, and K-Hidra) and four
temperature products (MERRA, ERA5, CPC-U, and NCEP-DOE) are investigated. In addition,
the hydrological performance of forty-four input combinations of climate datasets are explored by
using the Variable Infiltration Capacity (VIC) macroscale model. For this analysis, the VIC model is
independently calibrated for each combination of input and the response to each combination is then
evaluated with in situ streamflow data. Our results show that the gridded datasets perform differently
particularly in representing precipitation variability. When a diverse combination of the datasets are
used to represent spatio-temporal variability of streamflow through the hydrological model, K-Hidra
and CPC-U performed best for precipitation and temperature, followed by the MERRA and ERA5
datasets, respectively. Lastly, we obtain only marginal improvement in the hydrological performance
when utilizing multiple climate datasets after comparing it to a single hydrological simulation with
the best performing climate dataset. Overall, our results indicate that the hydrological performance
may vary considerably based on the selection of climate datasets, emphasizing the importance of
regional evaluation studies for meteorological datasets.

Keywords: gridded climate datasets; large-scale hydrological modelling; Korean Peninsula

1. Introduction

Suitability, defined here as the quality of being appropriate, of climate products is of
prime importance for the reliability of hydro-climatological studies [1,2]. Although ground-
based weather stations at many point locations have been installed to provide re-liable
observations, spatial continuity in datasets is still lacking [3,4], making distributed climate
datasets necessary. The use of these datasets has facilitated remarkable progress for spatially
gridded climate datasets in terms of resolution scale and estimation accuracy during recent
decades [5]. However, the datasets remain limited in their practical applications [6].

Gridded climate datasets can be divided into two types: reanalysis-based estimations
(RBEs) and satellite-based estimations (SBEs) [7]. The fundamental idea behind RBEs
is to combine multi-source metrological data in a physically consistent framework that
encompasses many physical and dynamic processes in order to generate a synthesized
estimate across a uniform grid with spatial homogeneity and temporal continuity [8].
Therefore, many essential climate variables are available through a physical framework and
can be obtained after only a short delay. RBEs can also cover large terrestrial domain since
they are derived from global system models [9]. However, RBEs suffer from substantial
uncertainty in some locations (e.g., polar regions) due to insufficient gauge-based records.
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Satellite systems represent the other invaluable tool to measure global climate datasets
at regular intervals. Current primary sensing methods for SBEs can be classified into three
categories: visible/infrared (IR) satellites [3], passive microwaves (PMW) [10], and active
microwaves (AMW) [11]. SBEs have the advantage of representing homogeneous spatial
coverage. Morover, owing to the combination algorithm from the outputs of multi-types
of satellite sensors, rather than adopting measurements from single type of sensors [12],
the algorithm offers the combined advantages of the high reliability of microwave sensing
together with the wide coverage of IR sensing which leads to more accurate estimation
results [9]. Based on these algorithms, several satellite products have been developed
since the 1980s, such as Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN) [13], National Oceanic and Atmospheric Adminis-
tration/Climate Prediction Center (NOAA/CPC) morphing technique (CMORPH) [14],
Tropical Rainfall Measuring Mission (TRMM) [10], and Naval Research Laboratory (NRL)-
developed blended-satellite rainfall technique (NRL-Blend) [15]. However, the coverage of
SBEs is often confined within 60◦ N/S since SBEs are limited by the effective observation
range of geosynchronous satellites. Moreover, they can be limited by nonnegligible errors
and biases due to deficiencies inherent in the algorithms.

Gridded climate datasets have been widely employed in various research fields in
hydrology, including hydrological modeling, drought analysis and real-time flooding
predictions [9,16–19]. Many studies have also been conducted to quantify uncertainty in
RBEs and SBEs [20–22]. The reliability of gridded climate datasets is generally assessed by
comparing them with in situ measurements [23–26], or by quantifying error as a result of
forcing in hydrological modeling [27–29] although more attention should be paid to the
hydrological evaluation approach [30,31].

Simulating the rainfall-runoff process using hydrological models is essential for as-
sessing climate datasets since non-linearity in the rainfall-runoff process can amplify or
dampen bias in input datasets and lead to diverse patterns in hydrological responses [32].
In particular, with the advent of distributed hydrological models, spatial-temporal repre-
sentation of climate datasets takes on further importance in hydrological modeling [33].
Without a diagnosis through hydrological modeling, adopting climate datasets has the
potential to foster unfortunate consequences for water resources management [34]. In this
viewpoint, recognizing proper climate datasets is imperative for data selection in water
resources management [35,36].

While previous studies have evaluated the suitability of gridded climate datasets in
hydrological simulation, some limitations have been observed. First, some studies have
assessed only a few precipitation datasets or considered only a single product [30,37–40].
Moreover, in many cases, the impact of temperature datasets has not been evaluated in
combination with precipitation datasets [9,30,41,42]. Because temperature is the primary
driving variable for evapotranspiration and snow processes, its influence is vital. Tempera-
ture often dynamically impacts the hydrologic response when precipitation datasets are
simultaneously considered. Another limitation is that some studies adopt simple lumped
models, thereby requiring averaging the values for their input over large areas, potentially
leading to increased bias effect [41,43,44]. In other cases, the hydrologic model is neither
re-calibrated nor tailored to each climate dataset [27,45], although the process of calibration
is crucial for reliable input evaluation [46]. Lastly, to the best of our knowledge, no study
has yet explored which climate gridded datasets would be most suitable for the entirety of
the South Korean landmass through large-scale hydrological modeling.

Multiple diverse climate datasets can be simultaneously employed to accurately
represent hydrological responses. Using this premise, previous studies have demonstrated
that utilizing the mean of multiple climate datasets, which is referred to as average of
ensemble input, may lead to reliable hydrological responses by properly representing
their spatial distribution [47,48]. Moreover, some studies have suggested that obtaining
simulations with different forcing data and averaging the simulated streamflow, which
is referred to as average of ensemble output, may improve the reliability of hydrological
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response [49]. Given the practical usefulness of these approaches in hydrological modeling,
there is limited empirical analysis for our study area that evaluates these approaches’
suitability in improving the hydrological simulations.

Knowing this research gap, this study additionally explores the suitability of different
combinations and ensembles of 11 precipitation datasets (5 RBEs and 6 SBEs products)
and 4 temperature datasets using a fully distributed hydrological model. To be specific,
44 (=11 × 4) combinations of forcing data are tested with the Variable Infiltration Capacity
(VIC) model by recalibrating the model for each combination. In particular, the following
research questions are addressed in a case study of large-scale hydrological modeling over
South Korea: (1) Which dataset closely represents spatial- and temporal climate variability
over the study area the most when compared to in situ measurements? (2) How well do
different combinations of gridded rainfall and temperature datasets create hydrological
simulations? In this analysis, we explore the best combination of the gridded rainfall and
temperature datasets to represent hydrological responses over the study area. (3) Does
a single simulation with the best performing dataset outperform the ensemble-based
simulations (i.e., averages of ensemble input and output)? These questions are recast as
hypotheses, tested through extensive hydrological experiments and evaluated over a large
domain study area using high-performance computing.

2. Materials and Methods

South Korea, a country in East Asia occupying the southern half of the Korean Penin-
sula, is employed as the study area (Figure 1). Because the country is located in a transitional
zone with diverse influencing factors, each season has markedly different climate condi-
tions that make different dominant contributions. For example, summers are comprised of
hot and humid conditions generated by the Maritime Pacific High whereas winter climate is
influenced by the Siberian high-pressure system [50]. Humid conditions lead to substantial
precipitations in summers. To be specific, two-thirds of annual precipitation occurs in
the summer whereas precipitation in winter represents less than 10% of annual precipi-
tation. Summers are also affected by the generation of extraordinarily high rainfall and
concomitant floods from typhoons passing very close or moving over the peninsula [51].

The country consists of heterogeneous topographic features, also providing nontrivial
impacts on temporal and spatial distributions of climate variables [52]. The western and
southern parts of South Korea are occupied by low- and developed-lands while the eastern
and northern parts are mostly mountainous, including the Taebaek mountain range (TMR).
The orographic effects created in the mountainous regions lead to asymmetrical gradients
of spatial distribution in precipitation variability. Moreover, temperature variations are
often related to longitudinal gradients across the study area. To sum up, the diverse
meteorological and topographic features significantly contribute to changes in climate
variables, potentially leading to diverse output in the climate datasets.

2.1. Meteorological Grid-Based Datasets

This study evaluates the performance of 11 precipitation products, consisting of
6 satellite-based datasets (CMORPH, MSWEP, MERRA, PERSIANN, TRMM, and TRMM-
RT) and 5 reanalysis-based datasets (ERA5, JRA-55, CPC-U, NCEP-DOE, and K-Hidra), and
4 temperature sets (MERRA, ERA5, CPC-U, and NCEP-DOE). These datasets are selected
based on the availability of sufficient length of data over the region in South Korea in recent
years. While the other datasets have been updated for most recent years, two datasets
(TRMM, and TRMM-RT) are available only until the year 2019. Therefore, our comparisons
are conducted in a common period (2001–2019). Also, while SBEs have multiple versions,
the ground-corrected versions are selected to avoid the inherent systematic biases found
in SBEs [1,48]. For the temperature sets, two temperatures (i.e., minimum and maximum
temperatures) are simultaneously employed to evaluate the performance of each dataset.
In our analysis, all datasets are linearly interpolated to a 0.1◦ × 0.1◦ spatial resolution
for the purpose of comparison. A summary of the primary information of the gridded
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meteorological datasets including spatial and temporal resolutions is described in Table 1.
For further information on each dataset, we refer the interested reader to the references
suggested in Table 1.
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Table 1. List of meteorological grid datasets used in this study.

Symbol Full Name Data Source Adopted
Variable

Spatial
Resolution

Temporal
Resolution References

CMORPH
Climate Predition Center (CPC)

MORPHing technique
(CMORPH) bias corrected V1.0

S, A P 0.25 Daily [53]

MSWEP
Multi-Source Weighted
Ensemble Precipitation

(MSWEP) V2.2
S, A, R P 0.10 3-h [54]

MERRA

Modern-Era Retrospective
Analysis for Research and

Application 2 (rainfall:
M2T1NXFLX_V5.12.4;

temperature: M2SDNXSLV_
V5.12.4)

S, A, R P, Tmax, Tmin 0.625◦× 0.5 Hourly [55]
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Table 1. Cont.

Symbol Full Name Data Source Adopted
Variable

Spatial
Resolution

Temporal
Resolution References

ERA5

European Centre for
Medium-range Weather

Forecasts Reanalysis 5 (ERA5)
hourly data

R P, Tmax, Tmin 0.25 Hourly [56]

TRMM
TRMM Multi-satellite

Precipitation Analysis (TMPA)
3B42 V7

S, A P 0.25 3-h [10]

TRMM-RT
TRMM Multi-satellite

Precipitation Analysis (TMPA)
3B42 Real Time V7

S P 0.25 3-h [10]

PERSIANN

Precipitation Estimation from
Remotely Sensed Information

using Artificial Neural
Networks

(PERSIANN) Climate Data
Record (CDR) V1.0

S, A P 0.25 Daily [57]

K-Hidra Korean High-resolution Daily
Rainfall (K-Hidra) V2020 A, R P 0.25 Daily [58]

JRA-55 Japanese 55-year Reanalysis
(rainfall: fcst_phy2m125) R P 1.25 3-h [59]

CPC-U Climate Predition Center (CPC)
global unified daily data A, R P, Tmax, Tmin 0.50 Daily [60]

NCEP-DOE

National Centers for
Environmental Prediction

(NCEP)–Department of Energy
(DOE) reanalysis 2 project

A, R P, Tmax, Tmin 2.50 6-h [61]

Abbreviation: A: gauge; S: satellite; R: reanalysis; P: precipitation; Tmax: maximum temperature; Tmin: minimum temperature.

2.2. Observed Hydrometeorological Datasets

This study uses four observational datasets including daily precipitation, maximum
and minimum temperatures and streamflow. Three historical climate datasets (precipita-
tion, maximum and minimum temperatures) are acquired from two data sources. First,
the Automated Synoptic Observing System (ASOS)-based observations offered by the
Korean Meteorological Administration (KMA) are employed. These observations provide
continuous daily records from 60 stations covering the South Korean territory (see Figure 1).
Next, the observations from 297 stations are obtained from the Automatic Weather System
(AWS). The 297 stations are selected based on the criterion that they have no more than
347 missing values (i.e., 5% of the entire period) in the daily measurements over the study
period (2001–2019). To infill missing values at the AWS stations, the elastic net model, a
penalized regression using ridge [62] and the Least Absolute Shrinkage and Selection Oper-
ator (LASSO) [63], are utilized following [58]. They have recently shown that the elastic net
model algorithm is the most effective in dealing with the missing values of climate data
over the Korean Peninsula. In addition, we note that for those datasets gathered from all
357 stations, elementary and extended quality investigations are performed by KMA based
on the World Meteorological Organization (WMO) guide [64] and other methods [65].

Moreover, daily streamflow observations at 26 gauges are gathered from the Water Re-
sources Management Information System (WAMIS) (http://www.wamis.go.kr/ accessed
on 1 June 2022). Two screening procedures are applied in the gauge selection: (1) only
gauges located upstream of reservoirs and dams, or tributaries without regulation are se-
lected to minimize the effect of regularization affected by anthropogenic activity, and (2) all
gauges are recorded continuously for 12 years of daily streamflow over the period from
January 2008 to December 2019. Lastly, a 30-m resolution digital elevation model (DEM) is
obtained by “ALOS World 3D–30 m (AW3D30)” released by the Japan Aerospace Explo-
ration Agency (Tokyo, Japan) [66] while the land cover data and soil types are acquired
for the nominal year of 2010 from the Moderate Resolution Imaging Spectroradiometer
(MODIS) [67] and the Harmonized World Soil Database v1.2 [68], respectively (see Figure 1).

http://www.wamis.go.kr/
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3. Methodology
3.1. Evaluation of Gridded Climate Datasets

We first assess the performance of the grid-based products relative to the station-based
observations. To do so, all datasets are linearly interpolated to each of the 357 stations
by using the Inverse Distance Weighting (IDW) method, where the weights are defined
by the inverse of the squared distance and normalized. Following [69,70], the unified
interpolation method is used although some studies have reported that the selection of
the interpolation method could be critical in the interpolated outputs [71,72]. From the
analyses, we can recognize spatial patterns of expected differences in precipitation and
two temperatures (maximum and minimum temperatures) to identify the performance of
the local realizations between the products. The analyses are conducted to investigate a
multiple aspect by computing annual root mean square errors (RMSEs) and mean biases
(MBs) from the gridded climate variables to those at the observation stations. To be specific,
the MB considers average bias for the entire period being evaluated while the RMSE
considers the combined effects of both bias and variance. A similar analysis is conducted
to explore the differences in the four seasons: winter (December–February), spring (March–
May), summer (June–August), and fall (September–November). In both analyses, the
metrics are scaled (i.e., relative root mean square error [rRMSE] (Equation (1)) and relative
mean bias [rMB] (Equation (2)) to identify which season has relatively more significant bias
for the individual grid datasets as follows:

ErRMSE =
100
〈Oi〉

√
∑T

i=1
(Gi −Oi)

2

T
(1)

ErMB =
〈Gi〉 − 〈Oi〉
〈Oi〉

(2)

where Gi and Oi indicate the grid-based and observed station-based climate outputs at
time step i; 〈·〉 is the averaging operator; T is the total number of time steps. In ErRMSE, the
value is multiplied by 100 to display the percent error.

3.2. Evaluation Using Hydrological Modeling
3.2.1. Hydrological Model Setup

The Variable Infiltration Capacity (VIC) macroscale model [73] that represents surface
and subsurface hydrologic processes on spatially distributed grid cells is adopted in this
study. The VIC model simulates the physical exchange of water and energy among the soil,
vegetation and atmosphere, while accounting for vegetation heterogeneity, multiple soil
layers with variable infiltration and non-linear base flow. To be specific, the soil column
is divided into the top, upper, and lower layers. The topsoil column is an additional thin
soil layer on the top of the upper soil layer (S1), in order to respond to rainfall events and
enhance the description of the dynamic change of surface soil water and the diffusion
between soil layers. The evapotranspiration is computed using the Penman-Monteith
equation [74] for the three items, namely canopy evaporation, vegetation transpiration,
and soil evaporation. The runoff generation is parameterized by the Xinanjiang variable
infiltration curve, which accounts for both the saturation excess and infiltration excess
mechanisms [75]. The non-linear Arno model is employed to describe the baseflow release
from the lowest soil layer. A large-scale routing scheme [76] is used to route the produced
runoff and baseflow in each grid cell to the basin outlet through a river-channel network.
More details about the VIC modeling processes can be found in [77]. In this study, we
develop the VIC model version 4.2 in water balance mode since we focus on streamflow
generation mechanisms.

The VIC model is developed at a daily time step with spatial resolution of 0.1◦ × 0.1◦,
which is comparable to the grid size of the meteorological datasets (see Figure 1). The final
set of parameters (see Table 2) is calibrated over 6 years from January 2008 to December
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2013 and validated over 6 years from January 2014 to December 2019. A multisite pooled
calibration strategy is adopted by simultaneously controlling streamflow sequences in
26-gauge stations to infer a unique parameter set over the study area. To achieve this,
the Kling-Gupta efficiency (KGE) [78] is employed as the objective function. The KGE
measure provides a potentially improved balance between mean bias, variability bias and
correlation when compared with the Nash-Sutcliffe efficiency (NSE):

EKGE =
1
N ∑N

n=1 1−
√
(ρ− 1)2 + (δ− 1)2 + (γ− 1)2 (3)

where ρ is the Pearson correlation coefficient, δ is the ratio of the means, γ is the ratio of
the coefficients of the variation between the observed and simulated flows and N is the
number of streamflow stations (N = 26 in this study). The EKGE values theoretically range
from negative infinity (extremely poor performance) to one (perfect performance), and
values < 0 indicates that the mean of observation data serves as a better predictor than the
simulated outputs [72].

Table 2. Adjusted parameters of the VIC hydrological model in calibration.

No. Parameter Description Feasible Range

1 b Variable infiltration curve parameter 0.0~0.5
2 Ds Fraction of Dsmax where non-linear baseflow begins 0.0~1.0
3 Dm Maximum velocity of baseflow 0.0~30

4 Ws
Fraction of maximum soil moisture where non-linear

baseflow occurs 0.0~1.0

5 S1 Depth of the second layer of soil (m) 0.0~1.5
6 S2 Depth of the third layer of soil (m) 0.0~2.0

7 Velo
Wave velocity in the linearized Saint-Venant equation

(m/s) 0.0~5.0

8 Diff Diffusivity in the linearized Saint-Venant equation (m2/s) 100~900

9 Num
Grid Unit Hydrograph parameter (number of

linear reservoirs) 0.0~20

10 Sto
Grid Unit Hydrograph parameter (reservoir

storage constant) 0.0~20

The optimization processes are conducted individually by using the Dynamically
Dimensioned Search (DDS) algorithm [79] with 10,000 iterations for each of the 44 dataset
combinations. The optimization processes are repeated twice for each combination, and
we then employ a parameter set with the best EKGE score to reduce the possibility of
considering a parameter set obtained from a local minimum.

3.2.2. Evaluation in Hydrological Modeling

The performance of the climate products is evaluated through the VIC model. This
analysis is based on the fundamental idea that higher reliability in the climate products leads
to more accurate hydrological modeling performance. The analysis also requires coherency
among the forcing variables (precipitation, maximum and minimum temperatures) and
can thus identify the best combination of the datasets, which is invaluable for water
management. For this analysis, in addition to EKGE, Nash-Sutcliffe efficiency (ENSE) is used
to evaluate the model performance for streamflow simulation:

ENSE = 1− ∑T
i=1
(
qsim

i − qobs
i
)2

∑T
i=1
(
qobs

i −
〈
qobs

i
〉)2 (4)

where qsim
i and qsim

i are the observed and simulated streamflows at time i. Similar to KGE,
values < 0 indicates that the mean value from observed data is a better predictor than the
simulated results.
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In addition, two variants of ENSE, logged transformed Nash-Sutcliffe efficiency (ElogNSE) [80]
and modified Nash-Sutcliffe efficiency (EabsNSE) [81], are employed for capturing prediction
accuracy for the low and high flows.

4. Results
4.1. Evaluation of Gridded Climate Datasets

In this section, we first integrate the grid-based climate products into annual and
seasonal scales, the obtained time series are then evaluated along with the corresponding
station-based time series. Figure 2 (Figure 3) presents the annual precipitation (maximum
and minimum temperatures) at the 357 observed stations (top left) and the results of
rRMSE from each of the gridded precipitation (maximum and minimum temperatures)
products. Similarly, Figure S1 (Figure S2) shows the results of rMB from each of the gridded
precipitation (temperature) products. Here, we note that a positive value for the rMB
metric informs that the value from the grid-based products is larger than the station-based
observed value on average, vice versa.
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of four grid datasets (each column) from observations. The median value of rRMSE metric at
356 stations is also presented for each sub-figure.

Model performance vary for the annual scale. Annual precipitations of the four
grid-based products are less than the observations, with TRMM-RT being the least (see
Figure S1). The underestimations are apparent in the southern coastal region, including
Jeju Island, the largest island of South Korea. On the other hand, seven grid-based datasets
produce greater precipitation than the observations, with PERSIANN being the greatest.
However, despite the general performance of each model, the majority of them exhibited
considerable overestimations in the northwestern region. Based on the rRMSE metric, K-
Hidra and MERRA produce the lowest rRMSE values (13.41 and 15.06), particularly with the
smallest biases over the central region of our study area, whereas PERSIANN, MSWEP and
NCEP-DOE yield the largest rRMSE values (27.02, 25.55, and 52.91). The spatial patterns of
the maximum and minimum temperatures vary substantially de-pending on the dataset
and variable of interest. For instance, maximum temperatures of ERA5 produce severe bias
in the southern area whereas ERA5 offers the most reliable maximum temperatures in the
northern region. Similarly, NCEP-DOE offers the most re-liable maximum temperatures
while it yields substantial bias for minimum temperatures over the northern region. Overall,
CPC-U performs the best for both maximum and mini-mum temperatures followed by the
ERA5 dataset although the ERA5 dataset produces less maximum temperature and greater
minimum temperature (see Figure S2).

To further investigate grid-based climate products on the seasonal scale, Figures 4 and 5
show spatial patterns of seasonal precipitation rRMSE for spring (MAM) and fall (SON).



Remote Sens. 2022, 14, 3535 10 of 19

Also, spatial patterns of seasonal precipitation metrics for other seasons and those for
temperatures are presented in the supporting information (see Figures S3–S8). Overall,
results for seasonal analyses are similar to those obtained for the annual scale. K-Hidra
and MERRA show the best performance in seasonal precipitation with less bias for all
seasons compared to the other products. Interestingly, less relative biases for precipitation
are often found in spring when compared to fall. For example, the median ErRMSE for
K-Hidra is 16.93 and 19.18 while TRMM is 29.06 and 38.31 for the spring and fall seasons,
respectively. However, the relatively large biases for fall may not indicate that the datasets
exhibited substantial under- or over-estimations for the seasonal scales except for the
NCEP-DOE dataset (see Figure S7). For both minimum and maximum temperatures,
CPC-U and ERA5 show the best performance. Different from its reliable performance
concerning precipitation, MERRA yields considerable biases across all seasons with the
biases being the most severe in winter. The results suggest that the combinations of the
MERRA precipitation dataset with the different temperature products may provide more
reliable hydrologic simulations in representing spatial- and temporal variability over the
study area, which is addressed in the following section.
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4.2. Evaluation of Hydrological Modeling

In this section, the performances in the hydrological model simulations are illustrated
by using the results of all 44 combinations of precipitation and temperature datasets.
Figure 6 shows the mean results of EKGE and ENSE for daily streamflow simulations over
the calibration and validation periods. Moreover, the details of each separated result are
provided in the supporting information (see Figures S9 and S10).

In Figure 6, similar performance patterns are obtained in both results of EKGE and
ENSE of daily streamflow simulations. This suggests that using a single metric to analyze
the patterns may be acceptable and thus EKGE is retained for describing the remaining
results. Several insights emerge from the figure. First, there is considerable variation in
performance across datasets. For example, the combination of MERRA precipitation and
ERA5 temperatures leads to substantially reliable performance for EKGE with 0.52 while
the combination of CPC-U precipitation and MERRA temperatures yields a relatively poor
EKGE with −0.02 in the validation period. It informs that the choice of forcing datasets is
indeed quite relevant in hydrological modeling. Second, the choice of precipitation dataset
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plays a crucial role whereas the choice of temperatures provides less impact on hydrolog-
ical performance. In particular, all four-temperature datasets yield similar performance
although MERRA is consistently the worst of the four. Third, the combination of K-Hidra
precipitation and CPC-U temperatures outperforms all other combinations. It is followed
by the combination of K-Hidra precipitation and ERA5 temperatures. Also, the MERRA
precipitation-based simulations perform well. Their superiorities are also observed when
the evaluations are focused on low and high flows (see Figure S11). Summing up, these
results support that higher reliability in the climate products leads to more accurate hydro-
logical performance since K-Hidra and MERRA show the best performance in representing
spatial and temporal behavior of precipitation over the study area (see Section 4.1).
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forcing in hydrological modeling. Gray color indicates averaging value is less than zero value for
each metric.

Presented in Figure 7 are the results of EKGE of all 26 gauges for the precipitation-
focused aggregation (i.e., average of EKGE for four temperature-based simulations with a
specific precipitation dataset) and temperature-focused aggregation (i.e., average of EKGE
for eleven precipitation-based simulations with a specific temperature dataset) over the
calibration and validation periods, respectively. Again, the results confirm those found in
Figure 6, particularly for the first and second insights. There are considerable variations
in eleven precipitation-focused aggregations while less variations are observed in four
temperature-focused aggregation. Both indicate the choice of precipitation dataset is more
important that the temperature choice. Moreover, the results underline the outperformance
of K-Hidra and MERRA in contrast to the relatively poor performance of the PERSIANN
and CPC-U precipitation datasets, which is also found in Figure 6.

4.3. Evaluation of Hydrological Performance by Combining Multiple Datasets

The spatial distribution of EKGE for the simulations from forcing datasets in different
combinations is presented in Figure 8. Here, six ensemble-based simulations are considered,
including the average of all ensemble input (i.e., utilizing the mean of the eleven precipita-
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tion and four temperature datasets), the average of reliable ensemble input (i.e., utilizing
the mean of the four best precipitation [K-Hidra, MERRA, TRMM, and CMORPH] and two
best temperature datasets [ERA5 and CPC-U]), the average of highly reliable ensemble in-
put (i.e., utilizing the mean of two best precipitation [K-Hidra and MERRA] and the CPC-U
temperature datasets), the average of all ensemble output with forty-four combinations
of climate forcing, the average of reliable ensemble output from the eight combinations
(i.e., = four precipitation × two temperatures), and the average of highly reliable ensemble
output from the two combinations (i.e., = two precipitation × one temperatures) of climate
forcing. The ensemble simulations are independently calibrated and their accuracies are
then evaluated over the validation period (see Figure 8). We also present the spatial distri-
bution of EKGE obtained by the hydrologic simulation with the combination of K-Hidra
precipitation and CPC-U temperatures in the top-left as a baseline single-based simulation.
All the other maps illustrate the difference in KGE values between each ensemble-based
simulation and baseline simulation. A red color informs a better performance for the
ensemble-based simulations; blue, a worse performance.
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The average of all ensemble input generally shows improved model performance
(the mean of EKGE = 0.47) when compared to that of all ensemble output (the mean
of EKGE = 0.42), informing that utilizing multiple input may generate more stable climate
estimates, and leads to a better streamflow simulation. However, a single-based simulation
with the best performing dataset shows higher accuracy (the mean of EKGE = 0.60), which
is contrary to the previous work showing that ensemble-based simulations improve model
performance [49].

Perhaps, our results are at odds with those of previous studies due to the substantial
bias in some datasets. To further investigate the hypothesis that a single-based simulation
would outperform an ensemble-based simulation, the number of datasets used for ensemble
simulations are decreased to bolster the performance in the ensemble-based results by using
only a part of the datasets (i.e., the average of marginally and highly reliable ensemble
simulations). The reliable ensemble-based simulations for input and output produced
0.47 and 0.48 as the mean of EKGE, indicating they are less accurate than a single-based
simulation. Although highly reliable ensemble-based simulations for input (the mean of
EKGE = 0.61) and output (the mean of EKGE = 0.59) show higher performance than other
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ensemble-based simulations, their accuracies differ a little from that of a single-based
simulation. Although there is a small improvement in performance by taking the mean
of the ensemble results, the required additional increased computational burden makes
this strategy much less appealing, informing that ensemble-based simulations may not be
effective for hydrological modeling over our study area.
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5. Conclusions

The performance of hydrological modeling is fundamentally rooted in the quality of
climate forcing data. While station-based observations have traditionally been employed
in a number of applications, they are often limited in both temporal and spatial scales. To
be specific, station-based observations suffer from some obstacles such as missing data,
measured errors and changes in geographical locations of weather stations including their
displacement. To mitigate these limitations, gridded climate datasets have recently received
increasing attention. This study contributes to evaluating a number of climate datasets
(i.e., eleven precipitation datasets and four temperature datasets) by combining gridded
rainfall and temperature datasets to identify which climate gridded datasets would be most
suitable for use in streamflow estimation over the study area.

Our results indicate that significant differences exist among the gridded datasets.
For example, K-Hidra produced the lowest rRMSE value (13.41) for the annual scale in
comparison with the corresponding station-based time series, whereas PERSIANN and
NCEP-DOE yielded large rRMSE values (27.02 and 52.91). The results confirm that some
datasets represent the variability of local climate better than others. The differences are
further verified when the datasets are employed in a hydrological model. The differences
may be related to the spatial resolution of the original satellite products. For example,
K-Hidra has relatively fine spatial resolution whereas NCEP-DOE is developed with coarse
spatial resolution. In addition, the importance of dataset selection varies depending on the
variable. While precipitation datasets are the primary drivers of reliability for simulations,
less variation from the four temperature datasets (MERRA, ERA5, CPC-U, and NCEP-DOE)
is observed. This could likely be attributed to the relatively small spatial and temporal
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variability in temperature, at least when compared to those for precipitation. Significant
differences in the performance of the hydrological model also encourage the exploration
of different climate datasets to choose the most suitable one before the regional-scale
hydrological modeling.

Among all the datasets evaluated in this study, K-Hidra and CPC-U represent the best
datasets for precipitation and temperature, respectively, over the study area. There are
possible reasons for the superior performance of both K-Hidra and CPC-U in representing
the regional variability of precipitation and temperature. These datasets are based on
reanalysis-based estimations, which are known to be more reliable than the satellite-based
products [82,83]. In particular, K-Hidra is the closest relative (in terms of data construction)
to the chosen reference stations over South Korea. Other studies have mentioned its high
quality for our study area [84,85]. Also, from the results, we find that a reliable precipitation
product is not necessarily the best for representing temperature (e.g., MERRA). Accordingly,
the hydrological simulations generated using the combination of different datasets for
forcing are more reliable over the study area and may be conducive to a distributed
hydrological modeling over the study area, including climate change assessment.

Previous studies have addressed that if significant differences in available datasets
exist, one cogent approach is to consider combining forced datasets or combining simulated
outputs using an ensemble approach. This study explores the possible superiority of
an ensemble-based approach for integrating hydrological modeling over the wide study
area. We find that combining forcing datasets or combining simulated streamflow may
prove less effective when compared to a single-based simulation with the best per-forming
dataset. However, the results may be limited since this study just explores a simple
averaging approach for generating an ensemble simulation while a number of diverse
techniques (e.g., the Bayesian model averaging [86]) have been introduced in the field of
hydro-climatology. However, such exploration is beyond the scope of this work.

In spite of efforts to implement a comprehensive assessment of the meteorological
datasets, the results obtained may be subject to some uncertainties and limitations. First,
the original gridded datasets are composed of different spatial and temporal resolutions.
For example, the spatial and temporal resolutions of MSWEP are 0.10◦ and a three-hourly
basis, respectively, whereas CPC-U has 0.50◦ and a daily basis as its spatial and temporal
resolutions. As denoted in [87], analysis from sub-daily modeling would be favorable
particularly for small basins although some of the datasets (e.g., PERSIANN) utilized were
limited to a daily time step. Our interpolation processes for comparison purposes might
induce additional uncertainties for climate datasets. Second, our evaluations for climate
datasets are relatively straightforward. To further obtain the insightful differences among
the datasets, additional categorical-based statistics may be required, similar to the analysis
in [88]. Third, the hydrological performance of the grid dataset is related to deficiencies
or structures in hydrological modeling. From this aspect, the final parameter set of our
hydrologic model could be limited by the possibility of obtaining equally reliable model
performance from different parameter sets (i.e., equifinality) [89]. Moreover, a multisite
pooled calibration strategy is adopted for our hydrologic modeling by maximizing the KGE
metric. We initially considered a multiscale parameter regionalization (MPR) scheme [90] to
represent seamless spatial patterns of hydrological processes but did not utilize it since the
performance remarkably decreased (not shown). The multiple calibration scheme-based
approaches deserve investigation in future research. Accordingly, the representation of
other metrics (e.g., NSE, peak flow reproduction and variance of streamflow) and their
combined metrics along with utilization of other distributed hydrological models, merit
consideration in analyzing the hydrological performance of grid datasets.

The findings of this study provide a vital insight into the utility of meteorological
datasets for regional hydrological applications. Overall, our results emphasize the impor-
tance of selecting suitable climate datasets in regional hydrological modeling. As future
research, we will further seek to determine suitable data uncertainty bounds when pro-
vided with multiple datasets for hydrological modelling based on the approach in [50].
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Regarding this research initiative, combining multiple datasets for model calibration will
also be feasible to pursue a robust modeling parametrization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14153535/s1, Figure S1: Spatial patterns of rMB for annual
precipitation of the grid datasets from observations. The median values of rMB metric at 356 stations
are also presented for each sub-figure; Figure S2: Spatial patterns of rMB for annual maximum (top)
and minimum (bottom) temperatures of four grid datasets (each column) from observations. The
median value of rMB metric at 356 stations is also presented for each sub-figure; Figure S3: Spatial
patterns of rRMSE for summer (JJA) precipitation of the grid datasets from observations. The median
values of rRMSE metric across 356 stations are also presented for each sub-figure; Figure S4: As in
Figure 4 but for winter (DJF) precipitation; Figure S5: Spatial patterns of MB for spring precipitation
of the grid datasets from observations. The median values of MB metric at 356 stations are also
presented for each sub-figure; Figure S6: Spatial patterns of MB for summer precipitation of the grid
datasets from observations. The median values of MB metric at 356 stations are also presented for
each sub-figure; Figure S7: Spatial patterns of MB for fall precipitation of the grid datasets from
observations. The median values of MB metric at 356 stations are also presented for each sub-figure;
Figure S8: Spatial patterns of MB for winter precipitation of the grid datasets from observations.
The median values of MB metric at 356 stations are also presented for each sub-figure; Figure S9:
Kling-Gupta efficiency of daily streamflow over the calibration period (2008–2013) for forty-four
combinations of eleven precipitation datasets (y-axis) and four temperature datasets (subplots on
x-axis) used as forcing in the VIC model. Each boxplot has 26 values for each streamflow gauging
station; Figure S10: Kling-Gupta efficiency of daily streamflow over the calibration period (2014–2019)
for forty-four combinations of eleven precipitation datasets (y-axis) and four temperature datasets
(subplots on x-axis) used as forcing in the VIC model. Each boxplot has 26 values for each streamflow
gauging station; Figure S11: Average of the logged transformed (E_logNSE) and modified (E_absNSE)
Nash-Sutcliffe efficiencies for the 26 daily streamflow simulations during (left) the calibration period
and (right) the validation period for forty-four combinations of 11 precipitation datasets (y-axis) and
4 temperature datasets (x-axis) employed as forcing in hydrological modeling.
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