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Supplementary Methods 

1. Smoothing holes-filled glacier elevation change maps 

In this study, we used mean difference of each elevation band to fill its 

corresponding gap in the dhdt map. However, this leaves abrupt gaps in maps of glacier 

elevation change, compared with nearest areas, which is a barrier to estimating glacier 

elevation change. Generally speaking, despite the fact that ice flow is much more 

obvious in West Kunlun (WK) than other regions in the High Mountain Asia (HMA), 

except Karakoram [1], we believe that glacier dynamics are continuous and extendable 

rather than suddenly ceasing or halting at certain points on glacier surface. Based on 

this, sudden elevation changes on glacier surfaces in the local study area are neither 

reasonable nor rational (Figure S1). Thus, we applied a smoothing approach to eradicate 

these abnormal sudden elevation changes on the glacier surfaces, to some extent, using 

Equation (1). 
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 represents pixels in the gap-filled glacier area waiting to be smoothed, 

� represents radius distance in the unit of pixel number, � and � represent pixel location 

in glacier elevation change maps. 

Supplementary Discussions 

1. ASTER images time offsets 

In this study, we used multi-temporal ASTER images to obtain glacier elevation at 

certain time points (i.e., 2002, 2011, and 2020). Therefore, it was essential for us to deal 

with the time offset. We apply a method similar to that of [2]. Firstly, we excluded pixels 

obscured due to cloud impact. Afterwards, we clipped ASTER DEMs to eliminate 

overlap between neighboring ASTER DEMs within each time span. Finally, we used 

mosaic imagery from 2001, 2002, 2003, 2004, and 2005 to construct the ASTER DEM 

map for 2002. The same procedure was applied to DEM files for 2010–2013 and 2019–

2021. Finally, we obtained mosaiced ASTER DEMs for 2002, 2011, and 2020. The 



results of this procedure can be seen in Figure S2-S4. When calculating glacier 

elevation change for each glacier during 2002–2011, 2011–2020, and 2002–2020, we 

took advantage of time intervals for each glacier. For instance, if a glacier was covered 

by ASTER DEM in 2001, 2012, and 2021, we assumed time offsets of 11 years, 9 years, 

and 20 years, respectively. More information about ASTER image coverage in each 

time span can be seen in Table S1-3. 

2. Correlations and significances of surface temperature and IVT trends 

We applied the OLS model to analyze annual JJA surface temperature, annual 

summer surface temperature (JJA surface temperature), annual IVT, summer IVT (JJA 

IVT), and winter IVT (DJF IVT) trends in WK. Thus, it was essential for us to depict 

correlation (coefficient R) and significance (P value) per pixel [3]. JJA and DJF IVT 

trend maps can be seen in Figures S5 and S6. Correlation (Spearman’s r) per pixel of 

summer surface temperature, winter surface temperature, annual IVT, JJA IVT, and DJF 

IVT trends can be seen in Figures S7–S11. Significance per pixel of summer surface 

temperature, winter surface temperature, annual IVT, JJA IVT, and DJF IVT trend maps 

can be seen in Figures S12-S16. In addition, we also portray integrated water vapor 

transport direction (IVT) (Figure S17). 

3. Other climatic factors analysis 

[4] assumed that annual range of monthly surface temperature (surface temperature 

range) and ratio of summer precipitation (JJA precipitation ratio) correlate well with 

glacier elevation changes in HMA. Therefore, we calculated annual trends of these two 

climatic factors (Figure S18-S19). We found that annual surface temperature range can 

explain the different SMB patterns between western and eastern WK. We also found 

that JJA precipitation in WK tended to display a decline over the past 20 years, which 

can explain the slight mass loss in WK during 2002–2020. Correlations (R) and 

significances (P) of annual surface temperature and summer IVT can be seen from 

Figures S20-S23. 

4. Linear and nonlinear glacier SMB sensitivity to climate factors 



[5] confirmed with deep learning technology that glacier mass balance sensitivity 

to climatic forcing is nonlinear. In this study, we compared glacier SMB response to 

summer surface temperature and IVT using the ordinary least square (OLS) model and 

an Artificial Neural Network (ANN) model [6]. 

To investigate the linear nature of glacier SMB sensitivity in WK, we calculated 

glacier SMB, summer surface temperature, and IVT for each glacier. After that, we 

calculated correlation coefficient (Spearman’s R) between glacier SMB and JJA surface 

temperature and annual IVT in WK during 2002–2011, 2011–2020, and 2002–2020 [4] 

(Figure S24). However, when we estimated coefficients and significances, we found 

that the ERA5.1 reanalysis dataset contained errors, thus it was necessary to exclude 

some unexpected errors caused by glacier mass balance estimation and meteorological 

elements (JJA skin temperature and annual IVT) (see Table S4). 

We found that there was significant correlation and significance between glacier 

SMB and summer surface temperature during 2002–2011 (R = -0.75, P <0.001) and 

2011–2020 (R = -0.72, P < 0.001). Compared with summer surface temperature, glacier 

SMB sensitivity to IVT was less remarkable during 2002–2011 (R = 0.28, P < 0.001) 

and 2011–2020 (R = 0.24, P < 0.001). However, during the full period 2002–2020, the 

impact on glacier SMB variations of IVT (R = 0.25, P < 0.001) was more significant 

than summer surface temperature (R = -0.18, P < 0.01). 

The final results show that the difference between linear and nonlinear glacier SMB 

response is trivial, but the significance of the ANN model is that it captured the over- 

or under-sensitivity of glacier SMB to extreme positive and negative summer surface 

temperature and IVT, which will help us to better constrain future glacier SMB 

variations. 

5. Linear and nonlinear glacier ELA sensitivity to climate factors 

To research linear glacier ELA sensitivity in WK to JJA surface temperature and 

annual IVT during 2002–2020, we calculated correlation coefficient (Spearman’s R) 

between changes in ELA and meteorological elements (JJA surface temperature and 



annual IVT) [7-9] (Figure S25). Based on this, we applied an ELA sensitivity model to 

establish the quantitative relationship between ELA shift and JJA surface temperature 

and annual IVT (see Table S5). 

Meanwhile, we also aimed to depict nonlinear glacier ELA responses to 

atmospheric forcing (JJA surface temperature and IVT). The final results show that 

glacier ELA sensitivity displayed by the ANN model was more accurate than that 

obtained by the OLS model. 

Supplementary Figures 

 

Figure S1. Comparisons between (a) original, (b) inpainting, and (c) 

smoothing dhdt maps. For the original dhdt map, outliers were removed 

from outside the reasonable glacier elevation range [10] and slope range 

[11]. The inpainting dhdt map used mean dhdt of each 50 m-elevation band 

to fill the corresponding gap due to outliers in the original dhdt map and 

pixel value > 3σ  at each 50 m altitude bin. For the final dhdt map, the 

manipulating smoothing approach was applied, described in the 

Supplementary Method Section. The results indicate for (a): mean dhdt is 



1.77 m and its standard deviation is 1.25 m; for (b): mean dhdt is 1.66 m 

and its standard deviation is 0.98 m; for (c): mean dhdt is 1.67 m and its 

standard deviation is 0.80 m. 

 

Figure S2. ASTER DEMs coverage from 2001 to 2005. 

 



 

Figure S3. ASTER DEMs coverage from 2009 to 2013. 

 

Figure S4. ASTER DEMs coverage from 2018 to 2021. 



 

 

Figure S5. JJA IVT trend in WK during 2002–2011 (a), 2011–2020 (b), 

and 2002–2020 (c). 

 



 

Figure S6. DJF IVT trend in WK during 2002–2011 (a), 2011–2020 (b), 

and 2002–2020 (c). 

 



 

Figure S7. Correlation efficient (Spearman’s R) of JJA skin 

temperature in WK during 2002–2011 (a), 2011–2020 (b), and 2002–

2020 (c). 



 

Figure S8. Correlation efficient (Spearman’s R) of DJF surface 

temperature in WK during (a) 2002–2011, (b) 2011–2020, and (c) 

2002–2020. 



 

Figure S9. Correlation efficient (Spearman’s R) of annual IVT in WK 

during (a) 2002–2011, (b) 2011–2020, and (c) 2002–2020. 



 

Figure S10. Correlation efficient (Spearman’s R) of JJA IVT in WK 

during (a) 2002–2011, (b) 2011–2020, and (c) 2002–2020. 



 

Figure S11. Correlation efficient (Spearman’s R) of DJF IVT in WK 

during (a) 2002–2011, (b) 2011–2020, and (c) 2002–2020. 

 



 

Figure S12. Significance (p-value) of JJA surface temperature per pixel 

in WK during (a) 2002–2011, (b) 2011–2020, and (c) 2002–2020. 



 

Figure S13. Significance (p-value) of DJF surface temperature per 

pixel in WK during (a) 2002–2011, (b) 2011–2020, and (c) 2002–2020. 



 

Figure S14. Significance (p-value) of annual IVT per pixel in WK 

during (a) 2002–2011, (b) 2011–2020, and (c) 2002–2020. 



 

Figure S15. Significance (p-value) of JJA IVT per pixel in WK during 

(a) 2002–2011, (b) 2011–2020, and (c) 2002–2020. 



 

Figure S16. Significance (p-value) of DJF IVT per pixel in WK during 

(a) 2002–2011, (b) 2011–2020, and (c) 2002–2020. 

 

 



 

Figure S17. Annual IVT trends in WK during (a) 2002–2011, (b) 2011–

2020, and (c) 2002–2020. The arrows represent the directions of IVT in 

each pixel. The black line represents glacier area (RGI v6.0). 

 

 



 

Figure S18. Annual mean surface temperature trend per pixel in WK 

during (a) 2002–2011, (b) 2011–2020, and (c) 2002–2020.



 

Figure S19. Annual IVT JJA ratio trend per pixel in WK during (a) 

2002–2011, (b) 2011–2020, and (c) 2002–2020. 



 

Figure S20. Correlation efficient (Spearman’s R) of annual surface 

temperature per pixel in WK during (a) 2002–2011, (b) 2011–2020, and 

(c) 2002–2020. 



 

Figure S21. Correlation efficient (Spearman’s R) of annual IVT JJA 

ratio per pixel in WK during (a) 2002–2011, (b) 2011–2020, and (c) 

2002–2020. 



 

Figure S22. Significance (p-value) of annual mean surface temperature 

per pixel in WK during (a) 2002–2011, (b) 2011–2020, and (c) 2002–

2020. 



 

Figure S23. Significance (p-value) of annual JJA IVT ratio per pixel in 

WK during (a) 2002–2011, (b) 2011–2020, and (c) 2002–2020. 

 



 

Figure S24. Correlation (Spearman’s R) and significance (p-value) 

between glacier SMB and meteorological factors (JJA surface 

temperature and annual IVT) in WK during (a) and (b) 2002–2011, (c) 

and (d) 2011–2020, (e) and (f)2002–2020. 

 



 

Figure S25. Correlation (Spearman’s R) and significance (p-value) 

between glacier ELAs shift and climatic factors: (a) JJA surface 

temperature, and (b) annual IVT in WK during 2002–2020. 

Supplementary Tables 

Year Image number 
Glacier area covered 

(���) 
Glacier number 

covered 

2001 7 1773.934 199 

2002 10 954.858 153 

2003 8 2336.375 160 

2004 4 737.702 48 

2005 3 274.319 55 

Table S1. The number of ASTER images for different years from 2001–

2005. Glacier counts and area (> 2 ��� ) were shielded by ASTER 

images in each year during this period. 



Year Image number 
Glacier area covered 

(���) 
Glacier number 

covered 

2009 2 273.343 39 

2010 6 1391.085 143 

2011 10 1684.679 200 

2012 8 2596.211 206 

2013 1 131.87 27 

Table S2. The number of ASTER imagers for different years from 

2009–2013. Glacier counts and area (> 2 ��� ) were shielded by 

ASTER images in each year during this period. 

Year Image number 
Glacier area covered 

(���) 
Glacier number 

covered 

2018 3 1609.954 62 

2019 15 2744.318 331 

2020 9 1595.667 193 

2021 1 127.249 29 

Table S3. The number of ASTER images for different years from 2018–

2021. Glacier counts and area (> 2 ��� ) were shielded by ASTER 

images in each year during this period. 

 

 

 



Periods 
Correlation and 

significance 
Sample number 

Glacier SMB-sensitivity model 
result 

2002–2011 

JJA skin 
temperature: 

R = -0.75, P < 0.001 

333 

∆�

∆�
=  −0.38∆� +  0.22∆� 

IVT: 

R = 0.28, P < 0.001 

252 

2011–2020 

JJA skin 
temperature: 

R = -0.72, P < 0.001 

242 

∆�

∆�
=  −0.16∆� +  0.07∆� 

IVT: 

R = 0.24, P < 0.001 

210 

2002–2020 

JJA skin 
temperature: 

R = -0.18, P < 0.01 

224 

∆�

∆�
=  −0.13∆� +  0.45∆� 

IVT: 

R = 0.25, P < 0.001 

302 

Table S4. Correlation coefficients (R) and significances (p-value) 

between glacier mass balance and climatic factors (JJA surface 

temperature and annual IVT) for three periods (2002–2011, 2011–2020, 

and 2002–2020). 

Periods 
Correlation and 

significance 
Sample 
number 

Glacier ELAs-sensitivity model result 

2002–

2020 

JJA skin 
temperature: 

R = 0.61, P < 0.001 

203 

∆ELA = 154.66 ∆T − 121.57 ∆P 

IVT: 221 



R = -0.64, P < 0.001 

Table S5. Correlation coefficient (R) and significance (p-value) 

between glacier ELAs shifts and climatic factors (JJA surface 

temperature and annual IVT) during the period 2002–2020. 
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