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Abstract: The accumulation and ablation processes of seasonal snow significantly affect the land surface
phenology in a mountainous ecosystem. However, the ability of snow to regulate the alpine land surface
phenology in the arid regions is not well described in the context of climate change. The impact of
snowpack changes on land surface phenology and its driving factors were investigated in the Tianshan
Mountains using the land surface phenology metrics derived from satellited products and a snow
dataset from downscaled regional climate model simulations covering the period from 1983 to 2015.
The results demonstrated that the annual mean start of growing season (SOS) and length of growing
season (LOS) experienced a significant (p < 0.05) decrease and increase with a rate of −2.45 days/decade
and 2.98 days/decade, respectively. The significantly advanced SOS and increased LOS were mainly
seen in the Western Tianshan Mountains and Ili Valley regions with elevations from 2500 to 3500 m
a.s.l and below 3000 m a.s.l, respectively. During the early spring, the significant decline in snow cover
fraction (SCF) could advance the SOS. In contrast, snowmelt amount and annual maximum snow
water equivalent (SWE) have an almost equally substantial positive correlation with annual maximum
vegetation greenness. In particular, the SOS of grassland was the most sensitive to variations of snow
cover fraction during early spring than that of other vegetation types, and their strong relationship was
mainly located at elevations from 1500 to 2500 m a.s.l. Its greenness was significantly controlled by the
annual maximum snow water equivalent in all elevation bands. Both decreased SCF and increased
temperature in the early spring caused a significant advance of the SOS, consequently prolonging the
LOS. Meanwhile, more SWE and snowmelt amount could significantly promote vegetation greenness by
regulating the soil moisture. The results can improve the understanding of the snow ecosystem services
in the alpine regions under climate change.

Keywords: snow mass; snow cover fraction; land surface phenology; Tianshan Mountains

1. Introduction

Vegetation has a critical effect on Earth’s ecosystem, water–heat exchange, and carbon
cycles [1–3]. The variability of land surface phenology (the start of growing season (SOS),
the end of growing season (EOS), and the length of growing season (LOS)) are controlled
by climatic conditions and partly human activities [4,5]. The alpine environment is vulner-
able to climate change, and is facing the warming faster than low-elevation regions [6,7].
A warming climate may increase the amount of energy received by seasonally snow-
covered areas [8], benefiting the vegetation greening in the high latitude and altitude
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regions [9]. In addition, changes in land surface phenology also have feedback to the
climate system through biogeochemical and biogeophysical processes [2]. Therefore, it
is essential to investigate the relationships between climate change and the alpine land
surface phenology.

Currently, most studies focused on clarifying the relationships between the land surface
phenology (or tree ring, vegetation index, etc.) and climate factors (precipitation, temperature,
soil moisture, etc.) [10–14]. Moreover, some studies attempted to reveal the snow cover effects
on land surface phenology in high-elevation and high-latitude areas [15–19]. For example,
except for spring temperature, the snow cover durations and melting days were demonstrated
as the important secondary factors of SOS variations for grassland and forest in the Alps
using the optical remote sensing products and meteorological datasets from 1992 to 2014 [20].
The advanced SOS in Alaska was attributed to the earlier snowmelt timing due to spring
warming based on multiple data sources during 2000–2019 [21]. As an excellent indicator of
climate change, the seasonal snowpack is defined as the most sensitive land surface variable
to the changes in precipitation and temperature for both time and space [22]. It not only
provides the fundamental freshwater for the alpine regions [23,24], but also regulates the
climate system and ecosystem service due to the excellent insulating properties and high
albedo [22,25,26]. Since snow accumulates during the cold season, an increase in snow depth
and longer snow cover duration could prevent vegetation damage from low temperatures
and wind in winter [27]. Meanwhile, more snowmelt could replenish the soil moisture in
early spring and contribute to vegetation greenness [28]. For example, the winter snow depth
could regulate the desert vegetation growth until summer by consistently influencing soil
moisture [27,29]. Climate warming could alter snowmelt timing and shorten the snow cover
duration [30,31]. The timing of snow accumulation and ablation significantly affects SOS and
LOS [16]. However, a relatively short time series of the common snow cover dataset could not
fully reveal the inter-annual trends of snow mass and meteorological factors, and their impact
on land surface phenology at a landscape level. Additionally, it is a big challenge to accurately
estimate the snow mass in the mountainous areas due to a sparse meteorological network and
complex underlying surface. Therefore, the response of alpine land surface phenology to the
snow changes still requires further research at an interdecadal time scale.

The Tianshan Mountains (TS) are believed to serve as the water towers and ecological
barrier of arid Central Asia, providing a large amount of glacier/snow melt water for
irrigated agriculture and ecosystem [32,33]. The warming rate in the TS is twice compared
with the global average level [34]. Snow cover duration experienced a significant decrease,
and snow end date advanced significantly [35,36], but the annual maximum snow storage
kept a relatively stable status [37]. Several studies have proved that regional vegetation is
sensitive to water deficits, temperature, precipitation, and human activities [38–41]. Mean-
while, a longer snow cover duration could lead to a greater annual maximum normalized
difference vegetation index (NDVImax) values of pasture in the Western TS [17]. However,
the response of land surface phenology to the snowpack changes (snow cover fraction,
snow mass, and snow depth, etc.) cannot be adequately revealed by MODIS snow cover
due to the limitation of optical sensor [28,42], and its driving mechanisms need to be better
explored in the entire TS. In addition, the accuracy and coarse resolution of the existing
snow mass datasets also bring a big challenge for finer-scale snow ecology research [43].

This study aims to investigate the influence of snow characteristics changes on land
surface phenology and clarify the driving mechanisms in the TS using the land surface
phenology metrics derived from satellited products and a snow dataset from the Weather
Research and Forecasting model (WRF) downscaled simulations spanning the period from
1983 to 2015. The specific objectives are as follows: (1) to investigate the spatiotemporal
variability of land surface phenology (SOS, LOS, and NDVImax) and related snow met-
rics (snow cover fraction (SCF), annual maximum snow water equivalent (SWEmax), and
snowmelt amount); and (2) to explore the relationships between snow changes and vege-
tation dynamic. This is the first attempt to reveal how the snow changes modulate land
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surface phenology in the entire TS. The results of this study will improve our understanding
of snow ecosystem service.

2. Data and Methods
2.1. Study Area

The TS are the largest mountain system of Central Asia (Figure 1a), spanning from
Xinjiang (China), southeastern Kazakhstan and Uzbekistan to Kyrgyzstan. They have a
length of approximately 2500 km and measure a width of 250–350 km, and the average
altitude is close to 4000 m above sea level (a.s.l). The TS are geographically divided into four
parts: (1) the Western Tianshan Mountains (WTS), (2) the Northern Tianshan Mountains
(NTS), (3) the Eastern Tianshan Mountains (ETS), and (4) the Southern Tianshan Mountains
(STS) [44]. Affected by the westerlies and the terrain obstruction, the TS exhibit a distinct
continentality gradient with an increasing temperature and precipitation from southeast
to northwest. The annual total precipitation and mean temperature amount to 329.3 mm
and 4.6 ◦C, respectively [35]. The annual total precipitation exceeds 500 mm along the
northern slope of the TS and the WTS, but amounts are below 100 mm around the Tarim
Basin [45]. The precipitation in the ETS and NTS mainly occurs in spring and early summer,
which is earlier than that in the STS (summer) but later than the WTS (later winter to early
spring) [44]. The abundant precipitation in the mountainous regions forms a “wet island”
in the arid land and benefits to shape the richly glaciated and snow-covered areas [44,46],
which provides the freshwater for the mountain-oasis-desert ecosystem [33]. In addition,
the annual maximum snow mass storage and mean snowfall in the TS reaches about
97.85 gigatons and 84.53 mm, respectively [37,47]. The TS exhibit a rich vegetation diversity
ecosystem (Figure 1b), and grassland is the dominant land cover type (Figure 1c).
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Figure 1. (a) Topography (m), (b) land cover type (conversion from basis land over in the WRF
second simulation domain), and (c) each type fraction in the Tianshan Mountains.

2.2. Datasets
2.2.1. Vegetation Product

Normalized Difference Vegetation Index–3rd generation data from 1983 to 2015 at
8 km spatial resolution, and the 15-day temporal resolution was obtained from the Global
Inventory Mapping and Monitoring (GIMMS) group (https://ecocast.arc.nasa.gov/data/
pub/gimms/3g.v1/, accessed on 20 July 2021). This dataset is generated by Advanced
Very-High-Resolution Radiometer (AVHRR) instrument, and underwent a firmly quality
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control process before its release [48]. GIMMS NDVI 3g has been widely applied for the
long-time trend analysis of vegetation biomass and its phenology dynamics in the Tibet
Plateau surrounding areas due to its good temporal consistency and fine quality [48,49].
The land cover type was collected from the European Space Agency (ESA) Climate Change
Initiative (CCI) project (https://www.esa-landcover-cci.org/, accessed on 20 February
2020), which consists of a series of global land cover maps from 1992 to the present and
the overall accuracy exceeds 75.4% [50], and it also exhibited highest overall accuracy in
China compared with other six coarse-resolution land cover datasets [51]. In addition,
the vegetation parameter has a significant effect on the land surface water–heat process
simulation. Thus, to keep the consistency of land cover in the previous land surface
simulation and later land surface phenology analysis, the basis land cover was derived
from the WRF basis land over (Figure 1b, CCI-LC 2000 map) for further relationship analysis
about the phenology from different land covers and the output from WRF model. [37].

2.2.2. Climate Data

The daily gridded SCF, SWE, surface air temperature (T2), surface albedo, snowmelt
amount, and soil moisture content (SMOIS) with a 9 km spatial resolution from 1982 to 2015
were obtained from the outputs of WRF-AWR 4.01 [52] coupled with Noah-MP model [53]
one-way double-nested dynamic downscaling simulation, which was forced by 6 h interval
ERA5 reanalysis from October 1982 to September 2018. Compared with in situ and remote
sensing observations, the snow characteristics, precipitation, and temperature from WRF
downscaled simulation showed high accuracy, especially the correlation coefficient of daily
snow depth and SWE overall exceeded 0.85 [37]. The detailed physical parameterizations
configuration and set up of WRF simulation was shown in [37]. Since the annual max-
imum snow mass storage in the sub-regions of TS occur in February, March, and April
(FMA) [37], the snow-related climate metrics during February, March, and April (SCFFMA,
SnowmeltFMA, T2FMA, SMOISFMA, and AlbedoFMA) were chosen to analyze the snow effect
on early spring land surface phenology.

2.3. Land Surface Phenology Method

The thresholds methods and change detection methods were widely applied to esti-
mate land surface phenology metrics [54]. Previous studies demonstrated that the dynamic
threshold method is simple and could effectively derive land surface phenology metrics in
Central Asia and Tibet Plateau [41]. Considering the validation data are still scarce in the TS,
the NDVIratio of 20% has a good accuracy in SOS estimation in surrounding regions of the
TS [41] and the EOS was determined by NDVIratio of 60% in Tibet Plateau [55,56], which has
a similar land cover and alpine environment. Therefore, the dynamic thresholds method
(NDVIratio of 20% and 60%) was used to determine the SOS and EOS, respectively [57,58].
The 15-day NDVI data were interpolated to a daily time scale, and the Savitzky Golay filter
was used to smooth out the noise of the NDVI time series [59]. The NDVIratio could be
calculated as:

NDVIratio =
NDVIt − NDVImin

NDVImax − NDVImin
(1)

where NDVIt represents the NDVI value at the time step t (Day of year, DOY), and NDVImin
and NDVImax demonstrate the minimum and maximum NDVI values in a year, respectively.
The length of LOS is equal to EOS minus SOS. In addition, the annual mean NDVI value
(1983–2015) < 0.1 was used to exclude the background values (bare land) from sparse
vegetation (Figure 1b) [60]. The GIMMS NDVI3g product was regridded to a 9 km spatial
resolution in order to have the same spatial resolution with WRF outputs before land
surface phenology calculation.

2.4. Statistical Analyses

The trend magnitudes of land surface phenology and climate factors, and their sig-
nificant levels were estimated by the Sen’s method [61] and Mann–Kendall (M-K) trend

https://www.esa-landcover-cci.org/
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test [62,63], respectively. In addition, the relationships between the land surface phenology
and climate factors were investigated by the Pearson Correlation coefficient (r).

3. Result
3.1. Spatiotemporal Distribution of Land Surface Phenology

The annual mean SOS, LOS, and NDVImax were 106.30 (Day of year, DOY), 162.24 days,
and 0.41 in the TS from 1983 to 2015, respectively. The SOS showed an increase from the
low-elevation regions to high-elevation regions (Figure 2a), in which the values mainly varied
from 70 to 135. In contrast, the LOS exhibited an opposite pattern (Figure 2c), in which a longer
growing season was found in the low-elevation region (elevation < 3000 m a.s.l) compared
with the high-elevation regions (elevation ≥ 3000 m a.s.l). The high NDVImax values prevailed
in the WTS and the low-elevation regions of the Ili Valley, and the corresponding values
exceeded 0.6 (Figure 2e).
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Figure 2. Spatial distribution of the mean vegetation metrics (left panels) and their trends (right panels)
from 1983 to 2015 (SOS (a) and (b), LOS (c) and (d), and NDVImax (e) and (f)). The white space in
Figure 2 means no data, and the black dots in (b,d,f) indicate the trend at a 0.05 significant level.

The SOS showed a significantly decreasing trend (p < 0.05) with a rate of−2.45 days/decade
in the TS. The SOS almost exhibited a consistently significant decrease in the entire TS (Figure 2b),
especially in the WTS and NTS with an elevation from 2500 to 3500 m a.s.l (Figure 3). The LOS
experienced a significant increase (p < 0.05) with a rate of 2.98 days/decade. Similarly, most
significantly increasing LOS values were noticed in the low-elevation regions of the Ili valley
and WTS (Figure 2d), a few significantly decreasing values were found in the low-elevation
regions of the northern slope the TS. The NDVImax showed a slight increase with a rate of
0.004/decade. The significantly increasing NDVImax values were mainly noticed in the WTS
and the intersection of NTS, STS, and ETS (Figure 2f).
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Figure 3. Elevation distribution of trend in land surface phenology (SOS, LOS, and NDVImax) in the
Tianshan Mountains from 1983 to 2015.

3.2. Spatiotemporal Variability of SWE, SCF, and Snowmelt

The variations of SWE, SCF, and snowmelt in the TS are shown in Figure 4. The
SWEmax showed a slight increase) with a rate of 2.31 mm/decade in the TS. It exhibited
a consistent augmentation in most regions of TS except for the STS (Figure 4a). The
significantly increasing values of SWEmax were mainly observed in the ETS. In contrast,
the SCFFMA experienced a slight decline with a rate of −1.23%/decade. Almost all regions
of the TS showed a consistent decrease (Figure 4b), and a significant decrease in SCFFMA
was seen in the STS. Conversely, the SnowmeltFMA exhibited a significant augmentation
(p < 0.05) with a rate of 9.41 mm/decade. The significantly increased values were noticed in
the ETS and high-elevation regions of the Ili valley and WTS (Figure 4c), but the decreased
values prevailed in the STS.
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3.3. Response of Land Surface Phenology to Snow

The relationships between land surface phenology metrics and snow during 1983–2015
are shown in Figure 5. The SCFFMA had a significant positive effect (r = 0.64, p < 0.01) on SOS
in the entire TS, especially in the WTS and low-elevation regions of the Ili Valley (Figure 5a). In
contrast, the significant positive areas influenced by the SWEmax (Figure 5b) and SnowmeltFMA
(Figure 5c) were smaller and concentrated in the WTS and part low-elevation regions of the
intersection of WTS and NTS, respectively. Conversely, the SnowmeltFMA in the high-elevation
regions had a significant negative effect on SOS, particularly in high-elevation regions of the
Ili Valley. Compared with a mixed pattern of the relationships between LOS and SCFFMA or
SnowmeltFMA (Figure 5d,f), the SWEmax had a significant effect on LOS in most regions of
TS (Figure 5e). Notably, the SCFFMA (r = 0.36, p < 0.05), the SWEmax (r = 0.40, p < 0.05), and
SnowmeltFMA (r = 0.44, p < 0.05) showed a significant positive relationship with NDVImax.
All of them exhibited a similar distributional pattern, in which significant positive values were
mainly noticed in the WTS and low-elevation regions of the Ili Valley (Figure 5g–i).
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4. Discussion
4.1. Influence of Snow on Land Surface Phenology

The spring land surface phenology is strongly associated with snow cover dynamics
in the alpine regions [17,64]. Previous studies suggested that the spring land surface
phenology is principally controlled by air temperature [12,65]. Changes in SOS were also
primarily influenced by the air temperature during the early spring in the TS (Figure 6),
which also confirmed the above views. Meanwhile, the dramatic warming in spring could
cause significantly earlier snowmelt dates and the reduction of the SCFFMA [66], which
was recognized as the most ecologically relevant evidence for spring phenology [28,67].
Variation of SCFFMA has a significant positive effect on the SOS. A significant advanced
snow end date and shortened snow cover duration have been reported in the TS due to
a warming climate [35,36], which could result in a decrease in AlbedoFMA and feedback
to the atmosphere, aggravating warming in spring [68]. Therefore, a decline in SCFFMA
could trigger a widely earlier SOS in the TS due to increases in soil temperature and air
temperature during the early spring, especially in the low-elevation regions of the Ili Valley
and WTS (Figure 5a), which might contribute to the vegetation germination [69].
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Compared with SCFFMA, SWEmax, and SnowmeltFMA could significantly regulate
the annual maximum vegetation greenness in the TS (Figure 6), which could be partly
attributed to the interannual variability of temperature and soil moisture during the early
growing season [28]. The vegetation growth is limited by water in the low-elevation regions,
whereas in alpine and high-latitude regions it is temperature limited [65]. The degree of
dependency on snow for vegetation growth is determined by the legacy effect of snow
on soil moisture and the demand for moisture conditions during the growing season [28].
Vegetation greenness is greatly sensitive and vulnerable to the water conditions in the
TS [38]. A high SWEmax value is always associated with a large snow depth and longer
snow cover duration, raising winter soil temperatures and reducing the risk of soil exposure
to freezing temperatures [17]. Meanwhile, more SnowmeltFMA could increase soil moisture
contents and promote vegetation greening in the subsequent growing season until the
summer [27]. Hence, a widespread significant increase in SnowmeltFMA is a factor that
contributed to a rise in NDVImax. The wetting and warming tendency might also benefit
vegetation greenness in the TS.

4.2. Responses of Different Vegetation Types to Snow

The responses of different vegetation types’ phenology to snow dynamics exhibited a
distinct difference in the TS, which was consistent with results obtained from other regions
such as the Tibetan Plateau and high-elevation regions of the Northern Hemisphere [65,69].
The SOS of grassland was more sensitive to SCFFMA variations than other vegetation types
(Figure 7a). A similar result was also demonstrated in the low-elevation regions of the
Ili Valley based on the MODIS snow and vegetation products [42]. Like the Alps [16],
the SOS of grassland was influenced primarily by a decline in snow cover, secondarily
by snowmelt amount, while the NDVImax was equally affected by SCFFMA and SWEmax.
Its SOS had a significant positive relationship with SCFFMA, but a negative relationship
with SnowmeltFMA, indicating that snow plays a vital role in grassland growth onset. This
strong positive relationship was mainly located at elevations from 1500 to 3000 m a.s.l
(Figure 8a). Notably, although the SCFFMA was not significant with LOS of grassland, it
could significantly affect the LOS below 3000 m a.s.l (Figure 8b). Moreover, SnowmeltFMA
significantly affected the LOS of grassland (Figure 7b), and its greenness was significantly
correlated with the SWEmax amount in all elevation bands (Figures 7c and 8c). Overall, the
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relations between sparse vegetation and snow variations showed a similar pattern with
grassland. The effect of SCFFMA on LOS of sparse vegetation was more significant than
grassland except for elevation below 1000 m a.s.l. Some herb vegetation germination and
growth, such as ephemeral plants, heavily depend on the snow conditions around the
TS [29]. Large SWEmax and SnowmeltFMA suggested that snow provided excellent thermal
protection and essential moisture supply for shorter plant types [42,56]. Generally, earlier
snowmelt with more snowmelt amount could significantly advance the SOS and prolong
LOS for grassland, promoting the increase in NDVImax [16,27]. In contrast, although more
SnowmeltFMA might also replenish the soil moisture, benefit the greenness, and prolong
the LOS, earlier snowmelt might restrain the early growth and significantly reduce the
NDVImax for shrubland and forest due to the exposure to the risk of lower soil temperature
and wind damage [17,70,71]. It is noted that snow amount could not significantly promote
the increase in NDVImax for forest compared with SCFFMA, because the air temperatures
are more closely correlated with forest than with other vegetation types (Figure 7c) [72].
The main effect of snow on forest growth is to prevent frost damage [73]. The largest
precipitation zone in the TS is near the forest line [45], and precipitation is the most
important source of soil moisture for later forest growth. In addition, the terrain features
(elevation, aspect, and slope) strongly affect alpine species richness, productivity, and
nutrient throughout altering the snow metrics dynamics and thermal regime [17,71].
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4.3. Limitations and Uncertainties

The performance of the snow dataset generated by a regional model depends on the
forcing data accuracy, physical schemes and model parameterizations, and spatial resolu-
tion [43,74]. A cold bias, precipitation overestimation, and lack of data assimilation caused a
large uncertainty of snow simulation in the high-elevation regions, particularly in the snow
ablation period [37,75]. In addition, the spatial heterogeneity of snow could not be revealed in
the complex terrains using a relatively coarse resolution (9 km) [76,77]. Similarly, the spatial
resolution of GIMMS NDVI 3g is appropriate for landscape-scale research, but maybe not be
sufficient for specific species or plant communities at a finer scale [17,78]. The synergistic anal-
ysis from the higher remote sensing data (such as MODIS, Landsat, Sentinel-2, Gaofen, and
digital cameras) may provide a feasible way to investigate relationships between snow cover
and vegetation and their interactions under complex terrain (i.e., ≤500 m) and micro-climate
conditions [79–81]. The cloud cover, temporal resolution, and other production processes may
also induce the NDVI product uncertainties [49].
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The dynamic threshold is a simple and efficient method to derive the land surface
phenology in existing studies [57,58], but the lack of in situ observations to validate its
performance increased the uncertainty of land surface phenology calculation in this study.
Land cover experienced a dramatic change with a rapid increase in crop area around the
TS during the past decades [82]; vegetation types based on the fixed CCI-LC 2000 map
might not accurately reflect the land cover changes and their phenology. For example, large
proportions of crop area were converted from grassland or sparse vegetation around the
TS [83], which may increase the greenness and advance the SOS. Meanwhile, previous
studies reported that the expansion of irrigated areas could affect the mountainous climate
by increasing precipitation and reducing the temperature, and then modifying the regional
snow status [84,85]. Similarly, the glacier areas are significantly shrinking due to climate
warming, which increased glacier/snow melt water and benefited vegetation greening [71].

5. Conclusions

This study investigated the variability of land surface phenology metrics and their
responses to the snow dynamics in the Tianshan Mountains from 1983 to 2015 using
the GIMMS NDVI product and a snow dataset from a regional climate model dynamic
downscaling simulation. The main findings of this study include the following:

1 The annual mean start of growing season was 106.30 (day of the year) and exhibited a
significant decrease trend (p < 0.05, −2.45 days/decade), which concentrated in the
Ili Valley and Western Tianshan Mountains with an elevation from 2500 to 3500 m
a.s.l. In contrast, the length of growing season was 162.24 days and exhibited a
significant increase trend (p < 0.05, 2.98 days/decade), which was mainly seen in
low-elevation regions (elevations below 3000 m a.s.l) of the Ili Valley and Western
Tianshan Mountains.

2 Snow cover fraction during February–April has a significant positive effect on the
start of growing season. In contrast, snowmelt amount during February–April and
annual maximum snow water equivalent have an almost equally significant positive
correlation with NDVImax. In particular, the start of growing season of grassland
was the most sensitive to variations of snow cover fraction during February–April
than that of other vegetation types, and their strong relationship was mainly located
at elevations from 1500 to 3000 m a.s.l. In addition, its greenness was significantly
affected by the annual maximum snow water equivalent in all elevation bands.
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3 Both decreased snow cover fraction and increased temperature in the early spring
period caused the significant advance of the start date of vegetation growing season,
consequently prolonging the length of vegetation growing season. Large annual
maximum snow water equivalent and more snowmelt amount could significantly
promote the increase in NDVImax by consistently regulating the soil moisture.

The variability of large-scale atmospheric circulations, such as El Nino and Atlantic
multi-decadal oscillation (AMO), could significantly impact regional temperature and
precipitation [86,87], and their relations with snow and vegetation need to be investigated
further. Notably, although the significantly advanced SOS was found in the Tianshan
Mountains and snow variability plays a critical role, it is necessary to quantify the contribu-
tion of snow, temperature, and precipitation to the change in the early spring vegetation
growth. Meanwhile, the relationships between the spring land surface phenology and
elevation-dependent warming should be considered using a finer resolution product in the
next work.
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