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Abstract: Synthetic aperture radar (SAR) tomography (TomoSAR) is a powerful tool for the three-
dimensional (3D) reconstruction of buildings in urban areas. At present, the compressed sensing (CS)
technique has been widely used in the TomoSAR inversion of urban areas because of the sparsity
of the backscattering power of buildings along the elevation direction. However, this algorithm
discretizes the elevation and assumes that the scatterers are located on predetermined finite grids. In
fact, scatterers can lie anywhere in the elevation direction, regardless of grid point constraints. The
phenomenon of scatterer positioning errors due to elevation discretization is called the off-grid effect,
which will affect the height estimation accuracy of TomoSAR. To overcome this problem, we proposed
a TomoSAR reconstruction algorithm based on atomic norm minimization (Tomo-ANM) in this paper.
Tomo-ANM employs ANM, a continuous compressed sensing technique, to obtain scatterer positions
on the continuous dictionary, thus eliminating the off-grid effect. Baseline compensation is necessary
to obtain the data of virtual uniform baselines or the samples of uniform data during preprocessing. A
fast realization of ANM, IVDST, is utilized to accelerate the process. Tomo-ANM was tested through
simulation experiments, and the results confirmed the validity of eliminating the influence of off-grid
effects and exhibited an improved location accuracy and detection rate in less time compared with
the on-grid TomoSAR algorithm SL1MMER. Real data experiments based on eight staring spotlight
TerraSAR-X images showed that Tomo-ANM can improve the accuracy of building height estimation
by 4.83% relative to its real height.

Keywords: Tomo-ANM; SAR tomography; atomic norm minimization (ANM); off-grid effect;
continuous compressed sensing; urban areas

1. Introduction

Synthetic aperture radar (SAR) is an active microwave remote sensing sensor and can
provide high-resolution two-dimensional (2D) images of a scene. However, due to the
oblique side-looking imaging geometry of SAR, the 2D images are actually projections of
an illuminated three-dimensional (3D) scene onto a range-azimuth plane, which causes
layover and foreshortening effects. This affects SAR image interpretation, especially in
urban areas. Synthetic aperture radar tomography (TomoSAR) is a proven and powerful
technique to solve this problem [1]. By extending the synthetic aperture principle into the
elevation direction, 3D-focused images can be reconstructed using data stacks of several
acquisitions from slightly different incident angles.
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In general, TomoSAR inversion is a line spectral problem, where we need to recover
the elevation and reflectivity of scatterers—in other words, frequencies and amplitudes
of signals in an azimuth-range pixel. There are various methods for TomoSAR inversion,
which can be divided into three groups. Nonparametric spectral estimation, such as beam-
forming [2,3] and Capon [3,4], is fast and robust but has a low resolution. Parametric
spectral estimation, such as multiple signal classification (MUSIC) [3,5,6] and truncated
singular value decomposition (TSVD) [7], can obtain a better resolution but needs prior
information, such as the number of scatterers. Considering that there are always only a
few scatterers distributed in an azimuth-range pixel in urban areas, compressed sensing
(CS) theory was introduced into TomoSAR inversion [8,9]. In the case of non-uniform
incomplete sampling, the CS algorithm can better solve problems such as high sidelobes
to achieve super-resolution capability, and has been widely used in the SAR field, such as
SAR imaging [10,11]. Compared with the spectral estimation methods, CS can maintain
spatial resolution by processing pixels directly instead of a covariance matrix, thus pro-
tecting the structure of buildings from destruction. Moreover, the super resolution of the
elevation dimension can be obtained through the CS technique with several and uneven
baselines [12]. Therefore, the CS technique, especially L1 norm minimization, is the most
common method used in urban TomoSAR inversion.

The conventional TomoSAR inversion methods mentioned above are considered on-
grid methods using a discretized TomoSAR model, because they assume scatterers are
located exactly on predetermined finite fixed grids. Therefore, the elevation is discretized
into L grids beforehand, s = [s1, s2, s3, . . . , sL], and scatterer positions are obtained on one of
the L grids. However, the physical truth does not always conform to the above assumption,
and scatterers in the azimuth-range pixel may lie on any position of the unambiguous
elevation. Therefore, the discretized TomoSAR model will inevitably lead to location
bias or detection errors owing to discretization, which is called the off-grid effect or basis
mismatch [13] in CS theory. Figure 1 shows the off-grid effect in the TomoSAR elevation
direction. The blue line represents a building, and we give three examples of scatterers on
the building that may generate strong scattering. The elevation direction s is divided into
grids. The green points are the real positions of scatterers. However, since true positions are
not exactly located on the grids, the grids adjacent to true positions will be used as the result
of estimated locations. Thus, there is a positioning error between the true and estimated
positions of scatterers, shown by the red line in Figure 1. By increasing the number of
grids and reducing the space between grids, the off-grid effect can be alleviated to some
extent. However, a sampling grid that is too dense increases computation dramatically
and results in a high coherence dictionary, which does not meet the incoherent property
in CS theory and degrades the recovery performance [14]. For TomoSAR, the off-grid
effect is also a common problem. Considering the complicated backscattering properties
between the buildings and surroundings in urban areas, the estimated building heights can
be inaccurate because of the discretization of elevation in the TomoSAR model.

To overcome the off-grid effect in CS theory, the first gridless sparse method was
introduced [15], motivated by the concept of the atomic norm, where it is proved that the
frequencies can be exactly recovered from noiseless complete data if they are appropri-
ately separated. The atomic norm minimization (ANM) was proposed in [14] to identify
unknown frequencies from incomplete data. Different from the discretized CS scheme,
ANM assumes frequencies distributed in an infinite dictionary and can recover sparse
signals precisely in a continuous space. Because of its good performance, the ANM al-
gorithm has been applied to sparse SAR imaging [16], DOA [17], space–time adaptive
processing (STAP) [18,19], and downward-looking sparse linear array three-dimensional
SAR imaging [20].
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Figure 1. Diagram of the off-grid effect in TomoSAR elevation direction.

In this paper, we propose a TomoSAR imaging algorithm based on ANM, referred to
as Tomo-ANM. Two problems need to be solved to implement ANM on TomoSAR. Firstly,
ANM applies to uniform acquisitions or samples from uniform acquisitions. For baselines
that do not fit the above distributions, which is almost inevitable in airborne and spaceborne
cases, ANM does not work well. Therefore, the uneven baselines are compensated using a
sector interpolation approach [21] before TomoSAR inversion. Secondly, the solution of
ANM is a non-convex problem and can be worked out as a semidefinite programming
(SDP) problem, which, however, incurs high computational complexity. This becomes
important for preventing the practical application of ANM to TomoSAR. The alternating
direction method of multipliers (ADMM) is a first-order algorithm commonly used to
accelerate SDP [22,23], which is a well-established method for large-scale problems. In this
paper, we employed a fast algorithm for ANM, i.e., the iterative Vandermonde decompo-
sition and shrinkage-thresholding (IVDST) [24] algorithm, to avoid the SDP solution and
improve computational efficiency. By using ANM, Tomo-ANM can eliminate the off-grid
effect completely and obtain a better location accuracy and detection rate than L1 norm
minimization in less time.

This paper is organized as follows. In Section 2, the tomographic SAR model and
ANM basic theory are outlined, and the TomoSAR reconstruction algorithm based on ANM
is proposed. In Sections 3 and 4, simulation and real data experiments are provided to prove
the effectiveness of the proposed method, respectively. We also discuss the performance of
Tomo-ANM under different samples, compare two fast realizations of ANM, and discuss
the parameter settings of Tomo-ANM in Section 5. Finally, conclusions are summarized in
Section 6.

2. Methodology
2.1. Tomographic SAR Imaging Model

In this paper, we consider N complex SAR datasets of the interested areas taken from
M(M > N) uniformly distributed acquisitions with slightly different incident angles. After
the co-registration and phase calibration steps, the focused complex-valued measurement
at the azimuth-range pixel (x0, r0) for the nth acquisition is

yn =
∫

∆s
γ(s) exp(−j2πξns) ds, n = 1, 2, . . . , N (1)

where γ(s) is the reflectivity along elevation s and ∆s is the range of elevation. ξn = 2bn/λr0
is spatial frequency, where bn represents the perpendicular baseline and λ is the wavelength.
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Generally, to obtain true positions of different scatterers in the same azimuth-range
pixel, the elevation s should be discretized by sl(l = 1, 2, . . . , L). TomoSAR model (1)
becomes

yn =
L

∑
l=1

γ(sl) exp(−j2πξnsl), l = 1, 2, . . . , L. (2)

Inthe presence of noise w, the TomoSAR signal model (2) can be approximated by

Y = Rγ + w (3)

where Y is the measurement vector of length N, R is the N × L measurement matrix
with Rn,l = exp(−j2πξnsl), γ = [γ(s1), γ(s2), . . . , γ(sL)] represents reflectivity vector on
sampled elevation, and w is a complex Gaussian vector with zeros mean w ∼ N(0, σ2IN).
Considering the sparsity of buildings in urban areas, γ can be inversed by l0 norm:

min
γ
‖γ‖0 s.t. Y = Rγ (4)

However, the l0 norm is an NP-hard problem. If matrix R fulfills the RIP and inco-
herence properties, l1 norm has the same solution as l0 norm. In the presence of noise, the
discretized signal model can be solved by the l1 norm minimization:

γ̂ = arg min
γ
‖Y−Rγ‖2

2 + λK‖γ‖1 (5)

where λK is the regularization parameter. In this case, elevation s is discretized into L grids,
and scatterer positions are assumed on these grids, which is not true in most cases.

In real urban scenes, scatterers are continuously distributed in the elevation direction,
so s belongs to a continuous dictionary. If it is assumed that K targets lie in an azimuth-range
pixel, the Equation (1) can be expressed as

yn =
K

∑
k=1

γ(sk) exp(−j2πξnsk), sk ∈ [0, H] (6)

where H = λr0/(2∆b) is the unambiguous elevation and ∆b is the aperture of perpendicu-
lar baselines. In this case, sk is completely not constrained by the grid and can be located in
any position within the unambiguous elevation H. The reflectivity γ(sk) and the position
of scatterers sk can be inversed by continuous compressed sensing.

2.2. Atomic Norm Minimization Theory

In this section, we introduce the theory of atomic norm minimization (ANM) algorithm,
which is a continuous compressed sensing technique.

Continuous compressed sensing recovers K sinusoidal signals which compose the
data matrix G ∈ CM×1 from noisy and incomplete samples Z ∈ CNe×1 where [Ne] ⊂ [M].
The element in Z is

zm =
K

∑
k=1

ck exp(j2πm fk) + wm fk ∈ [0, 1], m ∈ [Ne] (7)

Defining atomic set A = {a( f , φ) : f ∈ [0, 1], φ ∈ [0, 2π)} with atoms [a( f , φ)]m =
exp(j2πm f + jφ), m ∈ [M], the atomic norm is

‖G‖A = in f {t > 0 : G ∈ tconv(A)}

= in f

{
∑
k
|ck| : G = ∑

k
|ck|a( fk, φk)

}
. (8)
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where conv(A) is a convex hull of A. Different from conventional CS theory, the frequency
fk takes continuous value in [0, 1] and the atomic set A can be seen as a infinite dictionary.
As described in [25], a natural algorithm for estimating the missing samples is the atomic
norm minimization

min
G
‖G‖A s.t. gm = zm, m ∈ [Ne] (9)

where gm is the mth element of G. Define G[Ne ] as a subset of G indexed by [Ne]. In the
presence of noise, G can be recovered by

min
G

1
2
‖Z−G[Ne ]‖

2
2 + τ‖G‖A (10)

which can be solved by the semi-definite program (SDP)

min
u,G,x

τ

2
(u1 + x) +

1
2
‖Z−G[Ne ]‖ s.t.

[
x G

GH T(u)

]
� 0. (11)

where τ is a regularization parameter, H is the conjugate transpose, and T(u) ∈ CM×M
denotes a Hermitian Toeplitz matrix with vector u as first column:

T(u) =


u1 u2 · · · uM
uH

2 u1 · · · uM−1
...

...
. . .

...
uH

M uH
M−1 · · · u1

 (12)

where ui denotes the ith entry of u. The frequencies composing G are encoded in T(u) and
can be estimated by the Vandermonde decomposition. According to Carathéodory–Toeplitz
theory, any positive semidefinite Toeplitz matrix T(u) can be represented as follows:

T(u) = VDVH (13)

where

V = [a( f1, 0), a( f2, 0), . . . , a( fr, 0)] (14)

D = diag([d1, d2, . . . , dr]) (15)

di are real positive numbers, and r is the rank of T(u).
The SDP problem or its dual problem [14], which has the same solution as (11),

can be solved with a standard SDP solver, such as SDPT3 in the Matlab CVX toolbox.
However, SDP problems solved by the interior point method [26] would lead to a high
computational complexity for large-scale problems [22,23]. In [24], a fast algorithm named
iterative Vandermonde decomposition and shrinkage-thresholding (IVDST) based on the
accelerated proximal gradient (APG) technique are proposed to escape the SDP problem
in ANM. Considering key structural features inherent in ANM, IVDST imposes low-rank
and positive-semidefinite (PSD) properties over Vandermonde–Toeplitz structural matrices
through iterative shrinkage-thresholding. IVDST can reduce computational complexity by
an order of 1.5 to achieve comparable estimation accuracy [24]. In this paper, we choose
IVDST as a fast realization of ANM.

2.3. TomoSAR Algorithm Based on Atomic Norm Minimization

To invert the TomoSAR model in Equation (6), we propose a TomoSAR algorithm
based on ANM, which we refer to as Tomo-ANM for convenience. The flowchart is shown
in Figure 2. In the preprocessing stage, apart from the co-registration and phase calibration
step, the baseline compensation step compensates randomly distributed baselines as uni-
form baselines or samples of uniform baselines, which is a necessary condition for using an
ANM algorithm. In the TomoSAR inversion stage, the complete denoising signal is first
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recovered by ANM. Vandemonde decomposition is used to obtain the possible position of
scatterers. We then estimate the model order—the number of scatterers—within one pixel.
Finally, amplitudes of scatterers need to be reestimated by the linear inversion algorithm.

Figure 2. Flowchart of the proposed method.

For the sake of representation, we give some definitions:

brandom: the input randomly distributed baselines;
Yrandom: input N complex data;
Rrandom: the measurement matrix corresponding to brandom;
b[N]: N baselines sampled from M uniform baselines b[M];
Y[N]: incomplete noisy samples of uniform baselines data with index [N];
R[N]: the measurement matrix corresponding to b[N];
b[M]: M uniform baselines;
Y[M]: complete denoising data of uniform baselines with index [M];
R[M]: the measurement matrix corresponding to b[M].

It should be noted that Y in Equation (3) refers to Yrandom. A schematic diagram is
given in Figure 3 to describe the data at different stages.

Figure 3. Data description at different stages.

2.3.1. Baseline Compensation

In actual airborne or spaceborne cases, the N stacks TomoSAR data are usually acquired
by repeat passes. Thus, the baselines are inevitably randomly distributed. The baseline
compensation step compensates Yrandom as Y[N], which is the input of the ANM algorithm.
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In this paper, a sector interpolation approach [21] is used to virtualize data for specific
baseline position [N]. The compensation process can be expressed as

Y[N] = HYrandom (16)

where H is an N × N transformation matrix (N ≥ 3) and H can be found by

H = arg min
H
‖vec{R[N]} −A · vec{Rrandom}‖2 (17)

where vec{·} is the vec-operator which stacks the columns of a matrix, A = diag{H, H, . . . , H}
with H repeated M times. The minimization problem (17) can be solved by using conven-
tional rules for the overdetermined equation systems. In addition, the choice of b[N] and
b[M] needs to be determined by the distribution of actual baselines brandom.

2.3.2. Signal Recovery by ANM

The ANM algorithm can recover complete denoising signal Y[M] with M uniform
baselines using Y[N], [N] ∈ [M]. As we can see, there is little difference between Equation (6)
to be solved and the CCS model (7). After some simple transformation, we can obtain

yn =
K

∑
k=1

γ(sk)exp(−j2πξnsk)

=
K

∑
k=1

γ(sk)exp(−j2π · 2bn

λr0
· λr0

2∆b
· sk

H
)

=
K

∑
k=1

γ(sk)exp(−j2π · bn

∆b
· sk

H
) (18)

=
K

∑
k=1

γ( fk)exp(−j2πn fk) fk ∈ [0, 1], n ∈ [N], [N] ∈ [M]. (19)

Now, Equation (19) has the same form as Equation (7), which means that the TomoSAR
model (6) can be solved by ANM naturally, and the complete denoising signal Y[M] can be
recovered from Y[N] using ANM.

2.3.3. Vandemonde Decomposition

By implementing ANM, we can not only obtain recovery signal, but also obtain T(u),
which contains the frequency information of signals.

The Vandemonde decomposition of T(u) can be computed efficiently via a subspace
algorithm. We would not choose the general MUSIC or ESPERIST algorithms, which dis-
cretize the elevation into grids to obtain a measurement matrix. The root-music algorithm
is a good choice for us, as it uses a polynomial method to find roots instead of the spectrum
search in the MUSIC algorithm. It is not limited by the grid and can obtain more accurate
results under a complete and denoising signal.

After f̂k is obtained, the possible elevation recovered by Vandermonde decomposition is

ŝk = f̂k · H. (20)

where H is the unambiguous elevation.

2.3.4. Model Selection and Amplitude Estimation

Model selection, which is based on information theoretic criteria (ITC), is used to esti-
mate the most likely number K̂ of point scatterers along elevation inside an azimuth-range
pixel. It seeks a trade-off between model fit and complexity. In this paper, the Bayesian
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information criterion (BIC), an effective model selection method for TomoSAR [12,27], is
chosen to estimate the proper model K̂. The BIC principle can be expressed as [28,29]

BIC(K) = −2lnp(Y|θ̂(K), K) + 3KlnN (21)

where θ̂(K) denotes the vector of amplitudes, phases, and elevation of the Kth scatterer;
p(Y|θ̂(K), K) is the likelihood function. The number of scatterers K̂ and corresponding
elevation ŝ is obtained as BIC(K) reaches minimization.

The previous step obtains the elevation position ŝ under infinite dictionary. The
amplitude estimation can be realized by the least-squares algorithm:

γ̂(ŝ) = (RH(ŝ)R(ŝ))−1RH(ŝ)Y (22)

where R(ŝ) is a N × K̂ matrix with Rn,k̂(ŝ) = exp(−j2πξn ŝk).

3. Simulation Results

In this section, we investigated the advantages of the proposed method by some
simulation experiments. In order to show the elimination of the off-grid effect in our
method, we chose SL1MMER, a typical complete framework for TomoSAR inversion
proposed in [12], as a comparison. The first step of SL1MMER is “scaled down by L1 norm”,
which is realized by on-grid L1 norm minimization.

The wavelength and slant range were set to 0.031 m and 588,303.75 m, respectively,
which are equal to the parameters used in Section 4. We chose 20 samples from 32 full
uniform data, with baselines shown in Figure 4. The minimum baseline is 15 m, while
the maximum is 465 m. From that, the Rayleigh resolution and unambiguous height can
be obtained:

ρs =
λr

2∆bmax
= 19.00 m. (23)

H =
λr

2∆bmin
= 607.91 m. (24)

Let ks = |s2 − s1|/ρs denote the distance between two scatterer elevations s1 and s2.
Considering the great impact of the grid density on the on-grid algorithm, we studied the
performances of the SL1MMER algorithm under different numbers of grids. SL1MMERnum
represents a grid with num ·M points, where M is the number of full data acquisition.

0 50 100 150 200 250 300 350 400 450

Baseline (m)

Figure 4. Baselines distribution in simulation experiments.

First, the removal of the off-grid effect by the Tomo-ANM algorithm is shown in
Figure 5. We provide the detection results of five scatterers along the elevation direction.
The black circles represent true locations, the red boxes denote the Tomo-ANM results,
and the green dots show the SL1MMER detection results. Five scatterers are randomly
distributed between 100 m and 105 m. The SL1MMER algorithm sets the grid interval as
1 m, and the estimation results are located at grids adjacent to the truth positions, thus
producing a positioning error. Regardless of noise, Tomo-ANM can accurately obtain the
scatterer positions and eliminate the off-grid effect completely. The validity of Tomo-ANM
was preliminarily illustrated. Four experiments were then implemented.

Super-Resolution Capability: The super-resolution capability of Tomo-ANM, SL1MMER20,
and SL1MMER30 was tested under 10 dB and 5 dB SNRs. We set two scatterers with the
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same amplitudes and phases, one of which was fixed at 90 m, while the other was on the
right with a varying distance (ks = 1.2, 0.8, 0.4) from the first point. Both scatterers were
off-grid. The results are shown in Figure 6. The top row shows the positioning results
under 10 dB, and the bottom under 5 dB. From left to right, the distance between scatterers
decreases. The results before model selection and amplitude estimation are shown. As
we can see, the SL1MMER algorithm can only locate grids adjacent to the true position,
while Tomo-ANM can position them more accurately and is not influenced by predefined
grids. Regardless of the accuracy, which will be discussed next, under a 10 dB SNR, Tomo-
ANM and SL1MMER can distinguish two scatterers fairly well at all distances, even when
ks = 0.4. When the SNR is worse, SNR = 5 dB in this example, scatterers can still be
located well when ks = 1.2 and 0.8, but with slightly more bias relative to the true position
compared with SNR = 10 dB. At SNR = 5 dB and ks = 0.4, neither method can recover
the two scatterers. Therefore, ANM can completely eliminate the off-grid effect and has a
super-resolution capability that is no worse than that of SL1MMER.

1 2 3 4 5
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Figure 5. Removal of the off-grid effect by Tomo-ANM.
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Figure 6. Super-resolution capability comparisons between Tomo-ANM, SL1MMER20 and
SL1MMER30 under different SNRs and normalized distances. (a) SNR = 10 dB, ks = 1.2.
(b) SNR = 10 dB, ks = 0.8. (c) SNR = 10 dB, ks = 0.4. (d) SNR = 5 dB, ks = 1.2.
(e) SNR = 5 dB, ks = 0.8. (f) SNR = 5 dB, ks = 0.4.
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Location Accuracy: The location accuracy of one scatterer of Tomo-ANM and SL1MMER
was investigated. The SNR was set to 0:2:30 dB, and the grid density of SL1MMER was set
to num = 5:5:30. The elevation of the scatterer was randomly distributed in [0, H], and the
amplitude and phase were fixed. For each parameter setting, 1000 Monte Carlo experiments
were performed. The RMSE (root mean square error) was used to measure accuracy. Results
are shown in Figure 7. The accuracy of SL1MMER improves as grid density increases. For
example, the RMSE falls from 0.94 to 0.16 m when the number of grids increases from 5 M
to 30 M for SNR = 30 dB. This proves that the off-grid effect can be alleviated to some
extent in this way. The RMSE decreases quickly (from 1.33 to 0.19 m using SL1MMER30)
when the SNR changes from 0 to 20 dB, but nearly remains unchanged (from 0.19 to 0.16 m
using SL1MMER30) when the SNR is higher than 20 dB. This is because, when the SNR is
good enough, the performance of SL1MMER is mainly constrained by all grids. When it
comes to Tomo-ANM, the RMSE is always lower than SL1MMER under any SNR, and the
difference reaches a minimum of 0.05 m using SL1MMER30 when the SNR is 16 dB. It then
degrades slowly, even when the SNR exceeds 20 dB. This demonstrates that Tomo-ANM
has nothing to do with grids and can obtain more accurate results than SL1MMER.
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Figure 7. Location accuracy (RMSE) of single scatterer under different SNRs.

Detection Rate: The detection rate of the two scatterers using Tomo-ANM and SL1MMER
was studied. The SNR was set to 0:2:30 dB, the grid density was set to num = 20, 30, and the
distance between the two scatterers was set to ks = 0.2:0.1:1.5. The elevation was randomly
distributed in [0, H], and the amplitudes and phases were equal and fixed. We first judged
whether the number of scatterers was consistent with the fact. On the premise that the
number of scatterers is correct, RMSE < threshold is regarded as a successful recovery;
otherwise, recovery fails. In this paper, threshold = 1 m, which is nearly 1/19ρs. Monte
Carlo experiments were performed 1000 times for each parameter setting, and the times
of successful recovery were recorded to obtain the detection probability graph shown in
Figure 8. The slight drop in the detection rate around ks = 1 is caused by the interference of
the two strong scatterers. The interference effect becomes stronger when the amplitude of
the scatterers becomes closer [30]. As we can see, with a higher grid density, SL1MMER30
performs slightly better than SL1MMER20. The most striking difference is that, when
Ks = 0.9 and SNR = 30 dB, the detection rate of SL1MMER20 is 72.8%, while that of
SL1MMER30 is 94.8%. Compared to the better-performing SL1MMER30, the detection
rate of Tomo-ANM is higher than SL1MMER regardless of the Ks and SNR. For example,
the detection rate of SL1MMER30 is only 26.5%, while that of Tomo-ANM is 77.6% when
Ks = 1 and SNR = 24 dB. When Ks = 1.1, Tomo-ANM can achieve a detection probability
of more than 90% when the SNR is greater than 20 dB, while SL1MMER30 needs an SNR
greater than 24 dB to achieve the same performance. When Ks = 1.2, Tomo-ANM can
achieve a detection probability of more than 90% with an SNR greater than 14 dB, while
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SL1MMER30 requires an SNR greater than 18 dB to achieve the same result. Therefore,
Tomo-ANM performs better than SL1MMER when detecting two scatterers.
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Figure 8. Detection rate of Tomo-ANM and SL1MMER under different SNRs and normalized
distances. (a) Tomo-ANM. (b) SL1MMER20. (c) SL1MMER30.

Time Consumption: The time consumption of ANM and SL1MMER was shown and
analyzed. For convenience, Tomo-ANM-SDP denotes ANM realization by the SDPT3 tool,
while Tomo-ANM-IVDST does so by IVDST. The L1 norm minimization of SL1MMER
was implemented by the iterative shrinkage-thresholding (IST) algorithm. To assess the
computational efficiency of different methods, we recorded statistics on the average running
time of 200 independent points under different SNRs. Only the inversion process was
timed, excluding the model selection and amplitude correction steps. The simulation
was performed on MATLAB 2019b on a computer equipped with an Intel Core i7 CPU @
2.60 GHz. The results are displayed in Figure 9. There is little difference in the time of each
algorithm under different SNRs, so the average time is used for time comparison below. It
can be seen that the ANM algorithm implemented by SDPT3 takes an average of 0.49 s,
which is the longest time. The running time of the SL1MMER algorithm increases from
0.04 to 0.24 s with the increase in grid density from 5 M to 30 M. There is a sudden increase
when the grid density reaches 15 times. The ANM algorithm implemented by IVDST takes
an average of 0.02 s, which is the shortest time and even slightly faster than the SL1MMER5
algorithm, which takes 0.04 s on average. It should be noted that the computational
efficiency of Tomo-ANM-IVDST is related to parameter settings, which we discuss in
Section 5.3. The computational complexity is highly related to the full data size. According
to [24], the overall computational complexity of SDP is O(N3.5) using the advanced solver
SDPT3, where N represents the size of the full data, while the computational complexity of
IVDST is only O(N2). As shown in Figure 9, the computational efficiency improvement
caused by an order of 1.5 in computational complexity reduction is considerable.
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Figure 9. Running time of single scatterer of different methods under different SNRs.
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On the basis of the above simulation results, Tomo-ANM can obtain a super-resolution
capability comparable to SL1MMER, has an improved location accuracy and detection rate,
and is less time-consuming.

4. Real Data Results

This section is devoted to demonstrating the advantages of our method, proposed in
Section 2.3, in the TomoSAR inversion of urban areas using spaceborne data. We selected a
high-rise building as the experimental target and verified the superiority of Tomo-ANM in
removing the off-grid effect and in obtaining the building height more accurately compared
with the on-grid SL1MMER algorithm.

4.1. Datasets

We utilized eight stacks staring spotlight TerraSAR-X data of the urban area of Wuhan,
China, where there are many high-rise buildings. Figure 10 shows a TerraSAR image,
acquired on July 2015, overlaid on Google Maps. The building marked by a red rectangle
is investigated. The system parameters are shown in Table 1. The time baseline is from
June 2014 to January 2016, and the total space perpendicular baseline aperture is 285.98 m.
Baseline information is reported in Table 2. Before we implement the TomoSAR inversion,
some preprocessing steps, including co-registration, phase calibration, and baseline com-
pensation, need to be carried out. Details and results of baseline compensation are given in
the next section.

Figure 10. Display of the TerraSAR-X data. SAR image in the white box overlaid on Google Earth
optical image. Range and azimuth direction are indicated by yellow arrows. The high-rise building
marked by a red rectangle is investigated next.

Table 1. System parameters of TerraSAR-X images.

Imaging
Mode

Wavelength
(m)

Slant Range
(m)

Incidence
Angle

Range
Resolution (m)

Azimuth
Resolution (m)

ST 0.031 588,303.75 30.83◦ 0.59 0.23
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Table 2. Baseline information of eight TerraSAR images.

Acquisition Date Space Baseline (m)

28 June 2014
5 October 2014

24 May 2015
15 June 2015
29 July 2015

20 August 2015
25 October 2015
10 January 2016

245.43
30.76

230.73
121.32

0
46.90
96.25
−40.55

4.2. Results

We used images of Hubei Science and Technology Venture Building, labeled by the
red box in Figure 10, to conduct the following real data experiments. Viewed from the top,
the Hubei Science and Technology Venture Building is a hexagonal building, as shown in
Figure 11. According to the relationship between the SAR incident direction and the build-
ing orientation, it is obvious in Figure 11a that two surfaces can be illuminated and imaged
on the slant-range plane of SAR. Figure 11b is a street-view photo of Hubei Science and
Technology Venture Building from Baidu Map. There are many glass windows distributed
on the two illuminated surfaces of the building. At an appropriate SAR incident angle, the
glasses could form strong backscattering, while the backscattering of the connected wall is
relatively weak, thus forming four bright glass walls and three dark gaps in the SAR image,
shown in Figure 11c.

(a) (b)

50 100 150 200

Azimuth(pixel)

20

40

60

80

100

120

140

160

180

200

220

R
a

n
g

e
(p

ix
e

l)

(c)

Figure 11. The optical and SAR image of Hubei Science and Technology Venture Building. (a) The
imaging geometry of the building. (b) Street-view image from Baidu Map. (c) SAR image of Hubei
Science and Technology Venture Building. The red point was selected to demonstrate the necessity
of baseline compensation in Section 4.2.1. And the blue line was chosen to display the tomographic
profiles in Section 4.2.2.

In addition, the building has a total of 26 floors. According to multiple onsite mea-
surements of the handheld laser rangefinder at different angles, the building height is
99 m [27].

4.2.1. Baseline Compensation

The baseline compensation step virtualizes the data at uniform baselines or the sam-
pling data of uniform baselines based on the existing non-uniform baselines and data.
In this paper, we employed the sector interpolation approach [21], explained in detail
in Section 2.3.1. When determining the uniform baselines b[M] to be compensated, the
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minimum baseline and baseline aperture of the real non-uniform perpendicular baseline
should be taken into full consideration, so as to make the virtual baseline position close to
the original baseline position as much as possible and maximize the use of existing data.

In this case, we set the uniform baselines as −40:40:240 m, shown in Figure 12a. Thus,
the Rayleigh resolution and unambiguous height are 28.55 m and 228.45 m, respectively. A
point, marked in red in Figure 11c, in the middle and upper part of the building was selected
to demonstrate the necessity of baseline compensation. For the convenience of presentation,
we first give the spectrum inversion results of beamforming before and after baseline
composition, shown by the blue and red line in Figure 12b, respectively. In both cases, the
position of the scatterer at about 100 m is obtained, but the maximum sidelobe amplitude
is suppressed after baseline compensation. The ANM algorithm requires uniform baselines
or sampling of uniform baselines. If non-uniform baseline data are directly input into the
ANM inversion algorithm, it will obtain wrong results due to uneven baselines, shown by
the blue circle in Figure 12b. After using the sector interpolation approach to compensate
baselines, the correct elevation position can be retrieved, shown by the red diamond in
Figure 12b. Hence, baseline compensation is a necessary step for Tomo-ANM.
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Figure 12. The baseline compensation step. (a) Baselines before (black circle) and after (red triangle)
baseline compensation. (b) The beamforming spectrum and ANM results along elevation before and
after baseline compensation.

4.2.2. Tomographic Profiles

In order to observe the influence of the off-grid effect, we selected a line target with an
azimuth number of 69, shown in Figure 11c with a blue line, to display the tomographic
profiles. For SL1MMER, the grid interval was set as 1 m, which is nearly 1/19 of the
Rayleigh resolution. Figure 13 shows the reconstruction profiles of the test line in the
elevation and range direction. SAR illuminates from the left to the right of the scene.
The roof is at a near distance, while the floor is at a far distance. The height changes
continuously and increases gradually from the floor to the roof. The results of Tomo-
ANM and SL1MMER in Figure 13a are both consistent with the above description, i.e., our
expectations. To better show the reconstruction details, we provide an enlargement of the
blue box in Figure 13a,b, using the same markers as Figure 13a. It can be seen that the
results of the SL1MMER algorithm (green points) are firmly restricted by the grids with 1
m intervals shown by the dashed line in the background, especially at range pixels 60 to
66, which affects the fine characterization of the target’s 3D structure. Tomo-ANM profiles
are distributed continuously in the entire elevation space and are not constrained by the
grid; thus, they can better ensure the continuity of the building facade and achieve the fine
characterization of targets.

By comparing the two tomographic profiles shown in Figure 13, due to the off-grid
effect, the on-grid TomoSAR inversion–SL1MMER profiles are influenced by the grids,
while the Tomo-ANM profiles, using continuous dictionary, eliminate the off-grid effect
completely and can better position the scatterers.
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Figure 13. Tomographic profiles of a line target. (a) The Tomo-ANM and SL1MMER profiles of line
azimuth 69. (b) Partial enlargement of the blue rectangle in (a).

4.2.3. Height Estimation of the Building

To demonstrate the validity and potential of the Tomo-ANM method for urban area
analysis, we implemented tomographic inversion on the whole test building in Figure 11c.
Figure 14 shows the reconstruction results overlaid on an amplitude image, with different
colors representing elevation values. Note that the elevation value shown is at an elevation
direction perpendicular to the azimuth-range plane and does not transform from the
elevation coordinate to the height coordinate perpendicular to the ground. By comparing
Figure 14a,b intuitively, it is obvious that both algorithms can recover the general elevation
change of the building, and the elevation trend is correct.

(a) (b)

Figure 14. Tomographic reconstruction results of Hubei Science and Technology Venture Building.
The color represents different elevation. (a) Tomo-ANM. (b) SL1MMER.

We chose five pairs of points from the reconstruction results of the building for height
estimation. Each pair of points is one point on the roof and one on the floor. For the
convenience of comparing the results with the real building height, the elevation values
of each pair were converted into height values. The building height estimated by each
pair of points and the final building height estimation of each method are given in Table 3.
Based on comparisons with the true height of the building, 99 m, the building height
estimated by the Tomo-ANM-SDP algorithm is 96.62 m and has only a 2.40% error, which
is the most accurate elevation estimation result. The estimation error of Tomo-ANM-IVDST
is 3.33%, which shows comparable estimation accuracy [24] with Tomo-ANM-SDP. The
height estimated by SL1MMER is 91.84 m, and the estimation error is 7.23%, 4.83% higher
than Tomo-ANM-SDP. Therefore, using Tomo-ANM improves the accuracy of building
height estimation in the tomographic reconstruction in urban areas, because the off-grid
effect is eliminated.
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The running time of Tomo-ANM-SDP, Tomo-ANM-IVDST, and SL1MMER of the
whole building are 1.4 h, 1.4 min, and 8.1 min, respectively.

Table 3. Height estimation of different methods.

Height 1 (m) Height 2 (m) Height 3 (m) Height 4 (m) Height 5 (m) Average
Height (m)

Estimation
Error

Tomo-ANM-SDP 96.28 96.02 96.32 96.95 97.52 96.62 2.40%

Tomo-ANM-IVDST 96.10 94.56 97.33 94.26 96.25 95.70 3.33%

SL1MMER 92.25 93.79 92.25 90.20 90.71 91.84 7.23%

5. Discussion
5.1. Performance of Tomo-ANM under Different Samples

As mentioned above, ANM can recover a denoising complete signal Y[M] from a noisy
incomplete signal Y[N]. In this section, we discuss the location accuracy and detection rate
of Tomo-ANM under different samples N. The parameter settings were the same as those
in Section 3, and N = 8:4:32 when full sample M = 32. For every parameter setting, 1000
Monte Carlo experiments were carried out. Results are shown in Figures 15 and 16.
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Figure 15. The location accuracy of Tomo-ANM under different samples N and SNRs.
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Figure 16. The detection rate of Tomo-ANM under different samples N. (a) SNR = 10 dB. (b) SNR =

20 dB. (c) SNR = 30 dB.

Figure 15 displays the change in RMSE with the SNR under different sample numbers
N. The accuracy of Tomo-ANM under every N increases with the increase in SNR. This
is consistent with the conclusion in Section 3. With the increase in the sampling rate, the
positioning increases in accuracy. The RMSE decreases from 1.28 to 0.67 m, while N changes
from 8 to 32 with SNR set to 0 dB. When N is greater than 20, the positioning accuracies are
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very close to each other. Even at N = 8, the positioning accuracy with a good SNR, 0.07 m
at 30 dB, is very competitive. Figure 16 shows the performance of the detection rate of the
two scatterers under different N and SNR values. The horizontal axis is the normalized
distance, and the vertical axis is the detection rate. The performance under three SNRs
(10 dB, 20 dB, 30 dB) is presented by different line types, respectively, in Figure 16a–c, and
the performance of different sample numbers N was studied under each SNR. There is
still a drop around ks = 1. When N is fixed at 8 and ks = 1.6, the detection rate is 30.8%
at 10 dB, 83.4% at 20 dB, and 94.2% at 30 dB; that is to say, the better the SNR, the higher
the detection rate. Under the same SNR, the higher the sample number N is, the better the
detection rate is. For instance, detection rate increases from 65% to 100% as N grows from
8 to 32 when ks = 1.2. Likewise, when N is greater than 20, the detection rates are close at
different ks values except when ks is around 1.

Therefore, the performance of Tomo-ANM, both in positioning accuracy and detection
rate, decreases with a decrease in the sample number N. However, when N is greater than
20, that is, when the sampling rate is greater than 62.5%, the performance of Tomo-ANM is
relatively close, and there is no great improvement as N increases in most cases.

5.2. Comparison between IVDST and ADMM

As stated in Section 1, ADMM is a mature algorithm widely used in SDP accelera-
tion [22,23,31,32]. In this section, we made a simple comparison of two fast implementations
of ANM, IVDST, and ADMM. The parameter settings were the same as those in Section 3.
Results are shown in Figure 17.
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Figure 17. Simple comparisons between Tomo-ANM-IVDST and Tomo-ANM-ADMM. Results
of Tomo-ANM-SDP and SL1MMER are shown as a reference. (a) Location accuracy. (b) Time
consumption.

Figure 17a displays the location accuracy of Tomo-ANM-IVDST and Tomo-ANM-
ADMM, with Tomo-ANM-SDP and SL1MMER30 as a contrast. When SNR < 10 dB, the
position accuracy of Tomo-ANM-IVDST is slightly better (0.02 m lower for SNR = 10 dB)
than that of the on-grid algorithm SL1MMER30. When SNR > 10 dB, the accuracy of
Tomo-ANM-IVDST gradually becomes better than SL1MMER30 and is close to that of
Tomo-ANM-SDP. The RMSE values of Tomo-ANM-IVDST and Tomo-ANM-SDP are the
same, 0.04 m, when SNR = 30 dB. For Tomo-ANM-ADMM, the accuracy is superior
or close to SL1MMER30 when SNR < 4 dB. When SNR is between 6 dB and 14 dB, the
accuracy of Tomo-ANM-ADMM is slightly inferior (0.08 m higher at SNR = 12 dB) to
SL1MMER30. When SNR > 20 dB, the accuracy of Tomo-ANM-ADMM is comparable to
that of Tomo-ANM-SDP. To sum up, the location accuracy of Tomo-ANM-IVDST is always
superior to Tomo-ANM-ADMM. The accuracy of both fast realizations is comparable to
Tomo-ANM-SDP at a high SNR. Figure 17b shows the running time of Tomo-ANM-IVDST
and Tomo-ANM-ADMM, with Tomo-ANM-SDP and SL1MMER5 as a reference. As we
can see, both algorithms can significantly reduce running time relative to Tomo-ANM-SDP.
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The time consumption of Tomo-ANM-ADMM (0.04 s on average) is equivalent to that
of SL1MMER5, while Tomo-ANM-IVDST is slightly more effective than SL1MMER5. It
is worth noting that the time of Tomo-ANM-ADMM is closely related to the parameter
setting. In order to obtain reliable results, 30–50 iterations are carried out in this paper.

For further verification, we also compared the two fast algorithms on the real data.
The same five pairs of points as in Section 4.2.3 were selected for building height estimation.
The results and running time are shown in Table 4. It can be seen that the building height
estimation result of Tomo-ANM-IVDST (95.70 m) is slightly better than Tomo-ANM-ADMM
(94.10 m) and takes less time.

Table 4. Height estimation of Tomo-ANM-IVDST and Tomo-ANM-ADMM.

Height
Estimation (m)

Estimation
Error

Running
Time (min)

Tomo-ANM-IVDST 95.70 3.33% 1.4

Tomo-ANM-ADMM 94.10 4.95% 1.7

By comparison, Tomo-ANM-IVDST can achieve better location accuracy in less time
than Tomo-ANM-ADMM. This is why we choose IVDST as the fast implementation of
ANM in this paper.

5.3. Parameter Settings of Tomo-ANM

There is one parameter to be input in the Tomo-ANM-SDP, and three parameters in the
Tomo-ANM-IVDST. These parameters need to be set manually at present. In this section,
we discuss the range and impact of Tomo-ANM parameter settings.

5.3.1. Tomo-ANM-SDP

In Section 2.2, we introduced the theory of ANM in detail. The regularization pa-
rameter τ needs to be input. According to the authors in [22], the choice of regularization
parameter is dictated by the noise model. They show the lower and higher bound of τ
under Gaussian noise. The lower bound whenever N > 5 is

σ

√
Nlog(N)− N

2
log(4πlog(N)) (25)

The upper bound for N > 3 is

σ(1 +
1

log(N)
)
√

Nlog(N) + Nlog(4πlog(N)) (26)

where σ is the noise variance. In the simulation experiment, τ can be selected according
to the above range. However, when processing the real data, it is necessary to obtain
appropriate parameters through multiple attempts since the noise variance σ is difficult to
exactly estimate from the incomplete noisy data [33].

5.3.2. Tomo-ANM-IVDST

As mentioned in Section 2.2, IVDST is an iterative and shrinkage-thresholding al-
gorithm. Three parameters need to be set before iterations [24]. They are stepsize δ,
shrinkage-threshold ε, and stopping criterion η. The parameter setting of the system is
the same as Section 3. Three hundred Monte Carlo experiments are implemented for each
parameter setting, and the maximum number of iterations was set to 30.

Stepsize δ represents the change in variables along the gradient direction from one
iteration to the next. In this paper, the change in stepsize was set to δ = ex with x = −10:1:10.
The RMSE and time were obtained, as shown in Figure 18a,b. It can be seen that the accuracy
of Tomo-ANM-IVDST under different SNRs almost does not change with δ. Overall, the
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time consumption decreases with the increase in δ, from 0.04 s when δ = e−10 to 0.02 s when
δ = e10. The computational efficiency is similar for different SNRs. It is worth noting that
when stepsize δ is around e−1, e0, the time consumption surges to more than 0.1 s. Checking
the number of iterations, we found that some experiments reached the maximum number
of iterations we set. This is because the change in objective function is not monotonically
decreasing, but it increases slowly after reaching the minimum value. These stepsize values
were not set reasonably, resulting in the value of the objective function fluctuating near
the minimum value and failing to reach the stop condition. Fortunately, the accuracy of
Tomo-ANM-IVDST is not greatly affected. Therefore, the stepsize δ setting affects the time
consumption, which needs to be adjusted by several times to obtain the appropriate value.
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Figure 18. Performance of Tomo-ANM-IVDST under different stepsize δ and SNRs. (a) Location
accuracy. The legend is the same as in (b). (b) Time consumption.

The shrinkage-threshold ε is used to shrink the small diagonal values of Λ, which
denotes a diagonal matrix obtained by SVD decomposition of T(u), thus enforcing low-
rankness on T. We set ε = 1:1:20 in this paper, and the results of the RMSE and time under
different SNRs are shown in Figure 19a,b. Still, the accuracy of Tomo-ANM-IVDST is not
affected by ε. The time decreases from 0.06 to 0.02 s when ε changes from 1 to 20 at 30 dB.
That is to say, setting ε to a small value would increase the running time. Reasonably
increasing the value of ε can improve computation speed. However, if ε is too large, it
may affect the determination of the number of scatterers. Therefore, ε needs to be set
appropriately according to the value of the singular values of the T matrix and the number
of possible scatterers.
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Figure 19. Performance of Tomo-ANM-IVDST under different shrinkage-threshold ε and SNRs.
(a) Location accuracy. The legend is the same as in (b). (b) Time consumption.

The stopping criterion η is a predefined precision of the residual ‖Ti+1 − Ti‖F/‖Ti‖F,
where i represents iteration times. To better illustrate the impact of the change in η, we
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set η so that it changes from 10−10 to 100. In practice, η = 100 is usually not set because
reliable results cannot be obtained. The results of the RMSE and time consumption are
shown in Figure 20a,b. As we can see, when η ≤ 10−2, the accuracy of Tomo-ANM-IVDST
under different SNRs performs well and does not change very much. However, there is
a large increase (from 0.04 to 1.49 m at SNR = 30 dB) when η increases from 10−2 to 100.
Looser stop criterions lead to lower positioning accuracy. In Figure 20b, time consumption
at different SNRs is almost the same. Time decreases from 0.05 to 0.01 s while η changes
from 10−10 to 100 at 30 dB. A sudden decrease (from 0.05 to 0.01 s) occurs when η increases
from 10−5 to 10−2 at 30 dB, which means looser stop criterions can be achieved with fewer
iterations. Note that the number of iterations reaches the maximum we set when η ≤ 10−5,
so the running time is limited. It actually takes longer to reach the stop criterion. Combined
with the accuracy performance, η can be selected for a higher accuracy obtained in a shorter
time. In this paper, η can be 10−2 or 10−3. The choice of η needs to be determined after
many attempts.
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Figure 20. Performance of Tomo-ANM-IVDST under different stopping criterion η and SNRs.
(a) Location accuracy. The legend is the same as in (b). (b) Time consumption.

To sum up, the parameter settings of Tomo-ANM require multiple attempts to obtain
appropriate values. Parameter settings have a great impact on accuracy and time consump-
tion, especially for Tomo-ANM-IVDST. In the future, we will try to study the adaptive
selection of ANM parameters to facilitate its application in tomography.

6. Conclusions

In order to eliminate the off-grid effect, this paper proposes an SAR tomography
algorithm based on ANM, a continuous compressed sensing algorithm, named Tomo-ANM.
To meet the baseline requirements of ANM, we first performed baseline compensation to
obtain uniform baselines or uniform baseline sampling data. Next, the noisy incomplete
data were restored to noise-free complete data by the ANM algorithm, and the generated
matrix T(u) contained the signal frequency information. The possible scatterer elevation
positions can be found by Vandermonde decomposition of the T(u) matrix. The final
estimation result was obtained through model selection and amplitude estimation. To
increase the computational speed, a fast ANM algorithm named IVDST was employed.

Simulation experiments implied that Tomo-ANM can eliminate the off-grid effect
completely and obtain a super-resolution capability comparable to SL1MMER. Compared
with the conventional on-grid algorithm, Tomo-ANM can obtain more accurate single-
scatterer positioning accuracy and higher double-scatterer detection probability. The fast
ANM algorithm IVDST can reduce computational complexity by an order of 1.5 and greatly
improve the algorithm availability. We also used eight stacks TerraSAR staring spotlight
data to conduct real data experiments. The results showed that, compared with the on-grid
algorithm, Tomo-ANM can eliminate the off-grid effect, so as to better position scatterers
and obtain more accurate building height estimation results.
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We analyzed the effect of the sampling rate on ANM, and the results showed that
a sampling rate of 62.5% can guarantee good results, while increasing sampling on this
basis cannot achieve any significant improvement in most cases. Moreover, we choose
IVDST as ANM’s fast realization for its superior performance in comparison to ADMM.
Parameter settings have a great impact on the performance of Tomo-ANM, especially
Tomo-ANM-IVDST. At present, we can only manually select appropriate parameters after
multiple attempts. Next, we will consider studying adaptive parameter selection.

This paper is an attempt to use a continuous compressed sensing algorithm for To-
moSAR inversion, which preliminarily illustrates the availability and effectiveness of
continuous compressed sensing in tomographic reconstruction. Many other continuous
compressed sensing algorithms also have good characteristics. For example, better super-
resolution capabilities can be obtained through reweighted atomic norm minimization
(RAM) [34,35], and gridless SPICE (GLS) [23] can be used to eliminate the dependence on
noise level parameter estimation. It is worth looking into what role these algorithms will
play in TomoSAR 3D scene reconstruction and what effect they will have.
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