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Abstract: Existing one-bit direction of arrival (DOA) estimate methods based on sparse recovery or
subspace have issues when used for massive uniform linear arrays (MULAs), such as high computing
cost, estimation accuracy depending on grid size, or high snapshot-number requirements. This
paper considers the low-complexity one-bit DOA estimation problems for MULA with a single
snapshot. Theoretical study and simulation results demonstrate that discrete Fourier transform
(DFT) can be applied to MULA for reliable initial DOA estimation even when the received data
are quantized by one-bit methods. A precise estimate is then obtained by searching within a tiny
area. The resulting method is called one-bit DFT. This method is straightforward and simple to
implement. High-precision DOA estimates of MULA can be obtained with a single snapshot, and the
computational complexity is significantly less than that of existing one-bit DOA estimation methods.
Moreover, the suggested method is easily extensible to multiple snapshot scenarios, and increasing
the number of snapshots can further improve estimation precision. Simulation results show the
effectiveness of the one-bit DFT method.

Keywords: one-bit quantization; DOA estimation; single snapshot; massive ULA

1. Introduction

The direction of arrival (DOA) estimate is widely utilized in radar array systems,
smart antenna, adaptive beamforming, and other applications as a key technology of
passive radar [1–9]. In recent years, with the rapid development of massive multiple-input
multiple-output (MIMO) technology, the DOA estimation method for massive antenna
array has become a focus of research [10–18]. However, massive antenna array confronts
several challenges, including a large number of antenna components, high computational
complexity, and high power consumption, among others. Given that high-resolution
quantization is preferable in signal recovery performance, its impracticality is probable due
to high hardware costs and system power consumption. The analog-to-digital converter
(ADC) is one of the most power-consuming devices, and its power consumption increases
exponentially with quantized digits [19]. The limited hardware cost will bring severe
challenges to parameter estimation and real-time signal processing. Therefore, system
design using low-resolution ADCs and related signal-processing techniques has attracted
great research interest [20–24].

Recently, massive MIMO systems have extensively investigated one-bit ADCs con-
sisting of simple comparators that can significantly simplify other RF components and
consume even negligible circuit power [25–30]. After one-bit quantization, only the mea-
sured symbol information is available, but it has been demonstrated that robust DOA
estimates can still be ensured [31–35]. Stockle et al. [31] formulated one-bit DOA estima-
tion as a sparse recovery problem, which was solved by extending the binary iterative
hard-thresholding technique to complex-valued signals. Simulation results show that the
performance of this method for one-bit DOA estimation is comparable to the subspace-
based methods with multiple signal classification (MUSIC) and estimating signal parameter
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via rotational invariance techniques (ESPRITs). Meng et al. [32] presented the one-bit DOA
estimate with a single snapshot as a generalized linear model inference problem and solved
it using the recently developed generalized sparse Bayesian learning (Gr-SBL) technique.
Huang et al. [33] showed that the one-bit covariance matrix is approximable by the sum
of a scaled unquantized covariance matrix and a scaled identity matrix. Based on this,
a one-bit MUSIC method was developed, which directly finds the signal subspace and the
noise subspace via the eigendecomposition of the one-bit covariance matrix and applies
the most classical MUSIC technique to determine the DOA of the signal. Wei et al. [34]
established a sparse reconstruction model for one-bit quantization based on atomic norm
(one-bit AN) minimization to accomplish gridless DOA estimation. The sign inconsistency
between the one-bit measurement and the actual signal is restricted by employing a linear
loss function. Then, the interior point method or semidefinite programming solver was
utilized to resolve it. The above one-bit methods based on sparse recovery or subspace
can produce good estimation results when used to massive uniform linear arrays (MULA).
Nonetheless, they have limitations such as high computational cost, estimate accuracy that
is sensitive to grid size, and the need for a large number of snapshots.

Different from existing methods, we present a low-complexity one-bit DOA estimation
method based on discrete Fourier transform (DFT) in this paper. DFT has been widely used
in single-snapshot DOA estimation of MULA in recent years [16,36,37]. Theoretical study
and simulation confirmation demonstrates that even after one-bit quantization of the single
snapshot data received by MULA, the initial DOA estimation can be obtained from the
DFT spectrum’s peak location. Then, we search a small area for the optimal phase rotation
to obtain a precise estimate. Additionally, we extend the one-bit DFT method for single-
snapshot scenarios to handle multiple snapshots. The proposed method is straightforward
to apply, and the high-precision estimation result of MULA can be produced from a single
snapshot. The estimation performance is enhanced by increasing the number of snapshots.
Simulation results indicate that the estimation precision of the proposed method is superior
to that of the existing one-bit DOA estimation methods and that it also has the benefit of
high computational efficiency.

The remainder of the paper is structured as follows: Section 2 reviews the one-bit
signal model; Section 3 presents the proposed one-DFT method; Section 4 provides the
numerical simulations and discusses the results; Section 5 concludes the paper.

2. One-Bit Signal Model

Consider a MULA with M � 1 antennas that are separated by a half-wavelength.
Assume there are K far-field sources impacting the array from θ = [θ1, . . . , θK]. Received
data for a single snapshot can be represented as follows:

x = As + n (1)

where A = [a(θ1), . . . , a(θK)] ∈ CM×K represents the steering matrix, and a(θk) is the steer-
ing vector. s = [s1, . . . , sK]

T denotes the K× 1 complex-valued signals with different signals
independent of each other obeying a circularly symmetric complex Gaussian distribution
with power σ2

k , k = 1, 2, . . . , K. n ∈ CM×1 represents additive white Gaussian noise with
the power of σ2

n . In the θk direction, the steering vector is given by the following.

a(θk) = [ejπ sin θk , ej2π sin θk , . . . , ejMπ sin θk ]T (2)

The one-bit quantized data model can be described as follows:

y =
1√
2
(sign(Re(x)) + jsign(Im(x))) (3)
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where sign(·) is an element-by-element function, which is defined as follows.

sign(w) =

{
1, if w ≥ 0
−1, if w < 0

(4)

3. Proposed Method
3.1. DFT

DFT is one of the conventional non-parametric approaches for spectrum analysis.
Define the normalized M×M DFT matrix F, where [F]pq = e−j(2π/M)pq/

√
M. The DFT

spectrum of a(θk) is Fa(θk), and the q-th element is as follows.

[Fa(θk)]q =
1√
M

sin[M
2 ( 2π

M q− π sin θk)]

sin[ 1
2 (

2π
M q− π sin θk)]

e−j M
2 [ 2π

M q−π sin θk ] (5)

If the array has an infinite number of antennas (i.e., M → ∞), there is always an
integer qk = M

2 sin θk such that [Fa(θk)]qk =
√

M, while all other elements of Fa(θk) are
zero [15,38]. Thus, |Fa(θk)| and |Fx| are ideally sparse, and the initial estimate of θk can be
obtained immediately from the peak position of |Fx|.

θini
k = arcsin(2qk/M), k = 1, 2, . . . , K (6)

3.2. Covariance Matrix Analysis after One-Bit Quantization

Next, we analyze the effect of one-bit quantization on the sample covariance matrix.
Due to the independence between signals and between signals and noise, the mean of
xq = [x]q is zero, and the variance σ2

xq = E[xqx∗q ] (i.e., the q-th diagonal term of Rx) is
given by the following.

σ2
xq = [Rx]qq =

K

∑
k=1
|aq(θk)|2σ2

k + σ2
n (7)

The correlation coefficient ρxpxq between the unquantized measurements of the p-th
and q-th sensors (where p 6= q) can be written as follows [33].

ρxpxq =
E[xpx∗q ]
σxp σxq

=
[Rx ]pq√

[Rx ]pp
√

[Rx ]qq

=
∑K

k=1 ap(θk)a∗q (θk)σ
2
k√

∑K
k=1 |ap(θk)|2σ2

k +σ2
n

√
∑K

k=1 |aq(θk)|2σ2
k +σ2

n

(8)

Since ap(θk) = ejpπ sin θk , Equation (7) can be simplified as L = [Rx]qq = ∑K
k=1 σ2

k +
σ2

n , q = 1, 2, . . . , M. Moreover, assuming for convenience that the signals are of equal power,
i.e., δ = σ2

k /σ2
n , k = 1, 2, . . . , K, then there is the following:

ρxpxq =
∑K

k=1 ej(p−q)π sin θk

K + δ−1 (9)

and |ρxpxq | < 1.
Consider a one-bit quantitative measurement yq, q = 1, 2, . . . , M with zero mean and

unit variance, i.e., E[yq] = 0 and σ2
yq = 1. Therefore, the correlation coefficient between yp

and yq is as follows.

ρypyq =
1

σyp σyq

E[ypy∗q ] = [Ry]pq (10)
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In particular, if p = q, there is ρypyp = 1. According to the arcsine law [39,40], we have
the following.

ρypyq =
2
π

arcsine(ρxpxq)

=
2
π
(arcsin(Re(ρxpxq)) + j arcsin(Im(ρxpxq))) (11)

Therefore, combining Equation (8), we can obtain the following.

Ry =
2
π

arcsine(
1
L

Rx) (12)

Equation (12) shows that the unquantized covariance matrix can be reconstructed
from the one-bit covariance matrix as Rx = Lsine(π

2 Ry), where sine(z) = sin(Re(z)) +
j sin(Re(z)), and L is an unknown scaling parameter. The literature [33] analysis demon-
strates that Rx can be approximated by the sum of the scaled Ry and the scaled identity
matrix I. First, arcsin(Re(ρxpxq)) can be expanded as follows.

arcsin(Re(ρxpxq)) = Re(ρxpxq) +
1
6 Re3(ρxpxq)

+ 3
40 Re5(ρxpxq) + · · ·

(13)

If |Re(ρxpxq)| is small enough (that is, SNR is low enough), arcsin(Re(ρxpxq)) can be
well approximated as Re(ρxpxq).

arcsin(Re(ρxpxq)) ≈ Re(ρxpxq) (14)

This approximation can also be applied to Im(ρxpxq), resulting in ρypyq ≈ 2
π ρxpxq .

According to Equations (12) and (14), the following is the case.

[Ry]pq ≈
2

Lπ
[Rx]pq, p 6= q (15)

Since ρyqyq = ρxqxq = 1, the error caused by approximating arcsin(1) to 1 is larger,
and Equation (15) can be rewritten as [33] follows:

Ry −D(Ry) ≈
2

Lπ
(Rx −D(Rx)) (16)

where D(R) = diag(R11, . . . , RMM) is a diagonal matrix. Due to [Ry]qq = 1 and [Rx]qq = L,
one can yield [33] the following.

Ry ≈
2

Lπ
Rx + (1− 2

π
)I (17)

3.3. One-Bit DFT

For the received single snapshot data x and the one-bit quantized data y, there are Rx =
xxH and Ry = yyH. Multiplying both sides of Equation (17) by F simultaneously provides
the following:

FRyFH ≈ F(
2

Lπ
Rx + (1− 2

π
)I)FH

≈ 2
Lπ

FRxFH + (1− 2
π
)I (18)
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when M→ ∞, |Fx| is ideally sparse, and has distinct peaks at positions qk, k = 1, 2, . . . , K
corresponding to the incident angle information. Thus, we have the following.

diag(FRxFH) = diag(Fx(Fx)H)

= [σ2
n , . . . , Mσ2

k + σ2
n , . . . , σ2

n ]
T (19)

In other words, diag(|FRxFH |) has obvious peaks at the diagonal terms |FRxFH |qkqk = Mσ2
k ,

k = 1, 2, . . . , K. A similar conclusion is reached for the diagonal elements of |FRyFH |
according to Equations (18) and (19).

In fact, from Equation (17), Ry has almost the same eigenvector as 2
Lπ Rx + (1− 2

π )I.
Therefore, for the single-snapshot received data of the MULA, we do not need to multiply
each side of the one-bit covariance matrix Ry by F. Instead, directly based on the DFT
spectrum |Fy| of y, determine the corresponding angle by locating the positions of the K
largest peaks qk, k = 1, . . . , K. From Equation (5), these positions satisfy

1
2
(

2π

M
qk − π sin θk) = 0 (20)

or

1
2
(

2π

M
qk − π sin θk) = π (21)

The initial DOAs estimate can be obtained.{
θini

k = arcsin(2qk/M) if 0 ≤ qk ≤ M
2

θini
k = arcsin(2(qk −M)/M) if M

2 < qk ≤ M
(22)

Figures 1 and 2 depicts |FRyFH |qq and |Fy|q, q = 1, 2, . . . , M for a single incidence
source with θ = −40◦ striking a 500-element MULA. At qk = 339, there is a very significant
peak that can be observed. From Equation (22), the initial estimate can be calculated as
θini = −40.0907◦.

100 200 300 400 500

q

0

50

100

150

200

250

300

350

|F
R

yF
H

| qq

Figure 1. |FRyFH |qq, q = 1, 2, . . . , M, SNR = 0 dB.
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Figure 2. |Fy|q, q = 1, 2, . . . , M, SNR = 0 dB.

3.4. Precise Estimation

In conjunction with the preceding analysis, we can utilize the phase rotation operation
to obtain a precise estimate of DOAs after the received data have been quantized by one-
bit. The phase rotation is defined as Φ(η), where Φ(η) is the diagonal matrix defined by
Φ(η) = diag{ejη , . . . , ejMη} and η ∈ [−π/M, π/M] is the corresponding phase shift [15].
Assume that the phase deviation of the initially estimated DFT spectrum is ηk. Referring to
Equations (5), (20), and (21), ηk satisfies the following.

1
2
(

2π

M
qk − ηk − π sin θini

k ) = 0 (23)

or

1
2
(

2π

M
qk − ηk − π sin θini

k ) = π (24)

to maximize the peak value at |FΦ(ηk)y|qk . Therefore, the precise estimate of θ̂k can be
calculated as

θ̂k =

{
arcsin(2πqk/πM− ηk/π) if θini

k ≥ 0
arcsin(2(qk −M)/M− ηk/π) if θini

k < 0
(25)

To identify the optimal offset phase, [−π/M, π/M] is divided into j grids for searching
η. Extracting the corresponding ηk by searching only at the K peaks such that |FΦ(ηk)y| is
the maximum reduces the computational effort of the grid search.

ηk = arg max
η∈(−π/M,π/M)

‖F(qk ,:)Φ(η)y‖2, k = 1, 2, . . . , K (26)

In Algorithm 1, we summarize the one-bit DFT method.

Algorithm 1 One-bit DFT.
Input: One-bit quantized data vector y, number of signals K, and number of grids J.
Output: θ̂k, k = 1, 2, . . . , K.
(1) Construct DFT matrix [F]pq = e−j(2π/M)pq/

√
M;

(2) Find the K largest peaks of |Fy|, and obtain the initial DOA estimate according to
Equation (22);
(3) Construct the phase rotation set, and obtain the optimal offset phase from Equation (26);
(4) Use Equation (25), precise estimates of θ̂k, k = 1, 2, . . . , K can be obtained.
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3.5. Expand to Multiple Snapshot Scenarios

Although this study addresses the problem of one-bit DOA estimate using a single
snapshot for MULA, it is easily extensible to the case of multiple snapshots. Consider
multiple snapshots with measurements of one-bit quantization:

yt =
1√
2
(sign(Re(xt)) + jsign(Im(xt))), t = 1, 2, . . . , T. (27)

where T is the number of snapshots. According to Equations (18) and (19), the diagonal ele-
ments of |FRxFH | and |FRyFH | should exhibit prominent peaks at the point corresponding
to the incidence angle information, where Rx = 1

T ∑T
t=1 xtxH

t and Ry = 1
T ∑T

t=1 ytyH
t . Let

ỹt = Fyt, |FRyFH|qq can be simplified as follows.

|FRyFH|qq =
1
T

T

∑
t=1

[ỹt]q[ỹt]
H
q , q = 1, 2, . . . , M. (28)

Thus, we obtain the initial angle estimate based on the peak position qk, k = 1, 2, . . . , K
of diag(FRyFH).

Next, the optimal phase rotation can be calculated as follows.

ηk = arg max
η∈(−π/M,π/M)

[
1
T

T

∑
t=1

M

∑
q=1

[ŷt]q[ŷt]
H
q ], k = 1, 2, . . . , K (29)

where ŷt = F(qk ,:)Φ(η)yt. Finally, the precise estimation result is obtained using Equation (25).

3.6. Performance Analysis

The proposed method obtains initial estimate θini
k from the peak position of the DFT

spectrum of the received data such that the worst error of sin θini
k does not exceed 2/M

according to Equations (20) and (21) as long as the right peak locations are determined.
The phase rotation procedure can enhance the precision of the initial estimation. According
to Equation (25), the worst error of sin θ̂k does not exceed 2/JM. For example, when J = 10,
the worst error of sin θ̂k is on the order of 10−3 for MULA with hundreds of array elements.

Compared to subspace methods such as one-bit MUSIC [33] and one-bit ESPRIT [35],
the suggested method exploits the fact that large-scale antenna arrays can significantly
increase the resolution of DFT-based spectral analysis, and only a single snapshot is required
to obtain a more precise DOA estimate. In contrast, the one-bit MUSIC and one-bit ESPRIT
methods need an eigenvalue decomposition of the sample covariance matrix, and the signal
subspace cannot be built effectively when the number of signals exceeds the number of
snapshots. Therefore, these two methods are incapable of accurately estimating DOA for a
single snapshot.

3.7. Computational Complexity Analysis

The computational complexity of the one-bit DFT method mainly includes the calcula-
tion of the DFT spectrum of the received data and the phase rotation operation, and the
remaining operations are relatively ignored. To calculate the DFT spectrum, FFT can be
used to accelerate the calculation in actual implementation, and the complexity is in the
order of O(TM log M) [15]. The phase rotation procedure for precise estimation requires
O(KMJT), which is typically enough to generate extremely precise estimations for tiny
values of J. Thus, the complexity is approximately O(T(M log M + KMJ)). Since the
received data are quantized to one-bit and contains only symbol information, it can reduce
hardware costs and increase computation efficiency in practical applications.
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4. Simulation and Results Analysis

This section considers four equal-power narrowband signals impinging on the array

from −40.61◦, −10.37◦, 30.61◦, and 60.24◦. SNR is defined as SNR = 10 log10
E‖As‖2

2
E‖n‖2

2
=

10 log10
E‖As‖2

2
Mσ2

n
, and compute σ2

n according to the SNR [32]. Unless otherwise specified, SNR
is set to 0 dB, and the number of snapshots is set to 1 in simulations.

In the first simulation, we verified the ability of the one-bit DFT method to accurately
locate the sources when applied to MULA. Figure 3 shows the DFT spectrum |Fy| of y in a
single simulation with varying array elements, and Table 1 displays the initial estimate θini

k
based on the peak location. Prominent peaks can be seen in the DFT spectrum at position
qk, k = 1, 2, . . . , 4. As the number of array elements increases, the peak becomes more
apparent, and the resulting initial estimate becomes more accurate. Figure 4 illustrates the
location of the highest four peaks of the DFT spectrum of 1000 Monte Carlo tests under
various array elements. The one-bit quantitative data y of each Monte Carlo test were
regenerated. It has been observed that the one-bit DFT method can determine the correct
peak location every time and can locate sources reliably.

Table 1. Peak location and initial DOA estimation.

−40.61◦ −10.37◦ 30.61◦ 60.24◦

θini
1 q1 θini

2 q2 θini
3 q3 θini

4 q4

M = 500 −40.6926◦ 337 −10.3698◦ 455 30.5307◦ 127 60.2271◦ 217

M = 1000 −40.5416◦ 675 −10.3698◦ 910 30.6638◦ 255 60.2271◦ 434

M = 5000 −40.6019◦ 3373 −10.3698◦ 4550 30.6106◦ 1273 60.2271◦ 2170

M = 10,000 −40.6170◦ 6745 −10.3698◦ 9100 30.6106◦ 2546 60.2501◦ 4341

0 100 200 300 400 500
0

5

10

0 200 400 600 800 1000
0

8

15

0 1000 2000 3000 4000 5000
0

15
25

0 2000 4000 6000 8000 10,000

q

0

25

50

|F
y|

q

Figure 3. The DFT spectrum |Fy| of y.
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Figure 4. The location of the most highest four peaks obtained by the one-bit DFT method for
1000 Monte Carlo trials.

In the second simulation, the one-bit DFT method is compared with the state-of-the-art
one-bit DOA estimate methods Gr-SBL [32], one-bit MUSIC [33], and one-bit AN [34].
The number of grid searches for the one-bit DFT method is J = 20. Gr-SBL and the one-bit
MUSIC grid interval have been set to 0.25, meaning 721 grids in total. One-Bit MUSIC does
not work efficiently with a single snapshot, so the number of snapshots is set to 10. Let us
utilize the mean absolute error (MAE) to evaluate the effectiveness of all methods [41,42]:

MAE =
1

KN
(

N

∑
n=1

K

∑
k=1
|θk − θ̂k,n|) (30)

where N is the number of Monte Carlo runs and θ̂k,n represents the estimated value of
the incident angle θk of the n-th Monte Carlo test. M = 500 and N = 200 are set in
this simulation.

Figure 5 shows the MPE curve of all methods varying with SNR. When the input SNR
is low, it is observed that estimation errors for all methods are large. Due to the limited
resolution of the DFT operation, the accuracy of the initial estimate does not improve when
the SNR is greater than −4 dB. Even if the approximation error of Equation (17) is relatively
large in the case of high SNR, the proposed method causes no performance loss in the initial
estimation as long as the accurate position of the peak point is determined. After phase
rotation, the accuracy of the precise estimate of one-bit DFT improves significantly and
outperforms all other comparison methods. Gr-SBL and one-bit MUSIC almost always find
the nearest grid point to the true DOAs when the input SNR is high, and the estimation
accuracy is mainly affected by the off-grid error. However, finer meshing will significantly
increase runtime. The estimation accuracy of one-bit AN is better than the initial estimation
accuracy of the one-bit DFT, Gr-SBL, and one-bit MUSIC at high SNR and lower than the
precise estimation of the one-bit DFT method. Figure 6 shows the average running time of
all methods. The One-bit DFT method only takes about 0.1s, which is much lower than
other methods.
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Figure 5. MAE versus SNR.
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Figure 6. Average runtime comparison of all methods.

In the third simulation, the effect of snapshot number on the performance of the
proposed method is evaluated. Figure 7 depicts the MAE versus SNR curve of the proposed
method for varying numbers of snapshots, where M = 500 and N = 200. It can be observed
that, as the number of snapshots increases, the accuracy of the proposed method’s precise
estimation improves.
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Figure 7. MAE versus SNR curve of the proposed method with different number of snapshots.

In the fourth simulation, the performance of each method is compared when incident
signals have varying magnitudes. In particular, we analyze the two incident signals
θ1 = −40.61◦ and θ2 = 30.61◦, for which the signal magnitude in the θ1 direction is fixed
at 0 dB while the signal magnitude in the θ2 direction varies from 0 dB to 20 dB. When
the DOA estimated by all methods satisfy |θ̂k − θk| < 1◦, k = 1, 2, the two sources are
considered to be distinguished successfully; otherwise, the resolution fails. The number of
snapshots for the Gr-SBL and One-bit AN methods is set to 1, and the number of snapshots
for the one-bit MUSIC method is set to 10. Additionally, we simulate the performance of
the suggested method using a single snapshot and ten snapshots.

Figure 8 displays the resolution results of all methods, where the resolution probability
is the ratio of the number of successful resolutions to the number of Monte Carlo trials. It is
noticed that the estimated ability of the proposed method is better than that of Gr-SBL and
the one-bit AN method with a single snapshot but inferior to that of the one-bit MUSIC
method. Nonetheless, when T = 10, the estimation performance of the proposed method is
higher than that of the one-bit MUSIC.
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Figure 8. The variation curve of resolution with varying signal magnitude differences among all
methods, where SNR = 0 dB.

5. Conclusions

In this paper, taking advantage of the fact that large-scale antenna arrays can greatly
improve the resolution of spectrum analysis based on DFT, a novel single-snapshot one-bit
DOA estimation method for MULA is proposed. The theoretical analysis and simulation
verification shows that the DFT spectrum of the data received by MULA after one-bit quan-
tization still has an obvious peak at the position containing the incident angle information.
The initial DOA estimation can be derived with high precision based on the position of the
peak, and the estimation precision can be enhanced with a simple phase-rotation procedure.
Furthermore, the calculation stages of this method in multiple snapshot situations are ana-
lyzed. Unlike the previous one-bit DOA estimate methods, the proposed method does not
require nonlinear optimization, iterative solutions, or any other complex operations, and it
has the benefit of having an extremely low computing complexity. Finally, the effectiveness
of the proposed method is validated with a large number of simulation experiments and
an analysis of the results.
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Abbreviations

The following abbreviations are used in this manuscript:

DOA Direction of arrival;
MULA Massive uniform linear arrays;
DFT Discrete Fourier transform;
Gr-SBL Generalized sparse Bayesian learning;
one-bit AN One-bit quantization based on atomic norm minimization;
| · | Modulo operator;
Re(·) Real part;
Im(·) Imaginary part;
E[·] Expectation;
[R]pq pq-th element of matrix R;
R(q,:) q-th row of matrix R;
[x]q q-th element of vector x;
diag(·) Diagonal operator.
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