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Abstract: Atmospheric weighted mean temperature (Tm) is a key parameter used by the Global
Navigation Satellite System (GNSS) for calculating precipitable water vapor (PWV). Some empirical
Tm models using meteorological or non-meteorological parameters have been proposed to calculate
PWV, but their accuracy and reliability cannot be guaranteed in some regions. To validate and
determine the optimal Tm model for PWV retrieval in China, this paper analyzes and evaluates some
typical Tm models, namely, the Linear, Global Pressure and Temperature 3 (GPT3), the Tm model
for China (CTm), the Global Weighted Mean Temperature-H (GTm-H) and the Global Tropospheric
(GTrop) models. The Tm values of these models are first obtained at corresponding radiosonde
(RS) stations in China over the period of 2011 to 2020. The corresponding Tm values of 87 RS
stations in China are also calculated using the layered meteorological data and regarded as the
reference. Comparison results show that the accuracy of these five Tm models in China has an obvious
geographical distribution and decreases along with increasing altitude and latitude, respectively. The
average root mean square (RMS) and Bias for the Linear, GPT3, CTm, GTm-H and GTrop models
are 4.2/3.7/3.4/3.6/3.3 K and 0.7/−1.0/0.7/−0.1/0.3 K, respectively. Among these models, Linear
and GPT3 models have lower accuracy in high-altitude regions, whereas CTm, GTm-H and GTrop
models show better accuracy and stability throughout the whole China. These models generally have
higher accuracy in regions with low latitude and lower accuracy in regions with middle and high
latitudes. In addition, Linear and GPT3 models have poor accuracy in general, whereas GTm-H and
CTm models are obviously less accurate and stable than GTrop model in regions with high latitude.
These models show different accuracies across the four geographical regions of China, with GTrop
model demonstrating the relatively better accuracy and stability. Therefore, the GTrop model is
recommended to obtain Tm for calculating PWV in China.

Keywords: atmospheric weighted mean temperature; Global Navigation Satellite System; empirical
Tm model; accuracy analysis and evaluation

1. Introduction

Atmospheric water vapor is an important greenhouse gas in the atmosphere that plays
an important role in climate change and weather forecasting [1]. Therefore, monitoring
water vapor with high precision is critical for related studies. The Global Navigation
Satellite System (GNSS) receiver can provide continuous and accurate values of precipitable
water vapor (PWV) in the zenithal direction over a GNSS station, consequently the high
temporal and spatial resolution PWV can be obtained when a dense network of GNSS
stations is available [2]. Atmospheric weighted mean temperature (Tm) is a key parameter
in retrieving precipitable water vapor (PWV) using GNSS technology and its accuracy
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will directly affect the PWV retrieval [3,4]. Although the radiosonde (RS) measurements
have uncertainties, especially in terms of humidity, they are measured in land-atmosphere
coupling (LoCo) in the atmosphere, and therefore can be considered the best information
to use as a reference in the evaluation of Tm model [5]. Therefore, some regional or global
Tm models using meteorological or non-meteorological parameters have been developed
and used for PWV retrieval [6,7], and the Tm obtained by these models can more easily
meet the requirements of PWV retrieval when compared with traditional techniques. In
addition, some Tm models that are consistent with the research regions have also been
established [8–10].

Tm models are generally divided into two types depending on whether meteorological
parameters are considered in calculating Tm. The first type of model considers the input of
the measured meteorological parameters. Bevis model is the most representative model [11],
which builds a linear regression equation between Tm and surface temperature (Ts). The
Bevis model was first established for calculating Tm in mid-latitude regions using the data
of 8718 RS stations in the United States over the period of 1990–1991 and could calculate
Tm using Ts according to the linear relationship. This model is relatively simple to use
and can obtain higher accuracy in mid-latitude regions. In practical applications, this
model shows no evident advantage compared with empirical models and the accuracy of
Tm in other regions cannot be easily guaranteed [12]. The second type of model includes
empirical Tm models without the input of measured meteorological parameters, which
are obtained by applying the fitting method on global or local regions and require only
the parameters of station location and time information. Therefore, these models can
conveniently obtain the Tm [13,14]. In recent years, some empirical models, such as
the series models of Global Pressure and Temperature (GPT) [15–17], Global Weighted
Mean Temperature (GTm) [18,19], Global Tropospheric Model (GTrop) [20] and the Tm
model for China (CTm) [21], have been proposed. Among the GPT models, the Global
Pressure and Temperature 3 (GPT3) model not only has the highest accuracy [22] but also
used an improved mapping function for coefficients to avoid the effect of low elevation
angles [23]. However, this model ignores the vertical correction of Tm, hence making the
error with altitude change more obvious [24,25]. Yao et al. [26] investigated the distribution
characteristics of Tm in the vertical direction using the European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis data and further proposed a Global Weighted Mean
Temperature-H (GTm-H), which can significantly improve the reduction effect of Tm in the
vertical direction. The Tm profile calculated by this model is also closer to the reference
value compared with those calculated by other models. The GTrop model is established
based on the ECMWF reanalysis data over the period of 1979 to 2017, which can provide
Tm with a global spatial resolution of 1◦ × 1◦ and the accuracy of this model is significantly
improved especially in high-altitude regions [27]. The CTm model is established using the
Tm recorded by the Global Geodetic Observing System (GGOS) at 540 grid points over
the period of 2007 to 2014 [28]. This model considers the large topographic fluctuations
and lapse rate function of Tm in China and can provide high-precision and real-time Tm
only by inputting time and station location information. In terms of the performances of
these empirical Tm models, they do not require any input of meteorological parameters and
considers the temporal and spatial variation characteristics of Tm, hence making this model
very useful for those users who cannot obtain surface temperature and demand relatively
high accuracy [29]. The CTm model takes into account the vertical lapse rate change of
Tm and shows a significant advantage in China, especially in the Qinghai-Tibet Plateau
region [30]. The GPT3 model is significantly affected by latitude; specifically, its error
increases along with latitude, whereas its stability gradually decreases from the equator to
the poles [31]. The GTm-H model describes the effect of a nonlinear change in temperature
on the Tm profile and considers the nonlinear altitude reduction, which can significantly
improve the reduction effect of Tm in the vertical direction; this model is also the most
accurate among all GTm series models [32]. The GTrop model was established using data
covering up to 40 years and demonstrates linear trends and seasonal effects in Tm changes;
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in addition, this model also takes lapse rate into account to improve its height correction
performance [33].

Although the performance of two types of Tm models have been evaluated previously
on the regional or global scale, their stability and applicability have never been investigated
before in China. In order to evaluate the applicability of five typical Tm models in China,
namely, the linear, GPT3, CTm, GTm-H and GTrop models, are evaluated from the per-
spectives of different altitudes, different latitudes, and different geographical regions, and
then the most suitable Tm model was determined. The corresponding Tm values at 87 RS
stations over the period of 2011 to 2020 in China, which are considered as the reference in
this paper, are also calculated using layered meteorological data.

2. Data and Methods
2.1. Data Description

RS data are derived from the RS dataset of the National Climatic Data Center, which is
available from the Integrated Global Radiosonde Archive Version 2 (IGRA2) dataset. IGRA2
implemented several enhancements to accommodate characteristics that are not present in
IGRA1 and to improve the quality of the final wind and humidity data. IGRA2 also includes
more RS stations and longer recordings compared with IGRA1 [34]. This dataset covers
almost 2700 global stations for both RS and pilot balloon observations dating from 1960 to
present and can be downloaded for free online (ftp://ftp.ncdc.noaa.gov/pub/data/igra/,
accessed on 1 July 2021) [35]. RS data can provide the vertical profiles of meteorological
parameters, including temperature, geopotential, and water vapor pressure, usually two or
four times a day [36]. In this paper, RS data with the temporal resolution of two times (UTC
00:00 and 12:00) daily are selected from 87 RS stations in China over the period between
2011 to 2020. Given that Tm is highly related to geographical location, this study divides
China into four geographical divisions. Figure 1 presents the geographical distribution of
the 87 selected RS stations and the four geographical divisions of China.

Figure 1. Geographical distribution of the 87 selected RS stations and the four geographical divisions
of China.

ftp://ftp.ncdc.noaa.gov/pub/data/igra/
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2.2. Data Pre-Processing

Given the influence of external conditions, outliers in time series are inevitable when
collecting data using meteorological sensors. As these outliers can adversely affect the
further analysis, they should be removed at the data preprocessing period [37,38]. In-
terquartile range (IQR) is a commonly used method for outlier detection whose principle
is to arrange a group of observation data from smallest to largest and then divide them
into quartiles. The data in the 25th and 75th percentiles represent the lower and upper
quartiles, respectively and the difference between them represents the IQR [39,40], which
can be expressed as

IQR = Q2−Q1 (1)

where Q1 is the lower quartile, Q2 is the upper quartile; (Q 1, Q2) covers the middlemost
50% of the data distribution. When the data fall in (Q 1−1.5 ∗ IQR, Q2 +1.5 ∗ IQR), the data
dispersion is low and can be regarded as normal values; otherwise, the data are rejected
as outliers.

2.3. Tm Derived from RS Data

RS technology can obtain station-based meteorological parameters, such as tempera-
ture, pressure, potential height, and the relative humidity of different atmospheric layers.
Given that these meteorological data are collected by meteorological sensors onboard an
RS balloon, the Tm value calculated using these observed data has relatively high accuracy;
Although RS has high accuracy in temperature profiles and uncertainty in humidity profiles,
there is currently no better data source than RS for obtaining Tm, so RS can be considered
as a reference for obtaining relatively better accuracy Tm [41]. RS provides meteorological
data profiles in the form of layers and Tm is calculated as follows, according to the profile
data of various meteorological parameters [42]:

Tm =

n
∑

i=1

(z2−z1)ei
Ti

n
∑

i=1

(z2−z1)ei
T2

i

(2)

where z1 and z2 are the altitude values of the upper and lower observation layers, e and
T are the water vapor pressure and temperature over the observation layers, respectively.
Although the Tm calculated by RS has relatively good accuracy and can be used as a
reference to evaluate the accuracy of the Tm model, there is uncertainty in the calculation of
Tm due to the uncertainty in the humidity measurement and this approach has low spatial
and temporal resolutions [43,44].

2.4. Tm Derived from Empirical Models

Five typical Tm models are selected in this paper, namely, the Linear, GPT3, CTm,
GTm-H and GTrop models, to evaluate their accuracy in China. Table 1 presents detailed
information about these models, including their input parameters, application area, data
used for modeling and selected data period.

1. Linear model

The Linear Tm model is established based on the linear regression equation of Tm and
Ts. This model obtains Tm by simply inputting Ts at RS stations. In this paper, the linear
relationship between Tm and Ts is established as follows using the RS data collected from
87 stations over the period of 2011 to 2020 in China:

Tm= 77.18 + 0.69Ts (3)

where Ts is the surface temperature.
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Table 1. Input parameters and application areas of the five selected Tm models.

Models Input Parameters Applicable Area Data Period

Linear Ts China RS 2011–2020
GPT3 lat., lon., altitude, time Global ECMWF, VLBI 1999–2014
CTm lat., lon., altitude, time China GGOS 2007–2014

GTm-H lat., lon., altitude, time Global ECMWF 2013–2015
GTrop lat., lon., altitude, time Global ECMWF 1979–2017

2. GPT3 model

GPT3 is a commonly used global pressure and temperature empirical model that
provides various parameters, such as pressure, water vapor pressure, Tm, temperature
lapse rate, mapping function and gradient. Given its simple calculation and relatively high
accuracy on global scale, GPT3 has been widely used in the geodetic and meteorological
fields [45,46]. This model calculates Tm as

Tm= A0+A1cos(
DOY

365.25
2π) + B1sin(

DOY
365.25

2π) + A2cos(
DOY

365.25
4π) + B2sin(

DOY
365.25

4π) (4)

where DOY is day of year, A0 is the mean value of Tm, A1 and B1 are the coefficients of
annual amplitude and A2 and B2 are the coefficients of semi-annual amplitude. In the Tm
calculation of the GPT3 model, the coefficients and their amplitudes could be saved as a
grid, from which the user then could spatially interpolate the desired position.

3. CTm model

The CTm model is a grid empirical model that considers the annual and semi-annual
periodic signals of Tm and the relationship between Tm and altitude. This model initially
calculates the Tm value at the altitude of the grid point and then normalizes the Tm of the
four grid points around an RS station to the altitude of this station. In this model, Tm can
be calculated by inputting the longitude, latitude, altitude, and time of a specific RS station.
The Tm model expression at grid point altitude is the same as that in Equation (4) and the
Tm at the four-grid point altitude around the station are unified to station altitude, which
can be expressed as

TU
m = TG

m − g × (HU − HG) (5)

where TU
m denotes the Tm at the station altitude, TG

m denotes the Tm at the grid point
altitude, HU and HG denote the altitude at the station and grid point, respectively and g is
the vertical lapse rate of Tm. After that, bilinear interpolation is carried out for the TU

m of
the four grid points with a unified altitude and the Tm at the RS station as calculated by the
CTm model is finally obtained.

4. GTm-H model

The GTm-H model considers the nonlinear vertical reduction of Tm in high latitudes
and describes the nonlinear variation of temperature on the Tm profile, which comprises
two components, namely, the Tm at the mean sea level and the corrected value of Tm in the
altitude direction. This model can be expressed as

Tm= TMSL
m +Th

m (6)

Th
m= α1h + α2cos(

2πh
20

) + α3sin(
2πh
20

) (7)

where TMSL
m is the Tm at the mean sea level (K) that is calculated the same way as Equation (4),

Th
m is the Tm altitude correction value (K), h is the altitude (km), α is the fitting parameter,

α1 represents the linear part of Th
m, α2 and α3 represent the nonlinear part of Th

m.

5. GTrop model

The GTrop model considers the seasonal variations of Tm and uses the ERA-Interim
reanalysis data over the period of 1979 to 2017 for the model construction, which provides
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the Tm for a global 1◦ × 1◦ grid network [47]. This model calculates the Tm for each grid
point as

Tm= [A 1+A2(Y − 1980) + A3cos( DOY
365.25 2π) + A4sin( DOY

365.25 2π) + A5cos( DOY
365.25 4π) + A6sin( DOY

365.25 4π)]−
[A 7+A8(Y − 1980) + A9cos( DOY

365.25 2π) + A10sin( DOY
365.25 2π) + A11cos( DOY

365.25 4π) + A12sin( DOY
365.25 4π)](h − h 0)

(8)

where Y denotes year, h0 is the altitude at the grid point (km), h is the altitude at the station
(km) and A(i = 1 ∼ 12) is the model coefficients of Tm. The Tm of a specific station is
obtained via bilinear interpolation from the four nearby grid points of the station altitude.

2.5. Statistical Metrics for Tm Model Evaluation

The Tm values derived from 87 RS stations are used as reference in evaluating the
accuracy of the five typical models in China. The performance of these models is evaluated
across different altitudes, latitudes, and geographical areas and over the entire area of China.
Three evaluation indices are determined, namely, the root mean square (RMS), standard
deviation (STD) and Bias. The standard deviation is used to measure the dispersion of a
group of numbers, the RMS is used to measure the deviation between the observed value
and the true value, and the Bias, is the average of the difference between the measured value
and the true value. If the statistical distribution of the error is normal, then the probability
of random error falling within ±σ is 68%. The corresponding indices are computed as

RMS =

√
1
n

n

∑
i=1

v2
i (9)

Bias =
1
n

n

∑
i=1

vi (10)

STD =

√
1
n

n

∑
i=1

(xi − u)2 (11)

where vi is the difference between the Tm derived from the empirical Tm models and
RS data, and n is the total number of observed values. RMS is used to evaluate the
overall accuracy of the empirical Tm models, whereas Bias is used to evaluate their average
deviation. xi is the Tm derived from the empirical Tm models and u is its average value.

3. Accuracy Analysis of Tm Models
3.1. Accuracy Analysis at Different Altitudes

To verify the accuracy of the five typical Tm models at different altitudes, five RS
stations with station names of 55299, 52836, 56691, 51644 and 58606 distributed in different
altitudes are selected and the time series of Tm derived from the five models and the
selected RS stations over the period of 2011 to 2020 are compared (Figure 2). As can be
seen from Figure 2, the Tm value gradually decreases along with an increasing altitude.
The Tm derived from the five models are generally consistent with that derived by the
RS stations, but the corresponding values from the Linear model tend to be large at high
altitudes. To further analyze the performance of these models in different altitudes, 87 RS
stations in China are divided into five groups according to different altitudes, namely, [0,
500), [500, 1000), [1000, 1500), [1500, 2000) and [2000, 5000). Figure 3 presents the average
RMS, STD, and Bias values for each group of RS stations over the period of 2011 to 2020.
Comparison results show that the errors of the Linear model at different altitudes are all
large and gradually increase along with altitude. A significant positive deviation and a
large RMS are also observed in the altitude range, hence suggesting that the Linear model
is not suitable for calculating Tm in high-altitude regions. The Tm derived from GPT3
model also shows a large RMS at altitudes exceeding 500 m. Meanwhile, the Bias results
show that the Tm derived from the GPT3 model demonstrate obvious negative deviations
at different altitudes. Among the five Tm models, CTm, GTm-H and GTrop models have
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the most stable accuracy, and their accuracy is significantly higher at altitudes exceeding
2000 m because they consider the effect of altitude on Tm. In addition, the Tm derived from
Linear model shows the largest error among all models at different altitudes, followed by
the GPT3 model. Meanwhile, the CTm, GTm-H and GTrop models obtain relatively high
accuracy, and their RMS tends to decrease along with increasing altitude and their Bias
values are all less than 1 K at different altitudes. In general, GTrop model has the smallest
RMS at different altitudes, which indicates its high accuracy and stability. The Linear and
GTrop models do not greatly differ in their RMS value, which is around 3.5 K. However,
with an increasing altitude, the RMS of these models shows an opposite trend. In the [2000,
5000) group, the RMS derived from Linear model reaches 5.7 K, whereas that of the GTrop
model reaches only 2.7 K. The same difference between the Linear and GTrop model can
also be observed in their Bias values. In the [2000, 5000) group, the Bias value of the Linear
model reaches 4.0 K, whereas that of the GTrop model falls within the range of (0, 1) K
at different altitudes. Therefore, at different altitudes, the GTrop model shows a larger
advantage than the traditional model, while in the [2000, 5000) group, the CTm model has
relatively better accuracy.

Figure 2. Time series comparison of the five Tm models and the RS-derived Tm at five stations
distributed in different altitudes over the period of 2011 to 2020.
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Figure 3. Average RMS and Bias of the five Tm models at different altitude ranges over the period of
2011 to 2020.

3.2. Accuracy Analysis at Different Latitudes

To further verify the accuracy of the five Tm models at different latitudes, 87 RS
stations in China are divided into six groups, namely, [15◦, 25◦), [25◦, 30◦), [30◦, 35◦), [35◦,
40◦), [40◦, 45◦) and [45◦, 55◦), according to their latitude. Figure 4 presents a time series
comparison of the five typical Tm models at six RS stations with station names of 50774,
53068, 52866, 56146, 58633 and 59265 in different latitude groups. It can be observed that
the Tm gradually decreases along with increasing latitude. In the low latitude region, the
Tm derived by these models shows good consistency with that derived from the RS stations,
but some differences are observed in the mid-latitude and high latitude regions, especially
between the Linear and GPT3 model. Figure 5 presents the average RMS, STD and Bias
statistics of these models at different latitudes over the period of 2011 to 2020. These five
models obtain different accuracies across each latitude. In terms of RMS, the RMS of the
five Tm models gradually increase along with latitude, the RMS of the Linear model is
relatively large at different latitudes, the RMS of the CTm and GTrop models are small
and do not increase much and the GTm-H model obtains a relatively large RMS at high
latitudes [45◦, 55◦). Meanwhile, the Bias comparison results show that the Linear model
has a negative deviation in Tm at low latitudes and a positive deviation at mid- and high
latitudes, the GPT3 model has negative deviations at different latitudes and the GTm-H and
GTrop models have deviations of less than 1 K at different latitudes, especially at the mid-
and high latitude regions where these models report smaller deviations compared with the
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other models. In addition, the errors of the five Tm models gradually increase along with
latitude. In general, both GTrop and CTm models show relatively good performance at
different latitudes. The RMS of CTm is slightly smaller than that of GTrop model at middle
latitudes [35◦, 40◦), but GTrop model is better than CTm model from the perspective of
Bias index.

Figure 4. Time series comparison of the five Tm models and the RS-derived Tm at six stations
distributed in different latitudes over the period of 2011 to 2020.
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Figure 5. Average RMS and Bias of the five Tm models at different latitudes over the period of 2011
to 2020.

3.3. Accuracy Analysis at Different Geographical Regions in China

Given that Tm is affected by different locations and natural environments [48], China
is divided into four geographical regions, namely, North (N), South (S), Northwest (NW)
and Qinghai-Tibet (QT), to analyze the performance of the five typical Tm models. These
regions have average altitudes of 0.3, 0.5, 1.1 and 3.3 km, respectively. A total of 20, 34,
24 and nine RS stations are distributed in regions of N, S, NW and QT, respectively. To
evaluate the accuracy of the traditional and empirical models, Figure 6 shows the time
series of Tm differences derived from the Linear and GTrop models at four RS stations with
station names of 57178, 56964, 51644 and 52818 distributed in regions of N, S, NW, and QT
over the period of 2011 to 2020. The Tm values derived by these empirical models exhibit
some differences in four geographical regions of China. For instance, the Tm difference
derived from the GTrop model is smaller than that of the Linear model, especially in the
NW and QT regions but not in the N region. Therefore, the GTrop model should be used
instead of the traditional Linear model in the QT region to obtain Tm with relatively better
accuracy. Figure 7 shows the RMS and absolute Bias (ABias) of the five Tm models in
four geographical regions. Here, the RMS and Abias presented in Figure 7 was calculated
using all radiosonde stations located in each region. The accuracy of the Tm models shows
different characteristics in each region. Specifically, the RMS values of these models in
regions of N and NW are larger than those in region of S. Across all four geographical
regions, the Linear model obtains the largest RMS value among all those models. This
model also obtains the largest ABias value in regions of S and QT. Generally, the CTm and
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GTrop models outperform the other empirical Tm models in the four geographical regions
of China.

Figure 6. Comparison of Tm difference between the Linear/GTrop model and four RS stations
distributed across the four geographical regions of China over the period of 2011 to 2020.

Figure 7. Average RMS and absolute Bias (ABias) of the five Tm models in the four geographical
regions of China over the period of 2011 to 2020. (a) refers average RMS of the five Tm models in the
four geographical regions of China over the period of 2011 to 2020 and (b) refers absolute Bias (ABias)
of the five Tm models in the four geographical regions of China over the period of 2011 to 2020.
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3.4. Overall Evaluation of Tm Models in China

To validate the overall accuracy of the five typical Tm models in China, the correspond-
ing Tm values at 87 RS stations in China over the period of 2011 to 2020 are compared with
those derived by the empirical models. Figures 8 and 9 present RMS and Bias distributions
of Tm difference between the RS and five typical Tm models, respectively. It can be observed
that the CTm and GTrop models show the best accuracy at high-altitude regions, whereas
the Linear model present the lowest accuracy. The Bias of the Linear model is obviously
large in NW region and smaller in S region of China, whereas that of GPT3 model is
significantly smaller in NW. In addition, the ABias of the GTm-H model is larger than that
of the CTm and GTrop models in QT region of China. In general, these empirical Tm models
have better accuracy in low-latitude regions than in high-latitude regions.

Figure 8. RMS distribution of the Tm difference between the five Tm models and the 87 RS stations in
China over the period of 2011 to 2020.

Figure 9. Bias distribution of the Tm difference between the five Tm models and the 87 RS stations in
China over the period of 2011 to 2020.



Remote Sens. 2022, 14, 3435 13 of 16

Figures 10 and 11 present the percentages of RMS and Bias in different intervals as
calculated by the five Tm models at 87 RS stations in China. It can be observed that the
Linear model has a relatively large number of RS stations with large RMS and Bias values.
Meanwhile, the GPT3 and GTm-H models have relatively few stations with RMS values
exceeding 5 K, whereas the RMS value of CTm and GTrop models is below 5 K. In addition,
there are more stations with RMS value of Tm derived from GTrop model less than 3 K. The
Bias values in the CTm, GTm-H and GTrop models are concentrated in (−1, 1) K, whereas
that in the Linear and GPT3 models are below (−1, 1) K. Generally, the CTm, GTm-H and
GTrop models have relatively better accuracy than that of the other models. Table 2 shows
that the average RMS of the five models are 4.2, 3.7, 3.4, 3.6 and 3.3 K for the 87 stations,
whereas their average Bias are 0.7, −1.0, 0.7, −0.1 and 0.3 K, respectively. Generally, the
GTrop model has the best accuracy among the five models followed by the CTm model,
whereas the Linear model demonstrates the worst accuracy.

Figure 10. Percentage of RMS in different intervals calculated by the five Tm models at 87 RS stations
over the period of 2011 to 2020.

Figure 11. Percentage of Bias in different intervals calculated by the five Tm models at 87 RS stations
over the period of 2011 to 2020.
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Table 2. Average RMS and Bias of the five Tm models at 87 RS stations over the period of 2011 to 2020.

Model
RMS (K) Bias (K)

Max. Min. Aver. Max. Min. Aver.

Linear 7.1 2.1 4.2 5.9 −2.8 0.7
GPT3 7.1 2.1 3.7 2.1 −6.7 −1.0
CTm 4.9 2.1 3.4 2.3 −1.4 0.7

GTm-H 5.8 2.0 3.6 1.9 −1.8 −0.1
GTrop 4.7 2.1 3.3 1.7 −1.4 0.3

4. Conclusions

To determine the optimal Tm model to be used in China, the performances of five
typical Tm models, namely, Linear, GPT3, CTm, GTm-H and GTrop models, are compared
and validated in this paper. Corresponding meteorological data of 87 RS stations over
the period of 2011 to 2020 are selected to calculated Tm and as the reference. Although
there is uncertainty, the RS measurements is based on LoCo technique and therefore can
be considered the best for this evaluation. The performance and applicability of these Tm
models are analyzed across different altitudes, latitudes, and geographical regions and
for the entire China. Experimental results reveal that Tm shows obvious geographical
characteristics in China and the accuracy of the selected Tm models generally decrease
along with increasing altitude and latitude. The results obtained at different altitudes
show that the Linear and GPT3 models are not suitable for calculating Tm in high-altitude
regions, whereas the CTm, GTm-H and GTrop models have relatively good accuracy due to
their consideration of the effects of altitude. In addition, the GTrop model has relatively
more advantages over the other models in terms of accuracy and stability. Meanwhile, the
results obtained at different latitudes reveal that these empirical Tm models show higher
accuracies in low-latitude areas, but such accuracy decreases in the mid and high latitudes.
The Linear and GPT3 models have large errors, whereas the GTm-H and CTm models
obtain high accuracy in high latitudes. Results obtained at different geographical regions
also verified the relatively higher accuracy and stability of the GTrop model compared
with the other Tm models. Therefore, the GTrop model is recommended for calculating Tm
in China.
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