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Abstract: Microseismic monitoring is a useful enabler for reservoir characterization without which
the information on the effects of reservoir operations such as hydraulic fracturing, enhanced oil
recovery, carbon dioxide, or natural gas geological storage would be obscured. This research provides
a new breakthrough in the tracking of the reservoir fracture network and characterization by detecting
the microseismic events and locating their sources in real-time during reservoir operations. The
monitoring was conducted using fiber optic distributed acoustic sensors (DAS) and the data were
analyzed by deep learning. The use of DAS for microseismic monitoring is a game changer due
to its excellent temporal and spatial resolution as well as cost-effectiveness. The deep learning
approach is well-suited to dealing in real-time with the large amounts of data recorded by DAS
equipment due to its computational speed. Two convolutional neural network based models were
evaluated and the best one was used to detect and locate microseismic events from the DAS recorded
field microseismic data from the FORGE project in Milford, United States. The results indicate the
capability of deep neural networks to simultaneously detect and locate microseismic events from the
raw DAS measurements. The results showed a small percentage error. In addition to the high spatial
and temporal resolution, fiber optic cables are durable and can be installed permanently in the field
and be used for decades. They are also resistant to high pressure, can withstand considerably high
temperature, and therefore can be used even during field operations such as a flooding or hydraulic
fracture stimulation. Deep neural networks are very robust; need minimum data pre-processing,
can handle large volumes of data, and are able to perform multiple computations in a time- and
cost-effective way. Once trained, the network can be easily adopted to new conditions through
transfer learning.

Keywords: microseismic monitoring; deep learning; distributed acoustic sensors; reservoir
characterization

1. Introduction

The global energy demand is projected to increase. To meet the increasing energy
demand requires new technologies to exploit unconventional reserves. Similarly, calls
for climate actions such as carbon geosequestration, hydrogen generation, and geological
hydrogen storage will require an improvement in reservoir characterization methods [1–4].
Seismology remains one of the most relevant instruments in reservoir characterization.
The importance of seismology in reservoir characterization is extensively covered in the
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literature [5–9]. Similarly, the application of microseismic monitoring is well documented
in the literature [10].

1.1. Microseismology in Reservoir Characterization

Estimating the petrophysical properties of reservoirs is integral to reserve and resource
estimation. While petrophysical measurements from well logs adequately evaluate the
reservoir properties, the correlation with seismic data better validates the measured proper-
ties and reduces errors [11,12]. The availability of continuous microseismic data helps us to
understand the geomechanical and petrophysical changes in the reservoir. Furthermore,
the real-time data and analysis of such petrophysical changes could contribute to the initial
screening process of feasible enhanced oil recovery methods [13].

Hydraulic fracturing is one of the most popular techniques for enhanced oil recovery
and geothermal production. It involves the injection of huge volumes of a special liquid
under high pressure into the geological formations to create new fractures and open up
existing ones. Since this process has a direct mechanical effect on the geological formations,
there is a potential to induce microseismic events locally. Foulger [14] indicated that about
21 earthquakes were induced due to hydraulic fracturing. Similar geological exploita-
tion such as geothermal energy extraction has also been reported to have an increased
microseismic rate [15,16].

Numerous processes involving the injection of gases have been at the forefront of
studies in recent years. While the techniques of injecting CO2 into geological formations
are well advanced, the assurance of the safety of the storage sites for many years to come
remains an unanswered question. The storage of CO2 presents potential changes in the
physical, chemical, and mechanical state of the geological formations and in situ reservoir
brine [17–21]. An example was demonstrated in the study by Oye et al. [22], who showed
the occurrence of microseismic events in clusters within a limited spatial area, which was
attributed to CO2 injection. Hydrogen gas requires higher storage volumes due to its low
volume to burn ratio [23]. One of the proposed storage solutions for hydrogen for future
use is its storage in geological formations [24,25]. The concern of this storage mechanism is
the possible induction of microseismic events due to pressure build-up as well as the loss
of hydrogen in the geological formation [26]. Similar concerns have been attributed to the
underground storage of gas [27].

At the end of the life cycle of a well, a well abandonment and decommissioning
operation is implemented to isolate and prevent the further inflow of hydrocarbons or
the migration of hydrocarbons upward, which could contaminate the upper layer water-
bearing zones. However, while the techniques implored in well plugging and abandonment
are well advanced, the longevity of the integrity of the well is difficult to predict. Hence in
most cases, there is a need for the continuous monitoring of wellbore integrity and other
previously induced microseismic events [28,29].

1.2. DAS in Reservoir Characterization

For a long time, three-dimensional vertical seismic profiling (3D-VSP) has been con-
sidered as appealing for imaging complex subsurface structures, both in exploration and
time-lapse monitoring for the characterization of reservoirs. However, the associated costs
and complexity of installing geophone arrays in a well as well as the scarcity of available
wells have hampered the widespread deployment of 3D-VSP [30]. These challenges can
essentially be reduced by the use of the novel distributed acoustic sensing (DAS) technology.

DAS uses an ordinary or engineered fiber optic cable for seismic monitoring. In its
deployment, an interrogation unit (IU) is attached at the end of the fiber optic cable near or
on the surface. The IU measures the deformations (contractions or extensions) along the
fiber optic cable caused by propagating seismic waves. This sort of measurement is known
as distributed acoustic sensing. “Distributed” because any part of the fiber cable can be
deformed and logged for seismic information.
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DAS measurements are straightforward in concept. A laser pulse is sent down the fiber
cable by the IU. As the pulse propagates through the cable, portions of it undergo Rayleigh
back-scattering due to the minute heterogeneities in the cable. When a seismic wave
interacts with the cable, deforming it, it causes changes in the patterns of the back-scattered
light, which is then converted into seismic data. The time it takes the back-scattered pulse
to travel back to the IU allows for an accurate location of the point of deformation. Due to
the fast speed of light, the entire length of the fiber optic cable can be interrogated with laser
pulses at frequencies far greater than those of seismic waves. Depending on the length of
the borehole, the interrogation frequencies typically range from 10 to 100 kHz, with higher
frequencies known to produce a higher signal-to-noise ratio (SNR) due to redundancy.
Nonetheless, the length of the borehole restricts the highest permissible frequency.

The first demonstration of the capability of use of DAS for VSP acquisition was by
Mestayer et al. [31]. There has since been tremendous progress in the development and
testing of DAS technology that has resulted in its almost unrivalled acceptance for a
wide range of field seismic measurements. In relation to reservoir characterization, DAS
has been applied to microseismic monitoring and analysis [32–34], hydraulic fracture
monitoring [35,36] as well as in flow and production monitoring [37–39].

1.3. Deep Learning

Deep learning [40] is a branch of machine learning that has gained traction in the
field of seismic data processing, analysis, and interpretation due to its computational
efficiency, adaptability, and inherent ability to extract high-level features from recorded
seismic waveforms with little to no manual engineering. Developed for pattern recognition
in computer vision, deep learning models have high-level feature extraction mechanisms
that enable them to transform raw data into a subset of feature vectors, allowing learning to
take place. This makes them a perfect candidate for classification or regression tasks. The
detection of seismic events is a classic example of a classification task, while inversion to
locate the origin of the seismic energy can be considered as a multidimensional regression
problem. The most popular deep learning architectures in seismology are recurrent neural
networks (RNNs) and convolutional neural networks (CNNs). The latter is preferred for
its processing speed and ability to handle large volumes of data; the former’s ability to
recognize sequential patterns in the data and use those patterns to predict the next possible
scenario makes it the de facto time series analysis tool.

Because deep learning models are data-driven, they require a significant amount of
data for training and validation. As a result, they are best suited to processing seismic
data recorded by the DAS, which collects massive amounts of data. Binder and Tura [41]
employed convolutional neural networks to automatically detect microseismic events in
the data acquired by DAS along a borehole during a hydraulic fracture operation. They
compared the results with those from a surface geophone array and observed that, despite
the low SNR in the DAS data, the neural network was able to detect 167 new events that
were not registered by the geophones. Huot et al. [42] reported a 98.6% accuracy of deep
learning models trained with hyperparameters obtained by Bayesian optimization on
7000 manually selected microseismic DAS events. They concluded that by the application
of AI, the model was able to predict more than 100,000 events, which enhanced the predic-
tion of the spatio-temporal fracture developments, which otherwise could not have been
detected by traditional methods. Furthermore, to overcome the problem of SNR that makes
the data processing challenging, Qu et al. [43] introduced a new methodology based on
fixed segmentation coupled with a support vector machine (SVM) model. The proposed
methodology allowed for the identification of the best features and the optimal number
of features required for producing accurate results. From the comparative analysis, the
presented model had accurate results compared to the CNN and the short-term average
and long-term average ratio (STA/LTA) conventional approach. Other applications of
deep learning for the detection of seismic/microseismic activities are well-documented
in [44–47].
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Deep learning has also been applied to tasks other than the detection and classification
of seismic activities. Wamriew et al. [48] demonstrated the potential application of deep
learning to the inversion of microseismic data. They showed that a CNN model was capable
of locating microseismic events and reconstructing the velocity model simultaneously in
real-time from seismic waveforms. Tanaka et al. [49] employed a deep learning model
to perform moment tensor inversion of acoustic emissions during a hydraulic fracturing
experiment of granite rock and obtained 54,727 solutions.

Due to their computational efficiency, the models can be used in the field to process
the data in real-time during its acquisition, thereby scaling down the amount of data to be
stored while providing necessary information that could help optimize the field operations.
Huot and Biondi [50], Wamriew et al. [51], and Huot et al. [52] emphasized that without
the complete automation of microseismic data processing, large volumes of collected data
could be wasted due to human processing limitations.

It is well-established in the literature that the active and real-time recording and
processing of microseismic activities is very essential for the characterization of geological
formations. Right from the exploration of the field to the appraisal, the development,
production, enhanced, and improved oil recovery methods, abandonment well monitoring
or utilization for the storage of CO2 or H2. In addition, the challenges of the physical
processing of huge volumes of microseismic data and the limitations imposed could be
overcome by the implementation of automated artificial intelligence models, as have been
developed in recent times that could predict events and analyze the geological changes
in reservoirs. In this study, we demonstrate the use of two cutting-edge technologies:
distributed acoustic sensing (DAS) and deep learning for microseismic monitoring and
analysis. Building on the work by Wamriew et al. [51], we investigated the possibility of
improved microseismic event detectability and location: (i) given a well-known velocity
model; (ii) using different neural network architectures; and (iii) reducing the number of
output parameters. In addition, the output detections by the neural networks were verified
using the conventional STA/LTA method.

2. Materials and Methods
2.1. Microseismic Data

The process of obtaining a high-resolution DAS microseismic dataset requires the
use of specific data processing. This is mainly due to the technological features of the
data acquisition. In the most typical downhole DAS installation, the fiber optic cable is
permanently cemented on the outside of the well-casing. When a propagating seismic
wavefield from a source passes through the fiber optic cable, it reacts to the propagation and,
as a result, lengthens and shortens in the longitudinal direction of the fiber optic cable. The
lengthening and shortening of the fiber optic cable cause interference wave patterns, similar
to the vibrations of a coil in a conventional survey seismic receiver. These interference
patterns are collected and interpreted by the interrogation unit, which reproduces the
seismic waveform at specific points on the cable. Usually these points are arranged in
constant increments every 1–5 m, similar to a receiver array. The distance between the
“receivers” in the DAS cable results in the revolutionary ability of the DAS cable to provide
inexpensive, high spatial, and temporal resolution downhole seismic measurements.

In this study, we used the downhole DAS microseismic data recorded during the
phase 2C hydraulic fracture stimulation experiment at the FORGE research site near Utah,
in the United States. These data are available in the public domain [53–55]. The data
were acquired in a 1000 m deep vertical monitoring well installed with a Silixa Carina®

Sensing iDAS system that natively measures the strain-rate. This monitoring well was
situated 400 m to the southeast of the treatment well from which the hydraulic fracturing
stimulation experiments were conducted over the period 14 April 2019 to 3 May 2019 [54].
The data were recorded with a channel spacing of 1 m, gauge length of 10 m, and at a
frequency of 2000 Hz.
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The complete dataset was comprised of 40 detected microseismic events with moment
magnitudes between −1.5 and 0.5 recorded over the 11 day acquisition period. The entire
data volume was 13 TB. For the purpose of this study, we extracted a two-day subset of the
dataset known to contain 30 microseismic events with magnitudes in the given ranges.

2.2. Data Processing

The acquisition geometry in the DAS application caused the seismic sources and re-
ceivers to be at very different elevations. Such geometry invalidates the common midpoint
assumption, which is critical for traditional common depth point (CDP) processing. This
makes generating reflection images from the data recorded in this geometry much more
difficult than from the data recorded with sources and receivers at the same elevation. For
our purposes, however, there is no need for high-level processing techniques since a neural
network is capable of learning the properties of the seismic waveforms by itself to a high
level of precision [51]. To refine the wavefield of the DAS data and to simplify the task of
searching for seismic events in the data, spectral processing of the data can be considered
necessary and sufficient [56]. Thus, the key task of DAS processing, in our case, was to
increase the SNR and refine the wavefield to separate seismic events and simplify their
identification. As shown in Figure 1, it was almost impossible to distinguish the seismic
events by wave patterns from the raw data as the data are drowned in noise. This is typical
of DAS data.
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Figure 1. A fragment of the DAS record before processing. The area of interest highlighted in red is
due to the technical peculiarities of the data collection.

The complete spectral image of the full seismic section in Figure 1 was analyzed before
processing the data (Figure 2a). Due to the large variations in signal amplitudes, it is more
appropriate to separate the wavefields in the case of DAS data by using a logarithmic scale
such as the dB value scale used here.

The spectral picture of the full data section can be separated by origin, but after cutting
off the entire data area that is not of interest (data outside the red rectangle from the
Figure 1), only the spectrum of the target data interval is left (Figure 2b). The spectral
image of the area of interest appears to be extremely noise-prone and the separation of the
wavefields seems to be a difficult task.

Having established the frequency spectrum of the useful signal, the processing flow in
Figure 3 was adopted to achieve the overall goal of improving the SNR. The workflow was
based on classical spectral data processing as well as a literature review [57–59].
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Figure 3. The DAS data processing workflow.

The choice of scaling was due to the high spike values on the seismic profile. The mean
scale showed the greatest effectiveness for clarifying the wave pattern. For two-dimensional
(2-D) F-k filtering, the horizontal box rejection zone was selected, as shown in Figure 4.
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Figure 4. The original F-k area on the left. The right picture shows the horizontal box rejection zone.

As can be seen in the F-k region beyond 200 Hz, the useful signal is lost and there
remains constant noise. In the next step, the remaining noise is filtered out with the band
pass Ormsby filter. Analysis of the result at this stage showed the need to apply a 2-D
median filter by [58,60] to remove the common mode noise, which appeared as persistent
horizontal stripes in the data. As a result of applying the DAS processing graph presented
above, we were able to significantly improve the SNR of the data as well as prepare the
data for seismic event detection without the loss of useful data (Figure 5).
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2.3. Training Dataset

The training data for the deep neural network was comprised of twenty thousand
synthetic microseismic events contaminated with noise from the field data and an equiv-
alent amount of pure noise drawn from the field data, giving a total of forty thousand
samples. Each sample comprised of the gathering of receiver responses from 150 receivers
used in the forward model. Thus, one sample consisted of 150 seismic traces. A single
1-D anisotropic velocity model with three layers was used in the forward model. The
S-wave velocity was taken from the FORGE velocity estimates by Zhang and Pankaw [61]
and Wamriew et al. [51], while the P-wave velocities and the densities were estimated
using the Castagna [62] and Gardner [63] equations, respectively. Relatively high Thomsen
anisotropic parameters [64] of ε = 0.51, γ = 0.36, and σ = 0.25, were chosen since previ-
ous studies have revealed that a neural network, trained on high anisotropic parameters,
would generalize well when presented with waveforms from lower anisotropic models [48].
Table 1 shows the 1-D velocity model used in the study.

Table 1. The 1-D velocity model used in the forward models.

Parameter vp0 (m/s) vs0 (m/s) ρ (kg/m3) Depth (m)

Layer 1 3834 2133 2439 1000
Layer 2 4317 2549 2513 1100
Layer 3 4979 3120 2604 1600

The monitoring well was set 400 m from the hypothetical treatment well and was
arrayed with one hundred and fifty single-component receivers separated at 5 m intervals
from a depth of 1050 m downward. This dense spatial sampling was deliberately chosen to
match the final downsampled field DAS records. Twenty thousand microseismic events
with moment magnitudes between −1.5 and 0.5, similar to the field data, were sampled
at random in a two-dimensional plane of a width and depth 700 m × 900 m, respectively.
The amplitudes and travel times of the transmitted waves were calculated using ray-
tracing. The trapezoidal Ormsby wavelet with low-cut, low-pass, high-cut, and high-pass
frequencies was injected at each source point and randomly sampled in the intervals
50–100 Hz, 200–250 Hz, 300–350 Hz, and 400–550 Hz, respectively, to calculate the particle
velocity. The data were sampled at a frequency of 2000 Hz for a duration of 1 s. The DAS
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record is essentially the difference between two geophones over time. Thus, the particle
velocity can be converted to the strain-rate using Equation (1) [65]:

.
ε

DAS
zz =

vz

(
z + L

2

)
− vz

(
z − L

2

)
L

, (1)

where vz is the dynamic particle velocity at depth location z, and
.
ε

DAS
zz is the converted

uniaxial DAS strain-rate in the vertical direction. In this conversion, L is the spatial gauge
length. The obtained strain-rates were then amplitude normalized before being added
noise from the field data. The noise was spatially downsampled to 5 m, split into a 1 s
length by a moving window, and then rescaled to make sure that the amplitudes compared
with those of the strain-rates before the addition. Additional 20,000 pure field noise samples
were reserved for addition to the training data. A human expert manually inspected the
continuous wavelet transform of the noise dataset to ensure that they did not contain any
low-magnitude microseismic events. The final step in the preparation of the data involves
the conversion of the samples to PNG images of pixel sizes 256 × 256 × 1 ready for use in
training the neural network.

2.4. CNN Model Architecture

CNN is a type of deep learning model, which uses a set of kernels to automatically
extract the most prominent features from an input dataset. A typical CNN model consists
of three layers, namely: convolutional, pooling, and fully connected layers that adaptively
learn the outstanding patterns in the input matrix. During the convolution operation, the
filter traverses the width and height of the input matrix conducting dot product operation
at each data point, resulting in a two-dimensional activation map. The input matrix for the
following layer is formed by stacking the activation maps from all filters along the depth
dimension of the convolution layer. As a result, the number of filters in the convolution
layer matches the depth of the output activation maps. The pooling layer reduces the
spatial dimensions of the activation maps and makes them translation invariant to small
perturbations by performing a conventional downsampling operation on them. This
reduces, to a great deal, the number of future learnable parameters, making CNNs faster
to train and capable of handling large volumes of data. The fully connected layer is the
decision-making organ of the network. It takes as input the flattened, 1-D activation map
outputs from the convolution and pooling layers and maps them into the final outputs of
the network.

To achieve the objectives of detecting and locating microseismic events from the DAS
microseismic data, we designed and employed two deep CNN-based neural networks,
namely the residual neural network [66] and an inception-residual neural network [67].
A residual-type deep convolutional neural network [66] comprised of forty-nine convo-
lutional layers, one maxpooling layer, one global average layer, and one fully connected
layer. The model was further divided into five blocks with the first block comprised of
one convolutional layer with sixty-four filters of dimensions 5 × 5 and stride of 2; a single
batch normalization layer; a single 2-D maximum pooling (maxpool2d) layer and a ReLU
activation function. The subsequent four blocks were each comprised of equal numbers of
convolutional and identity layers. Figure 6 and Table 2 show a detailed representation of
the architecture of the neural network model.



Remote Sens. 2022, 14, 3417 9 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

of convolutional and identity layers. Figure 6 and Table 2 show a detailed representation 
of the architecture of the neural network model. 

 
Figure 6. The architecture of the 50-layer deep neural network used in this study. Abbreviations: 
Conv—convolutional layer, MaxPool2D—two-dimensional maximum pooling layer, AvgPool—
global average pooling layer, FC—fully connected layer. 

Table 2. Details of the 50-layer deep residual neural network used in this study. Abbreviations: 
Conv—convolution layer, Conv_x—convolution and identity layer. 

Layer ID Number of Layers Output Size 
Block 1 [Conv1] 7 × 7, 64, stride 2 128 × 128 

3×3 maxPool2D, stride 2 

Block 2 [Conv2_x] ൥ 1 × 1, 643 × 3, 641 × 1, 256൩ × 3 64 × 64 

Block 3 [Conv3_x] ൥1 × 1, 1283 × 3, 1281 × 1, 512൩ × 4 32 × 32 

Block 4 [Conv4_x] ൥ 1 × 1, 2563 × 3, 2561 × 1, 1024൩ × 6 16 × 16 

Block 5 [Conv5_x] ൥ 1 × 1, 5123 × 3, 5121 × 1, 2048൩ × 3 8 × 8 

Global average pooling 2-D 
Fully connected nodes = 256, activation = Linear 2 × 1 

Total parameters 24,106,178 
Trainable: 24,053,186 

Non-trainable: 52,992 

The network also has residual linkages that help to alleviate the problem of dimin-
ishing or exploding gradients by providing an alternative path for the gradient to pass 
through. The identity layers help to speed up the network training by controlling the num-
ber of training parameters. The fifth convolutional block is followed by a 2-D global aver-
age pooling layer and the output is then flattened into a 1-D continuous linear vector. A 
dropout layer is then applied to randomly set 30% of the vector output to zeros in order 
to avoid overfitting. The result is input into a fully connected layer with a linear activation 

Figure 6. The architecture of the 50-layer deep neural network used in this study. Abbreviations:
Conv—convolutional layer, MaxPool2D—two-dimensional maximum pooling layer, AvgPool—
global average pooling layer, FC—fully connected layer.

Table 2. Details of the 50-layer deep residual neural network used in this study. Abbreviations:
Conv—convolution layer, Conv_x—convolution and identity layer.

Layer ID Number of Layers Output Size
Block 1 [Conv1] 7 × 7, 64, stride 2 128 × 128

3 × 3 maxPool2D, stride 2

Block 2 [Conv2_x]

 1 × 1, 64
3 × 3, 64
1 × 1, 256

× 3 64 × 64

Block 3 [Conv3_x]

1 × 1, 128
3 × 3, 128
1 × 1, 512

× 4 32 × 32

Block 4 [Conv4_x]

 1 × 1, 256
3 × 3, 256

1 × 1, 1024

× 6 16 × 16

Block 5 [Conv5_x]

 1 × 1, 512
3 × 3, 512

1 × 1, 2048

× 3 8 × 8

Global average pooling 2-D
Fully connected nodes = 256, activation = Linear 2 × 1

Total parameters 24,106,178
Trainable: 24,053,186

Non-trainable: 52,992

The network also has residual linkages that help to alleviate the problem of diminish-
ing or exploding gradients by providing an alternative path for the gradient to pass through.
The identity layers help to speed up the network training by controlling the number of
training parameters. The fifth convolutional block is followed by a 2-D global average
pooling layer and the output is then flattened into a 1-D continuous linear vector. A dropout
layer is then applied to randomly set 30% of the vector output to zeros in order to avoid
overfitting. The result is input into a fully connected layer with a linear activation function
and two output nodes to match the expected outputs of the locations of the microseismic
events.

The inception-ResNet neural network combines, as the name suggests, the architec-
tures of both the inception and the ResNet models in order to boost its performance. It is
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comprised of three main building blocks (i.e., the stem block, inception-residual block, and
the scaling block). The stem is a pure inception block that forms the input to the neural
network. It essentially contains several partitions of sub-networks, which are joined to-
gether to form a large network. The partitions provide flexibility for tuning the parameters
(e.g., number of filters) of various network layers without affecting the quality of the full
network. This block is then followed by an inception-residual block, which uses less ex-
pensive inception layers in conjunction with residual layers in order to compensate for the
dimension reductions introduced by the inception block. The final block is the scaling block,
which scales down the residuals before adding them to the previous layer’s activation. This
in turn helps to stabilize the training without the need to manually change the training rate
as advocated by He et al. [66]. A detailed description of the inception-ResNet model can be
found in [67]. We adopted the inception-resnetv4 model, introducing only changes to the
dropout layer (see Section 2.5) and the fully connected. We added a dense layer with two
output nodes (for x and z coordinates) with a linear activation function in order to perform
the regression. Figure 7 shows the architecture of the network.
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2.5. Neural Network Training and Validation

Before training, a random sample of 1000 events and 1000 noise data together with
their corresponding labels were reserved for testing the neural network after training. The
remaining 38,000 samples were split as follows: 26,600 for training and 11,400 for validation
purposes. The labels were the horizontal (x) and the vertical (z) offsets of the microseismic
event sources from the receiver. To solve the regression problem, the noise labels were all
initialized with zeros.

The training data were input into the network in batches of sizes of 32. This batch size
was arrived at after conducting several trials with a variety of sizes. The tests revealed that
while larger batches sped up the training process of the neural network, they significantly
reduced the generalization performance of the network. On the other hand, smaller batch
sizes considerably increased the training time of the neural network without significant
improvements on its convergence. A batch size of 32 was the optimum. While the archi-
tecture of our neural network deals effectively with the problem of vanishing gradients
by use of the skip connections, it is still susceptible to overfitting due to its complexity. To
avoid overfitting, the following measures were taken:

(i) A validation dataset comprising of 30% samples randomly picked from the overall
dataset was reserved to assess the performance of the neural network after every
epoch of training.



Remote Sens. 2022, 14, 3417 11 of 21

(ii) A dropout layer of 30% was introduced just before the fully-connected layer to set
30% of its input data to zero.

(iii) During training, the performance of the network on the validation dataset was tracked
at every epoch and its weights saved only if there was improvement.

(iv) An early-stopping call was introduced to stop the training of the network if there was
no improvement in its performance for 20 epochs in a row.

The mean squared error (MSE) loss function was used to train the neural network
and its weights updated using the Adam algorithm [68]. Both models were trained on a
GeForce GTX 1080 Ti GPU running on 64 cores. The ResNet model trained for 11.8 h and
289 epochs while the inception-ResNet model trained for 7.2 h for 294. Figure 8 shows the
metrics training and validation loss and mean absolute errors. The training loss measures
the performance of the model on the training dataset while the validation loss measures
the performance of the model on the validation dataset.
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3. Results

The results of evaluating the trained neural network on the test dataset as well as its
application to the field data are reported in this section.

3.1. Evaluation of the Trained Neural Network

After training the networks, the test dataset comprised of 2000 samples (1000 micro-
seismic events and 1000 noise samples) was used to evaluate their performances. Figure 9
shows the correlation plot for the predictions (inverted data) versus the ground-truth
(synthetic data) events.
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correlation coefficient for the predictions and ground-truth values of the x and z coordi-
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Figure 9. The correlation plot of the predicted versus ground-truth events. The dots at the origin of
both plots are the noise samples. The wide gap in the right plot is because the minimum depth of the
microseismic events was 1050 m. Top row: Inception-ResNet output. Bottom row: ResNet output.
Pearson correlation coefficient is indicated in the subtitle of each plot. The same correlation plots are
shown in Figure 10 after the removal of noise samples from the plots.

As can be seen in both plots, the neural network model correctly distinguished between
the noise and microseismic events. The noise was located at the origin (since all noise was
labeled with zeros for regression purposes). The Pearson’s product moment correlation
coefficient for the predictions and ground-truth values of the x and z coordinates for the
inception-ResNet model was 0.996 and 0.998, respectively, while that of the ResNet model
was 0.998 and 0.999 for x and z, respectively, as evident in both plots in Figures 9 and 10.
This indicates that the predictions are strongly correlated to the ground-truth values and
hence are reliable. The ResNet model showed a better correlation than the inception-ResNet
model. In Figure 10, we only plotted the output of the ResNet model after the removal of
the noise samples.

To measure the trained model’s performance on data that it had not seen before,
we performed a statistical analysis of the disparity between the predicted and ground-
truth values. Figure 11 shows a plot of the errors versus the ground-truth values for the
1000 microseismic events in the test dataset. The errors here were the differences between
the predicted event locations and the ground-truth values. From the plots, it is evident that
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the errors were centered around zero with a few extreme values, as can be seen in the plots
in Figure 11.
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Figure 11. The errors in the locations of the microseismic events. Dark to medium blue are within
two standard deviations from the mean, while red is more than two standard deviations from the
mean. The events underlying the cyan line had no errors.

A 2-D section view projection of 150 randomly selected events from the test dataset
alongside the inverted (predicted) events is shown in Figure 12. The locations of the
predicted events closely matched the benchmark data with minor or no discrepancies in
certain cases, as can be seen from the plot. In addition, the distribution of the microseismic
events can be seen to spread out in definite patterns, possibly mimicking the fracture
network of the reservoir.
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The calculated statistics for the disparities between the prediction and ground-truth
values support the results obtained in Figures 10 and 11, confirming the robustness of
the neural network approach. Table 3 presents a summary of the findings. The mean
absolute percentages errors (MAPE) in the event locations using the ResNet model were
2.21 and 0.614 for the lateral distance (x) and depth (z) locations, respectively, with the
corresponding standard deviations of 11.8 m and 12.0 m.

Table 3. A summary of the statistical analysis of the uncertainty between the predictions and ground-
truth values for the two deep CNNs implemented.

MAPE (%) Standard Deviations (m)

ResNet Incep + ResNet ResNet Incep + ResNet
Distance (x) 2.21 3.39 11.8 16.6

Depth (z) 0.61 0.79 12.0 16.1

We observed that the mean absolute errors in depth were minimal in both models,
but were more spread out, as evident in the standard deviations. This might be attributed
to the high values of the anisotropic parameters used in the velocity models as well as
the possible uncertainties in the velocity model. Nevertheless, this is necessary for the
practical application of the approach, as a good estimate of the velocity model is crucial for
the accurate and verifiable inversion of the event locations. Evidently, the ResNet model
outperformed the inception-ResNet model by a considerably large margin of errors, as
seen in Table 3. However, the inception-ResNet architecture is computationally efficient
compared to the ResNet.

3.2. Application to Field Data

Having evaluated the trained neural network on noise contaminated synthetic data,
the neural network was applied to automatically identify and locate microseismic events
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from the field DAS acquired microseismic data from the FORGE project [55]. This dataset
comprises fifteen-second SEG-Y data files of the recording of the hydraulic fracture stimu-
lation experiments conducted in the FORGE reservoir during a period of eleven days. A
three-hour subset of this dataset from the seventh and eighth cycles of stages 27 and 28 of
the stimulation experiments was chosen for inversion with the deep learning model. This
subset has been confirmed to contain thirty microseismic events of varying local magni-
tudes between −1.5 and 0.5. Each SEG-Y file was split using a one-second length sliding
window, giving fifteen samples of 2000 time steps each. The resulting dataset contained
10,800 samples, which were processed as described above in Section 2.1. As a last step, the
preprocessed data were amplitude-normalized and converted to greyscale images with
pixel sizes of 256 × 256. Then, the data were fed into the pre-trained ResNet neural network
for inversion purposes, as it has been proven to be more robust that the inception-ResNet
model. The neural network detected and located thirty-six microseismic events. Six of
these events were new events, which had not been reported before in the events catalogue.
Figure 13 shows a sample of the new events, while Figure 14 shows a 2-D section plot of
the inverted event locations.
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Figure 13. Sample of the low magnitude events detected by the CNN but were not in the events
catalog. The red lines represent the S-wave arrival times while the cyan shows the estimated P-wave
arrivals. Similarly, the cyan and red arrows show the P- and S-waves respectively.



Remote Sens. 2022, 14, 3417 16 of 21Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 14. The 2-D section view projection of the inverted locations of the microseismic events from 
the FORGE data. 

A human expert using the STA/LTA algorithm with STA and LTA windows of 
lengths of 0.1 s and 1.0 s, respectively, verified the detected events, as shown in Figure 15. 

 
Figure 15. An example of the STA/LTA implementation for the detection of microseismic events. 
(Top) Amplitude spectrum of the waveform. (Bottom) STA:LTA ratio plot. An event is declared 
when the STA:LTA ratio exceeds 1.3. Red and Blue dotted lines indicate the thresholds above and 
below which the trigger is on and off respectively. 

Figure 14. The 2-D section view projection of the inverted locations of the microseismic events from
the FORGE data.

A human expert using the STA/LTA algorithm with STA and LTA windows of lengths
of 0.1 s and 1.0 s, respectively, verified the detected events, as shown in Figure 15.
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Figure 15. An example of the STA/LTA implementation for the detection of microseismic events.
(Top) Amplitude spectrum of the waveform. (Bottom) STA:LTA ratio plot. An event is declared when
the STA:LTA ratio exceeds 1.3. Red and Blue dotted lines indicate the thresholds above and below
which the trigger is on and off respectively.
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4. Discussion

Microseismic monitoring and analysis has proven to be a valuable screening tool for
reservoir characterization, assisting in the calibration and verification of fracture models
as well as inferring fracture height, extent, and orientation from wellbore characterization
data. In particular, existing fracture properties of a new play as well as the presence of
sweet spots in the vicinity of the existing fractures can be well-understood through the
analysis of microseismic data. The information gathered during the real-time analysis of
microseismic data is vital as it provides knowledge about the progress of each stage of
pumping, which is crucial for onsite decision making.

In the preceding sections, we sought to demonstrate the practicality of employing
a deep learning approach to invert microseismic data recorded by the fiber optic DAS
technology. Deep learning and DAS are both revolutionary technologies with many benefits
to the field of microseismic monitoring and analysis. DAS is relatively cheap compared
to conventional geophones and accelerometers, is durable, can withstand high downhole
pressure, and has a high spatial and temporal resolution, which when fully exploited,
provides a detailed mapping of the reservoir. DAS equipment captures massive amounts
of data attributable to its high temporal and spatial resolution, making it almost impossible
to process and interpret in real-time and poses a challenge for storage space. However,
this can be resolved by the use of deep learning. The massive amounts of data that stream
in from DAS equipment make it a perfect candidate for deep learning, which leveraging
on this advantage, could be applied to train deep neural network models to detect and
perform inversions on microseismic data in real-time during reservoir operations. This
could expedite the decision-making process for the optimization of the overall goal of the
characterization of the reservoir.

The potential of a deep learning approach for detecting and locating microseismic
events from DAS records is demonstrated here by results for both synthetic and field records
from the hydraulic fracture stimulation project of the FORGE reservoir in Utah, the United
States. The CNN model was able to effectively detect and locate thirty-six microseismic
events in the DAS data from stages 27 and 28 of the reservoir stimulation, identifying
six new weak events that had not been detected previously. The results indicate that the
proposed deep learning approach could be applied in real-time during hydraulic fracture
stimulation or any other reservoir operations for the simultaneous detection and location
of microseismic events or induced seismicity, in the case of passive seismic monitoring.

Integration of the presented method can provide useful information to field engineers
that will enable them to make on-the-fly changes to treatment designs, avoid geohazards,
locate fault lines that divert fluids and proppants away from the desired fracture zone, and
ensure that the spacing between fracture stages is just right. The results of microseismic
analysis provide much more information than just the location of individual cracks. The oil
and gas industry is learning more about how the reservoir will react to simulated events
thanks to the use of microseismic analysis. This allows them to gain a better understanding
of how the reservoir will respond to the situation.

In this study, seismic raytracing was used to create the training dataset due to its
numerical and computational efficiency and versatility. When conducted in a smoothly
changing layered medium, ray tracing can yield dependable approximation solutions with
adequate levels of precision. However, because it is simply a rough solution to the elastic
wave equation, it can only be used in smooth changing media and may provide inaccurate
results in singular regions [69]. For this reason, other robust approaches such as the full
waveform inversion and reflectivity methods could be used to generate the training data.
In addition, with sufficient computational resources, 3-D velocity models can be used in
the forward models, as they can be better constrained than the 1-D models used in this
study. The inclusion of well log data could also help to better fine-tune the velocity model
and enhance the inversion capability of the neural network in the long run.

Better results could be achieved for the detection of the microseismic events by inte-
grating the proposed approach with well-known conventional algorithms such as template
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matching and STA/LTA routines, which will enhance the detection threshold of the net-
work, especially in cases when the signal is drowned in noise. For the location of the events,
the inclusion of shot/calibration data during training of the network could help to further
constrain the network and lower the uncertainties in its prediction. Finally, the integration
of 3-C geophone data in addition to DAS could solve the problem of cylindrical symmetry
and enable 3-D event location while reducing uncertainty.

5. Conclusions

In this study, a regression-based deep learning approach for detecting and locating
microseismic events from seismic waveforms recorded by DAS equipment is presented.
Two deep CNN-type neural networks were implemented and their performances compared.
The neural network models were trained, validated, and tested on synthetic data injected
with noise from the field data. The ResNet outperformed the inception-ResNet model
and its feasibility was tested on the field microseismic data from the hydraulic fracture
stimulation experiment of the FORGE project. The errors in the location results for the
ResNet model were 2.21% and 0.61% for x and z, respectively, while for the inception-
ResNet model, they were 3.39% and 0.79% respectively, showing the capability of the
proposed deep learning approaches in microseismic data analysis.

The trained neural network can be applied to detect and locate microseismic events in
real-time during field operations such as hydraulic fracture stimulation, fluid injection for
enhanced oil recovery, and carbon dioxide and hydrogen geosequestration. This will fast-
track the field decision making process and in turn optimize the reservoir characterization.
A combination of DAS and deep learning for reservoir characterization is revolutionary
in the sense that the two approaches complement each other. While DAS records large
amounts of data that are almost impossible to process in real-time using conventional
routines, deep learning benefits from this since it requires large amounts of data for training
and validation. Despite the challenge of single channel recordings, the numerous advan-
tages associated with DAS such as high temporal and spatial resolution, durability, ability
to sustain high downhole pressures, and low cost make it a priority choice for microseismic
monitoring.
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