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Abstract: Vegetation is a critical component of ecosystems that is influenced by climate change and
human activities. It is therefore of great importance to investigate trends in vegetation dynamics
and explore how these are influenced by climate and human activities. This will help formulate
effective ecological restoration policies and ensure sustainable development. As the Normalized
Difference Vegetation Index (NDVI) is strongly correlated with vegetation dynamics and may be
used as a proxy measure for vegetation condition, the spatiotemporal characteristics of NDVI derived
from SPOT/VEGETATION NDVI data in China over the 1998–2019 period were assessed using the
Mann–Kendall test and the Hurst exponent. The Pearson correlation analysis and residual analysis
methods were employed to analyze the influencing factors of NDVI dynamics. Integrating the results
of the Hurst exponent and the NDVI trend analysis, it was found that the majority area of China is
presenting an increasing NDVI trend at present but is likely to reverse in the future. A significant
positive correlation between the NDVI and temperature was observed on the southeast coast of China
and the north Qinghai–Tibet Plateau. Precipitation was the dominant factor affecting vegetation
dynamics as indicated by a positive correlation with the NDVI for most parts of China except for the
inland area in the Northwest and the Hengduan Mountains in Southwest China. Extreme temperature
and extreme precipitation have also shown varying degrees of influence on vegetation dynamics at
various locations. In addition, this study revealed trends of increasing NDVI, suggesting improved
vegetation condition attributable to the implementation of ecological engineering projects. This study
is helpful for studying the interaction mechanisms between terrestrial ecosystems and climate and
for sustaining the ecological environment.

Keywords: NDVI; climate extremes; Hurst exponent; residual trend analysis; human activities;
vegetation dynamic

1. Introduction

Vegetation is an important component of terrestrial ecosystems, plays an irreplaceable
role in the material circulation and energy flow of the terrestrial ecosystems [1–4], and
constitutes a major guarantee for natural ecosystems and human production and life [5–7].
There are two important driving factors affecting vegetation dynamics, namely: (1) climate-
related factors, such as temperature and precipitation [8–11], which provide necessary
conditions for vegetation growth; and (2) disturbance factors caused by either human
activities or the natural environment, such as land-use change, urbanization and forest
development, forest fire, and plant pests and diseases [12–15]. The influence of climate
on vegetation dynamics has long been proved [16]. Meanwhile, rational use of resources
by humans may also improve regional ecological environmental quality by alleviating
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environmental pollution, improving energy consumption structure, or implementing large-
scale green projects [17,18]. Many studies on the QTP have proved that ecological projects,
such as the restoration of grasslands from farmlands and the establishment of national
forests and nature reserves, can improve the regional ecological environment and promote
an increase in vegetation condition [19–21].

Researchers have devoted considerable attention to vegetation responses to external
disturbances worldwide [22–25]. Among all the driving factors that may influence veg-
etation growth, temperature and precipitation have been studied most frequently, and
they are proved to be closely related to the changes of vegetation condition [26,27]. Many
studies have proven the correlation between vegetation dynamics and climate variables for
different regions [28–30]. In particular, a series of studies focused on studying vegetation
variation and its response to climatic factors for different regions in China [31–37]. These
studies provide useful insights into the spatial dynamics of vegetation and correspond-
ing influencing mechanisms. Few studies [28,38,39], however, have been conducted at
the national scale. While these studies mainly focused on the impact of climate and soil
moisture on vegetation dynamics, other factors, such as anthropogenic factors [22] and
climate extremes [37], were overlooked or remained unquantified. China is characterized
by diverse vegetation types, complex ecological environments, and its vegetation status
is strongly spatially heterogeneous due to the combined influence of many factors includ-
ing not only the climate. Therefore, assessing the spatiotemporal vegetation dynamics
in China and the response to not only the climate, but also climate extremes and human
factors, is critical. This would be beneficial for maintaining terrestrial ecosystems under a
changing environment.

Remote sensing techniques serve as an ideal tool for this purpose, providing the ability
to capture the vegetation dynamics in response to climate shifts at high temporal resolutions
over long time series [40–43]. The Normalized difference vegetation index (NDVI) has been
widely used for studying vegetation dynamics, as it is a simple and effective proxy measure
for vegetation condition (i.e., vegetation health, cover, and phenology) [39,44,45]. The
most commonly used NDVI datasets are SPOT/VEGETATION NDVI, AVHRR NDVI, and
MODIS NDVI [18,46]. Long time series of NDVI datasets acquired by satellite sensors, such
as the SPOT/VEGETATION instrument and MODIS, have been used to monitor vegetation
dynamics, detect land use/land cover change, vegetation mapping, and estimating net
primary productivity for different regions [19,44,47]. Recently, an NDVI variation and
its relationship with the changing climate have attracted a lot of attention [48,49]. NDVI
time series data have been widely used to assess spatiotemporal dynamics of regional
vegetation [50] in response to regional climates as well as human activities using mul-
tiple residual regression analysis [51,52]. Analyzing the vegetation condition variation
allows us to determine the vegetation trend over a specific period and predict possible
future directions [20]. The Hurst exponent is an effective method for measuring long-term
memory of time series data to indicate future trends. It has been widely used in many
fields, including meteorology and hydrology [50], and it has been widely used to predict
vegetation trends [20,21,50,53].

In this study, we tried to conduct a most recent long-term (1998–2019) analysis on the
spatiotemporal vegetation dynamics in China. Both the climate factors and anthropogenic
factors were analyzed using a series of methods, including the Mann–Kendall (MK) trend
test, the Pearson correlation analysis, residual trend analysis, and the Hurst exponent. The
objectives include: (1) to analyze the temporal trend and spatial distribution of vegetation
in China over the 1998–2019 period, which was determined according to data availability;
and (2) to understand the mechanisms of climate and anthropogenic factors influencing
vegetation dynamics in China over the period. It is hoped that this study could provide a
comprehensive understanding of the vegetation dynamics and the corresponding driving
factors of vegetation dynamics in China under a changing environment.
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2. Study Area and Materials
2.1. Study Area

China has a land area of ~9.63 × 106 km2, with a variety of topography and terrain
types (Figure 1). There are complex combinations of temperature and precipitation and a
variety of climate types, such as temperate continental, temperate monsoon, subtropical
monsoon, tropical monsoon, and alpine climate. The high and low precipitation amounts
are observed in summer and winter, respectively, with a large interannual variation. In
addition, the annual precipitation varies considerably across regions, from 1600 mm on
the southeast coast to less than 50 mm in many areas in the northwest inland area. The
major vegetation types include grassland, cropland, evergreen broadleaf forest, deciduous
broadleaf forest, and needleleaf forest [54].
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Figure 1. Geographical features of China: (a) geographical settings with elevation information;
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2.2. Materials
2.2.1. NDVI Dataset

In this study, considering the data availability and popularity, we used the annual
SPOT/VEGETATION NDVI satellite remote sensing dataset from 1998 to 2019 provided by
the Resource and Environmental Science and Data Center (http://www.resdc.cn, accessed
on 1 July 2021). It is an annual maximum NDVI product that has a spatial resolution of
1 km. According to [55], an NDVI value smaller than 0.2 was considered as non-vegetation.

2.2.2. Climate Dataset

Average annual temperature and precipitation data from 1998 to 2019 were collected
from China’s surface climate daily data (V3.0) distributed by China Meteorological Data
Network (http://cdc.cma.gov.cn/home.do, accessed on 1 May 2021). They were obtained
from 832 meteorological stations and then interpolated to 1 km resolution using ANUS-
PLIN [56]. ANUSPLIN is commonly used in the field of meteorology for interpolation
purposes [56], providing a tool for analyzing and interpolating multivariable data using a
smooth spline function and conducting statistical analysis and data diagnosis.

http://www.resdc.cn
http://cdc.cma.gov.cn/home.do
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2.2.3. Extreme Climate Dataset

An extreme climate dataset called HadEx3 (www.metoffice.gov.uk/hadobs/hadex3,
accessed on 1 December 2020) was used in this study. It consists of 29 climate extremes
indices (CEIs), calculated from about 7000 temperature stations and 17,000 precipitation
stations worldwide and interpolated into a 1.875◦ longitude × 1.25◦ latitude global grid
(~142.67 km × 159.38 km) [57]. These indices were developed by the World Meteorological
Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI) [58].
The indices comprehensively reflect the frequency and intensity of extreme weather (pre-
cipitation and temperature) events, represent seasonal/annual values derived from daily
station data, and have been widely used for studying climate extremes events [59,60]. Since
this dataset has been only updated to 2018, this study only analyzes the correlation between
climate extremes and NDVI from 1998–2018, resampled to 1 km resolution for assessing the
impact of extreme climate factors on vegetation dynamics. Based on the spatial distribution
of temperature and precipitation in the study area, six indices that accurately reflect the
extreme temperature and extreme precipitation events in the study area, consisting of four
extreme temperature indices and two extreme precipitation indices (Table 1), were selected
to assess the correlation between vegetation and extreme climate indices in China.

Table 1. Climate extremes indices used in this study.

Indices Indices Name Definition Units

Temperature
Extremes
Indices

DTR Diurnal
temperature range

Annual mean difference between
daily max. and min. temperature

◦C

TXx Hottest day Monthly and annual highest
value of daily max. temperature

◦C

TNx Warmest night Monthly and annual highest
value of daily min. temperature

◦C

TXn Coldest day Monthly and annual lowest value
of daily max. temperature

◦C

Precipitation
Extremes
Indices

Rx1day
Max. 1 day

precipitation
amount

Monthly and annual maximum
1-day precipitation mm

Rx5day
Max. 5-day

precipitation
amount

Monthly and annual maximum
consecutive 5-day precipitation mm

2.2.4. Land Cover Dataset

The MODIS land cover type product (MCD12Q1) derived based on the International
Geosphere-biosphere Program (IGBP) classification scheme was adopted for this study to
indicate vegetation types [61]. The scheme defines 17 classes of land cover types, including
a series of vegetation and non-vegetation classes. Therefore, the land cover was reclassified
by aggregating similar vegetation classes and combining all other unconcerned classes
into one. Finally, seven classes, including needleleaf forest, broadleaf forest, shrubland,
grassland, croplands, deserta (desert vegetation), and others (see Figure 1c), were generated
to analyze the vegetation dynamics under different vegetation types and their responses to
climate factors. Transient of vegetation types is ignored to simplify the analysis, and only
the 2019 classification data were used. However, when analyzing the human impact on
vegetation dynamics, the whole time series of land cover (2001–2019) were used.

3. Methods

The Mann–Kendall (MK) trend test was first used to reveal the trend of vegetation
dynamics in China from 1998 to 2019, then combined with the Hurst exponent to predict the
future NDVI trend. The Pearson correlation analysis was used to assess the impacts of cli-
mate factors on vegetation growth and change. The residual trend analysis method [51,52]
was used to quantify the impact of human activities on vegetation condition. Vegetation
classification information extracted from the MODIS land cover dataset was employed to

www.metoffice.gov.uk/hadobs/hadex3
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further analyze the differences in responses of vegetation types. The overall flowchart of
methodology is shown in Figure 2.
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3.1. Mann–Kendall Trend Analysis

The Mann–Kendall statistical test (MK) is a distribution-free test (non-parametric
statistical test) [62]. This test can be used without data distribution requirements, thus the
results are not affected by abnormal values [63,64]. To determine the significance of a trend,
the standardized Z test statistic was first computed, then the standard normal distribution
of the S statistic was calculated, using the following equation [65,66]:

S =
n−1
∑

i=1

n
∑

j=i+1
sgn
(
Xj − Xi

)
sgn
(
Xj − X

)
=


1 Xj − Xi > 0
0 Xj − Xi = 0
−1 Xj − Xi < 0

(1)

where Xi and Xj are the ith and jth values in the time series, respectively; n is the length of
the time series. S values greater or less than 0 indicate upward and downward trends of
the time series, respectively.

If n≥ 10, the statistic S approximates the standard normal distribution, and the Z-value
can be used to test the trend, using the following equation:

Z =


S−1√

VAR(S)
, S > 0

0 , S = 0
S+1√

VAR(S)
, S < 0

(2)

VAR(S) =

(
n(n− 1)(2n + 5)−

m

∑
i=1

ti(ti − 1)(2ti + 5)

)
/18 (3)

where n is the number of data points; m is the number of repeated datasets; ti is the number
of repeated data values in ith group.

At a given significance level, 95% (α = 0.05) for example, the threshold of the normal
distribution is Z1–α/2 = 1.96. When |Z| > 1.96, the trend is significant, otherwise the trend
is insignificant.
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3.2. Hurst Exponent

The Hurst exponent (H) is a popular method used to describe the phenomenon of
self-similarity and long-term dependence [67]. The Hurst exponent can be estimated using
a series of methods. The most commonly used Rescaled Range Analysis (R/S) method,
was adopted to calculate the Hurst exponent [19]. The calculation process of R/S can be
found in [19], which was then employed to estimate H using a linear regression.

H is the Hurst exponent ranging from 0 to 1. It is classified as follows [42]: H < 0.5
indicates anti-persistency in the NDVI time series, and an opposite trend in the NDVI
time series will occur in the future. For H = 0.5, the NDVI time series is a stochastic series
without persistency, indicating that the trend in the future time series is unrelated to the
study period. Finally, H > 0.5 indicates persistency of the NDVI time series, and the NDVI
time series will have the same trend in the future.

3.3. Correlation Analysis

The relationships between the vegetation and temperature, precipitation, and extreme
climate indices were evaluated using Pearson correlation analysis. A correlation coefficient
greater than 0 indicates a positive correlation, while a correlation coefficient less than 0
indicates a negative correlation. A greater absolute value of the correlation coefficient
indicates a closer correlation between the two variables. The P value was used to test the
significance of the correlation coefficient between the two variables; p < 0.05 indicates a
significant correlation coefficient at the 95% confidence level [21].

3.4. Residual Analysis

Residual analysis was used to determine and quantify the impact of human activities
on vegetation dynamics [21,68]. This is achieved by eliminating the influence of precipita-
tion and temperature on long-term NDVI variation, which is supposed to be affected by
a combination of climate factors and human factors. Using the NDVI, temperature, and
precipitation data observed over the last 22 years, a multiple linear regression model was
established using the least square method.

The difference between the observed and predicted values of the NDVI was taken
as the residual value of the NDVI (δ). It indicates the unexplained part in addition to
the effect of temperature and precipitation on vegetation dynamics. In this study, we
assume that human activities contribute the most to this part. Therefore, a positive δ value
indicates that human activities are positively affecting vegetation condition change and
promoting an increase in regional vegetation condition, while a negative δ value indicates
that human activities are negatively affecting vegetation dynamics, reducing the vegetation
condition. The trend of residuals was obtained using linear regression between residuals
and years [69], which reflects how the vegetation condition has been affected by factors
other than temperature and precipitation in the last 22 years.

4. Results
4.1. Spatio-Temporal Variations of Vegetation

Figure 3a shows the annual average NDVI in China over the 1998–2019 period. The
spatial patterns of the NDVI showed a decreasing trend from southeast to northwest. High
NDVI values were observed in the eastern part of China, especially in the southeast coastal
area. Since the climate in these areas is suitable for vegetation growth, the average NDVI
value was more than 0.6, with the average NDVI in South China and Qinling areas going
above 0.8. Areas with low vegetation condition occur mainly in Northwest China. The
trend of annual average NDVI change was obtained by averaging annual NDVI values
(Figure 3b). The annual average NDVI showed an overall increasing trend. Its value reached
a minimum in 2017, followed by an upward trend. The NDVI for different vegetation types
showed similar fluctuations with quite different NDVI values. The needleleaf/broadleaf
forests and croplands have the highest NDVI, and the deserta has the lowest. The results of
MK trend analysis (Figure 3c) showed overall increasing trends in the NDVI values in most
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areas. Some 67% of the surface area of China exhibited a significant upward trend, and 33%
of the regions showed a slight downward trend. On the other hand, the areas with a slight
downward trend in NDVI changes were mainly distributed in the Hengduan Mountains,
the West Sichuan Basin, the Jungar Basin, around the Northeast Plain, and in economically
developed cities, especially in the Yangtze River Delta.
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Figure 3. (a) Average NDVI; (b) annual NDVI values of different vegetation; (c) NDVI trend; and
(d) NDVI trends of different vegetation in China from 1998 to 2019.

The results of the change trends for different types of vegetation revealed some
differences between vegetation types (Figure 3d). The NDVI change rate of deserta was
negative, while the NDVI of other vegetation types showed an overall increasing trend,
whose rates range from 0.0028~0.0064. Among them, the NDVI increase rate of needleleaf
forest was the highest, except for those of croplands.

4.2. Future Trend of Vegetation Dynamics Based on the Hurst Exponent

Figure 4 shows the Hurst exponent of China’s annual average NDVI time series. The
Hurst exponent values varied from 0.13 to 0.97. Taking 0.5 as the threshold, it was found
that the regions where the NDVI trend was expected to remain consistent with the current
state (0.5 < H < 1) account for 43.58% of the total area. Regions where the NDVI trend is
expected to reverse (0 < H < 0.5) account for 56.42% of the total area. Overall, the anti-
persistence of the NDVI changes nationwide was slightly stronger than the persistence,
with persistence areas distributed sporadically. Areas with stronger anti-continuity mainly
include the Qaidam Basin, the Jungar Basin, the Hengduan Mountains, the Eastern Loess
Plateau/Inner Mongolia Plateau, and surrounding areas of the Northeast Plain.
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We combine the results of trend analysis and results of the Hurst exponent to predict
the sustainability of vegetation variations. Following [21], we set 0.05 as the significance
level and used 20 > |Zc| > 1.96 as the reference range for significant increases or decreases.
A value of H = 0.5 was used as a criterion to judge whether the change in the NDVI
would continue in the same direction. Four different classes can be used for revealing
future vegetation trends based on the sustainability of the current variation trend (Table 2):
“reduction–increase trend” indicates that the NDVI is presenting a decreasing trend at
present but likely to reverse in the future; “increase–reduction trend” indicates that the
NDVI is presenting an increasing trend at present but likely to exhibit a decreasing trend in
the future; “continuously increasing status” indicates that the NDVI is currently increasing
and likely to exhibit an increasing trend in the future; and “continuously reducing status”
indicates that the NDVI is currently decreasing and likely to exhibit a decreasing trend in
the future.

Table 2. Classification of sustainability of vegetation variations.

−20 < Zc < −1.96 1.96 < Zc < 20

H < 0.5 Reduction–increase trend Increase–reduction trend
H > 0.5 Continuously reducing status Continuously increasing status

Figure 5 shows the mapping results of vegetation variation sustainability. It is observed
that the areas of “continuously increasing status” and “reduction–increase trend” classes
account for 41.28% and 2.32% of the total area, respectively. While those of “continuously
reducing status” and “increase–reduction trend” classes account for 2.88% and 53.52% of the
total area, respectively. The future status of NDVI reducing shows a scattered distribution
in China. The areas of the “continuously reducing status” class are mainly observed in
the Guanzhong Plain, cities in the middle and lower reaches of the Yangtze River, and
economically developed cities (e.g., Beijing, Shanghai, Tianjin, Guangzhou, Chengdu). The
areas of “continuously increasing status” class are distributed along the Heihe–Kunming
line, while the western areas fall in “reduction–increase trend” and “continuously increasing
status” classes, except for the QTP, indicating remarkable achievements in recent years
through the implementation of ecological protection and restoration of vegetation projects
in the central and western regions.
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4.3. Analysis of the Factors Influencing Vegetation Growth
4.3.1. Relationships between Climatic Factors and Vegetation Dynamics

Figure 6 shows the Pearson correlation between the annual average NDVI and tem-
perature/precipitation. It is observed that over 50% of the areas have a positive correlation
between the NDVI and precipitation, significantly higher than that between the NDVI and
temperature (42.2%), indicating that precipitation may be a more important factor affecting
vegetation growth in China. The areas with significant positive correlations between the
NDVI and temperature account for 6.42% of the total surface area, observed on the south-
east coast, the north of the Qinghai–Tibet Plateau, and the Qaidam Basin. On the other
hand, areas showing a significant positive correlation between the NDVI and precipitation
account for 12% of the total surface area, observed mainly in Inner Mongolia Plateau, the
North China Plain, the Loess Plateau, the Jungar Basin, and North China. In addition, a
weak negative correlation between the NDVI and precipitation was found in the Eastern
Qinghai–Tibet Plateau and the Hengduan Mountains, while a negative correlation between
these two variables was found in Eastern Inner Mongolia and Southeastern China. In
addition, significant negative correlations were observed between the NDVI and tempera-
ture/precipitation in some areas of Southeast China, indicating that high temperature or
rich precipitation in these areas may restrict vegetation growth.

Figure 7 shows the differences in the correlation between the NDVI and tempera-
ture/precipitation for different vegetation types. Except for broadleaf forest, needleleaf
forest, and grassland, the NDVI of other vegetation types showed a positive correlation
with both temperature and precipitation. Among them, deserta and shrubland were both
highly positively correlated with precipitation. Needleleaf forest showed a significant nega-
tive correlation with temperature and precipitation, with a higher response to temperature
than that to precipitation. In addition, the NDVI of the broadleaf forest showed a negative
correlation with temperature and a weak positive correlation with precipitation. The NDVI
of grassland revealed a high positive correlation with precipitation and a weak correla-
tion with temperature (r = −0.0019). These results further confirmed that the influence
of precipitation on the growth of most vegetation types was more significant than that
of temperature.



Remote Sens. 2022, 14, 3390 10 of 19Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

Figure 6. (a) Correlation between the NDVI and temperature in China from 1998 to 2019; (b) corre-

lation between the NDVI and precipitation in China from 1998 to 2019. Positive/Negative (n.s.) rep-

resents positive/negative correlation that did not pass the significance test. Positive/Negative (p < 

0.05) indicates positive/negative correlation at 95% significance level. 

Figure 7 shows the differences in the correlation between the NDVI and tempera-

ture/precipitation for different vegetation types. Except for broadleaf forest, needleleaf 

forest, and grassland, the NDVI of other vegetation types showed a positive correlation 

with both temperature and precipitation. Among them, deserta and shrubland were both 

highly positively correlated with precipitation. Needleleaf forest showed a significant 

negative correlation with temperature and precipitation, with a higher response to tem-

perature than that to precipitation. In addition, the NDVI of the broadleaf forest showed 

a negative correlation with temperature and a weak positive correlation with precipita-

tion. The NDVI of grassland revealed a high positive correlation with precipitation and a 

weak correlation with temperature (r = −0.0019). These results further confirmed that the 

influence of precipitation on the growth of most vegetation types was more significant 

than that of temperature. 

Figure 6. (a) Correlation between the NDVI and temperature in China from 1998 to 2019; (b) cor-
relation between the NDVI and precipitation in China from 1998 to 2019. Positive/Negative (n.s.)
represents positive/negative correlation that did not pass the significance test. Positive/Negative
(p < 0.05) indicates positive/negative correlation at 95% significance level.

We used a multiple regression model in residual analysis to reveal how the climatic
variables influence the NDVI trend. The regression coefficients can reflect the relative im-
pact of each climate driver on the NDVI, with larger coefficients having a greater impact on
NDVI changes. Figure 8 shows the regression coefficients of temperature and precipitation.
The regression coefficients of temperature are generally smaller than those of precipitation
in most regions, indicating that precipitation is the major factor affecting the growth of
vegetation in China in most regions. This is consistent with the findings we obtained
using the Pearson correlation coefficient. Temperature and precipitation generally show
opposite effects on vegetation in the inland areas of Northwest China, while they show
similar effects in Southeast China. This means that for arid and semi-arid areas, vegetation
condition tends to be promoted when the climate becomes colder and wetter, while for
relatively humid areas, vegetation condition is likely to be improved under a warmer and
wetter climate.
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4.3.2. Relationships between Climate Extremes and Vegetation Dynamics

Figure 9 reveals the correlation between the extreme climate index and the NDVI over
the 1998–2018 period. The annual NDVI was generally poorly correlated with extreme
temperatures (DTR, TNn, TXn, and TXx) in China. The NDVI showed a positive correlation
with extreme cold (TNn) in 67.62% of total surface area and a significant positive correlation
(p < 0.05) in 4.06% of the total surface area. The latter was observed mainly in the Qinghai–
Tibet Plateau and in Northeast China. These findings indicate that the rise in the lowest
daily temperature reduces the risk of low-temperature damaging vegetation during the
day, thus promoting the growth of vegetation. The negative correlation between the
NDVI and DTR was more frequently observed than the positive correlation in which the
areas with significant negative correlation (p < 0.05) account for 11.4% of the total surface
area, distributed mainly in the temperate desert area of the Tarim Basin, the Northern
Qinghai–Tibet Plateau, the Qilian Mountains, and the Hengduan Mountains.
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Figure 9. Spatial correlation between the NDVI and climate extremes indices in China over the
1998–2018 period. Positive/Negative (n.s.) represents positive/negative correlation that did not
pass the significance test. Positive/Negative (p < 0.05) indicates positive/negative correlation at 95%
significance level: (a) DTR (◦C); (b) TNn (◦C); (c) TXn (◦C); (d) Rx5day (mm); (e) TXx (◦C); (f) Rx1day
(mm). A bar chart showing the statistics is placed inside each map.
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The regions with a positive correlation between the NDVI and extreme precipitation
index (Rx1day and Rx5day) accounted for 60.41 and 67.62%, respectively, of the total
surface area of which 7.04% and 4.06% showed significant positive correlations (p < 0.05),
respectively. The regions with significant positive correlations between the NDVI and
Rx1day were mainly observed in the Qaidam Basin, Inner Mongolia Plateau, while the
regions with significant positive correlations between the NDVI and Rx5day were mainly
observed in the Tianshan Mountains, the Great Xing’an Mountains.

By analyzing the correlation between the NDVI of different vegetation types and
extreme climate indices (Figure 10), it is found that the NDVI of different vegetation types
exhibits different responses to extreme precipitation and temperature factors. The NDVI of
most vegetation types showed a positive correlation with extreme precipitation (Rx1day
and Rx5day), suggesting that precipitation can promote vegetation growth. Shrubland
and grassland revealed poor positive correlations with extreme temperature factors (TNn,
TXx, and TXn). Deserta showed negative correlations with all climate extremes indices
except Rx1day and DTR. For most vegetation types, the NDVI showed negative correlations
with extreme temperature indices (DTR and TXn). The strongest negative correlations
were found between DTR and the NDVI, indicating that the greater the daily temperature
difference, the more obvious the inhibition effect on the NDVI.
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Figure 10. Spatial correlation between the NDVI of different vegetation types and climate extremes
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(◦C); (e) TNn (◦C); (f) TXx (◦C).

4.3.3. Relationships between Human Activities and Vegetation Dynamics

Figure 11a mainly shows an increasing residual trend in most areas, indicating that
NDVI dynamics are increasingly difficult to be explained by climate factors only, particu-
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larly on the Northeast Plain, the Loess Plateau, the middle and lower reaches of the Yangtze
River Plain, and in Yunnan and Guizhou provinces. A prevailing increasing residual trend
is also observed on the Mongolian Plateau, which is consistent with [21]. Areas showing a
decreasing trend in residual are relatively smaller and sporadically distributed, observed
mainly in big cities and urban agglomerations, concentrated particularly in the middle and
lower reaches of the Yangtze River. A decreasing residual trend indicates that vegetation
growth is lagging behind that predicted by the climate [28].

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 20 
 

Henan province) has a similar situation as zone1 but with smaller changing rates. Zone3 

(mainly in the northwest part of Xinjiang Province) has a small proportion of croplands 

and almost no urbanization. Therefore, the negative residual trend in this zone cannot be 

explained by either the area changes of croplands or urban/built-up classes. Zone4 

(mainly in Gansu and Ningxia provinces) has a generally increasing proportion of 

croplands, and the rate has improved significantly since 2009, which contributes signifi-

cantly to the positive NDVI residual trend there. 

From these four demonstration zones, it is clear that most of the residuals could be 

explained by human factors, in the forms of croplands and urbanization. However, it is also 

noted that these are not the only factors that caused NDVI residuals over the country. It 

is possible that non-human factors, such as other climatic factors (i.e., evaporation, ex-

treme events, non-linear responses to climate) in addition to temperature and precipita-

tion may contribute to the residuals. 

 

Figure 11. (a) Spatial distribution of residual NDVI trends in China over the 1998–2019 period; (b) 

variation of human-dominated land cover (croplands and urban/built-up) in percentage in four typ-

ical zones over the 2001–2019 period. 

5. Discussion 

The results of this study showed an upward trend of the vegetation in China from 

1998 to 2019, which is consistent with the results of the greening trend in Central Asia 

reported in previous studies [6]. The rapid increase in air temperature since the 1980s [43] 

has extended the growth cycle of vegetation and promoted vegetation growth to some 

extent. Moreover, we found that the regions with slightly decreasing NDVI change rates 

are mainly located around the plains and the economically developed urban clusters 

which may be mainly caused by intense human activities. Regional differences in vegeta-

tion development were due to the vertical zonal distribution of climate, complex terrain, 

severe climate, and warming, resulting in an offset between the average NDVI values in 

areas with improved vegetation and those observed in areas with reduced vegetation con-

dition caused by environmental degradation, which results in significant fluctuation 

trends of vegetation zones. 

In this study, we used the Hurst exponent to analyze the sustainability of the NDVI 

trend to predict possible vegetation future trends. The Hurst exponent mean value ob-

tained using the NDVI data (1998–2019) of China was 0.49, indicating an uncertainty in 

vegetation trends. In addition, the areas showing continuously increasing status and a 

reduction–increase trend account for 43.6% of the surface area and are located near the 

Heihe–Kunming line. This finding demonstrates the remarkable achievements of the eco-

logical restoration and protection of vegetation projects in recent years in the central and 

western parts of China. Weak continuity was observed in the Yellow River Basin, North-

east China. This may be mainly because that vegetation condition is under the combined 
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To conjecture how much human activities contribute to the residual trend, we selected
four zones (shown as rectangles in Figure 11a) that have high negative (zone1, zone2,
and zone3) and positive (zone4) values. Figure 11b shows the variation of proportion
of croplands and urban/built-up during the 2001–2019 period. It is observed that zone1
(mainly in Shanghai and in Jiangsu and Zhejiang provinces) was dominated by increasing
urban/built-up and decreasing cropland areas in the period. While the urban/built-up
increased relatively steadily, the rate of croplands decreasing was moderate, which leads
to the significant negative NDVI residual trend there. Zone2 (mainly in Henan province)
has a similar situation as zone1 but with smaller changing rates. Zone3 (mainly in the
northwest part of Xinjiang Province) has a small proportion of croplands and almost no
urbanization. Therefore, the negative residual trend in this zone cannot be explained by
either the area changes of croplands or urban/built-up classes. Zone4 (mainly in Gansu
and Ningxia provinces) has a generally increasing proportion of croplands, and the rate
has improved significantly since 2009, which contributes significantly to the positive NDVI
residual trend there.

From these four demonstration zones, it is clear that most of the residuals could be
explained by human factors, in the forms of croplands and urbanization. However, it is also
noted that these are not the only factors that caused NDVI residuals over the country. It is
possible that non-human factors, such as other climatic factors (i.e., evaporation, extreme
events, non-linear responses to climate) in addition to temperature and precipitation may
contribute to the residuals.

5. Discussion

The results of this study showed an upward trend of the vegetation in China from
1998 to 2019, which is consistent with the results of the greening trend in Central Asia
reported in previous studies [6]. The rapid increase in air temperature since the 1980s [43]
has extended the growth cycle of vegetation and promoted vegetation growth to some
extent. Moreover, we found that the regions with slightly decreasing NDVI change rates
are mainly located around the plains and the economically developed urban clusters which
may be mainly caused by intense human activities. Regional differences in vegetation
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development were due to the vertical zonal distribution of climate, complex terrain, severe
climate, and warming, resulting in an offset between the average NDVI values in areas
with improved vegetation and those observed in areas with reduced vegetation condition
caused by environmental degradation, which results in significant fluctuation trends of
vegetation zones.

In this study, we used the Hurst exponent to analyze the sustainability of the NDVI
trend to predict possible vegetation future trends. The Hurst exponent mean value ob-
tained using the NDVI data (1998–2019) of China was 0.49, indicating an uncertainty in
vegetation trends. In addition, the areas showing continuously increasing status and a
reduction–increase trend account for 43.6% of the surface area and are located near the
Heihe–Kunming line. This finding demonstrates the remarkable achievements of the eco-
logical restoration and protection of vegetation projects in recent years in the central and
western parts of China. Weak continuity was observed in the Yellow River Basin, Northeast
China. This may be mainly because that vegetation condition is under the combined
action of many factors (natural and human activities). However, the Hurst exponent is an
estimation made merely on the time series of the NDVI value, with no influencing factors
being involved in consideration. As both climatic and human factors may affect NDVI
variation with different intensities, it is possible that the results of the Hurst exponent
would have considerable bias. In addition, there is no explicit temporal information for the
trend predicted with the Hurst exponent. Therefore, determination of the possible duration
is an important issue that needs further investigation [20].

Vegetation dynamics in China are the combined result of climate change and human
activities. The NDVI and temperature are mainly positively correlated in the northern part
of the QTP and the southeastern coastal areas. This finding suggests that the increased
temperature would directly promote photosynthesis of vegetation and break the restriction
of low temperature on vegetation growth [70,71]. The correlation between the NDVI and
temperature was observed in eastern Inner Mongolia and southeastern China, indicating
that vegetation growth may be inhibited due to the increased respiration caused by high
temperature [72]. We also quantitatively analyzed the influence of different factors on the
NDVI through multiple linear regression models. The NDVI is influenced by a combination
of factors, and the regression coefficient of precipitation is larger than that of temperature
as shown by the multiple regression models; therefore, precipitation may be the dominant
factor affecting the NDVI, which is consistent with the conclusions obtained from the corre-
lation analysis of temperature and precipitation with the NDVI separately. For instance,
the negative impact of human activities on vegetation growth is frequent in large cities and
urban agglomerations due to the urban expansion into farmland and forest [73]. Moreover,
human activities have significant promoting effects on vegetation growth due to ecological
engineering construction, agricultural development, closing hillsides for afforestation, and
grazing prohibition and delaying stocking. Human activities, such as intensive agricul-
ture, involving fertilization and irrigation practices, and the implementation of vegetation
construction projects (i.e., returning farmland to forests) have effectively increased the
vegetation condition at local and regional scales. Ecological protection and vegetation
restoration projects (e.g., Three North Shelterbelt, Grain for Green, Establishment of Nature
Reserves) are able to effectively promote vegetation growth to protect and improve the
ecological environment.

In addition, the regression coefficients also show the dominant factors influencing
the NDVI can vary from place to place. For example, the influence of precipitation on
the NDVI was stronger than that of temperature in several areas, including North China,
the Loess Plateau, and other regions, while in economically developed coastal cities, such
as the North China Plain and the middle and lower reaches of the Yangtze River, both
human activities and climate factors have important impacts on the NDVI. Moreover,
the influence of precipitation on high mountain forests was more significant than that
of temperature. The NDVI in the Yellow River Source Region was found to be weakly
impacted by human activities but highly impacted by climate factors. However, with the



Remote Sens. 2022, 14, 3390 16 of 19

gradual implementation of the ecological protection project in these areas, the positive
impact of human activities on the NDVI is likely to increase in the future. The areas where
either climate change or human activities are impacting the NDVI account for a small
area, with a relatively scattered distribution. Overall, the NDVI was broadly changing
under the combined influence of climate factors and human factors. The impact of human
activities and climate change on vegetation dynamics in China, in particular their driving
mechanisms, needs further investigation in the future.

6. Conclusions

In this study, the changing trend and driving factors influencing the NDVI of vegeta-
tion in China over the 1998–2019 period were analyzed, based on the data of temperature,
precipitation, climate extremes indices, and the NDVI, using trend analysis, correlation
analysis, and multiple regression residual analysis methods. The main conclusions are
as follows:

(1) The NDVI of vegetation in China showed an overall increasing trend from 1998 to
2019, with a slight fluctuation in the interannual variability. The areas with significant
increases in the NDVI are located on the North China Plain, the Loess Plateau, and in
the Qinling Mountains–Huaihe River area, while the areas with significant decreases
in NDVI are located in the Jungar Basin, around the Northeast Plain, and in several
economically developed cities.

(2) According to the Hurst exponent analysis results, the anti-continuity of the NDVI
change is greater than the continuity. The predicted vegetation growth will remain
consistent with past trends in 44.16% of the area.

(3) The impact of climate factors on the NDVI showed significant spatial variation. The
correlation between the NDVI and precipitation was overall higher than that with
temperature. Areas showing significant positive correlations between the NDVI and
precipitation are located on the Inner Mongolia Plateau, the North China Plain, and
the Loess Plateau. Areas showing significant positive correlations between the NDVI
and temperature are located on the southeast coast, in the north of the Qinghai–Tibet
Plateau, and in the Qaidam Basin. Extreme temperatures and precipitation have spa-
tially different impacts on vegetation dynamics. The NDVI of most vegetation types
showed positive correlations with extreme precipitation, while showing negative
correlations with extreme temperature.

(4) The residual trend provides a preliminary investigation about the driving factors of
vegetation dynamics in addition to the precipitation and temperature. While human
activities are likely to contribute significantly to it, it was found that the residual trend
in some areas could be explained by human activities but could not in other places.

This study provides a basis for a comprehensive understanding of the dynamics and
influencing factors of vegetation condition in China. However, there are some shortcomings.
First, due to the limited data, only precipitation, temperature, climate extremes, and human
activities were considered as driving factors of the NDVI change in this study. Sunshine
duration, wind speed, soil moisture, and transpiration can also affect vegetation growth.
Second, the spatial resolution of the extreme climate dataset is coarser than the NDVI
dataset. As extreme precipitation usually happens in a small region, resampling it to a
finer resolution may exaggerate the effect of extreme precipitation on the NDVI in some
areas. Last, only interannual scale analysis was carried out in this study, but the response of
vegetation to climate could be delayed at monthly and seasonal scales. Therefore, analysis
at various temporal scales may be necessary in future studies.
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