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Abstract: Detailed spatial data on grassland use intensity is needed in several European policy areas
for various applications, e.g., agricultural management, supporting nature conservation programs,
improving biodiversity strategies, etc. Multisensory remote sensing is an efficient tool to collect
information on grassland parameters. However, there is still a lack of studies on how to process,
combine, and implement large radar and optical image datasets in a joint observation framework to
map grassland types on large heterogeneous study areas. In our study, we assessed the usefulness of
2521 Sentinel-1 and 586 Sentinel-2 satellite images and topographic data for mapping grassland use
intensity. We focused on the distinction between intensively and extensively managed permanent
grassland in a large heterogeneous study area in Slovenia. We provided dense Satellite Image
Time Series (SITS) for 2017, 2018 and 2019 to identify important differences, e.g., management
practices, between the two grassland types analysed. We also investigated the effectiveness of
combining two different remote-sensing products, the optical Normalised Difference Vegetation
Index (NDVI) and radar coherence. Grassland types were distinguished using an object-based
approach and the Random Forest classification. With the use of SITS only, the models achieved
poor performance in the case of cloudy years (2018). However, the performance improved with
additional features (environmental variables). The feature selection method based on Mean Decrease
Accuracy (MDA) provided a deeper insight into the high-dimensional multisensory SITS. It helped
select the most relevant features (acquisition dates, environmental variables) that distinguish between
intensive and extensive grassland types. The addition of environmental variables improved the
overall classification accuracy by 7–15%, while the feature selection additionally improved the final
overall classification accuracy (using all available features) by 2–3%. Although the reference dataset
was limited (1259 training samples), the final overall classification accuracy was above 88% in all
years analysed. The results show that the proposed Random Forest classification using combined
multisensor data and environmental variables can provide better and more stable information on
grasslands than single optical or radar data SITS on large heterogeneous areas. Therefore, a combined
approach is recommended to distinguish different grassland types.

Keywords: extensive and intensive managed grassland; NDVI; coherence; Satellite Image Time
Series; Random Forest; feature selection

1. Introduction

Grassland is one of the most important land use types. In Europe, it occupies more
than a third of agricultural land, and as an ecosystem, it is characterised by its unique
ecological value [1]. Grassland differs in terms of management, yield, environmental and
biodiversity value and intensification measures specific to different grassland types [2].
It ranges from extensively managed semi-natural grassland with low intensity of use
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and high biodiversity value to intensively managed, monocultural and low biodiversity
value grassland [1–3]. The degree of intensification, i.e., manure and fertiliser inputs,
grazing pressure, cutting frequency and grassland renewal, determines the productivity of
grassland but can also be considered a proxy for its biodiversity value [1]. In Europe, the
area of low-intensity grassland has decreased significantly over the last 30 years, mainly
due to increasing demand for food production [3]. Extensively managed semi-natural
grasslands are important habitats with high floristic diversity, and they provide shelter for
numerous endangered plant and animal species (e.g., insectivorous birds) [4]. Therefore,
monitoring the management intensity of grassland is of great importance to optimise
grassland use for different grassland values and management goals [5]. There is also a
need for detailed spatial data on grasslands (e.g., yield, species composition, habitat types,
biodiversity value, annual cuttings status, fertilisation, grazing, etc.) in several European
policy areas (e.g., Common Agricultural Policy, EU Climate policies, Biodiversity policies,
Nitrates Directive, EU Habitats Directive and Renewable Energy Directive) [1].

Earth observation sensors and their different properties have a high potential for
large-scale biodiversity sensing [6], grassland intensity use [4,7,8], grassland management
monitoring [9,10], and characterisation of different grassland types [11]. The higher spatial,
spectral and temporal resolution of available data has opened up the possibility of coming
closer to the precise classification of individual plant species based on their spectral charac-
teristics and ground-observed data [6]. In Slovenia, the Institute of the Republic of Slovenia
for Nature Conservation provides ground truth data for plant species composition by in
situ field mapping of habitat. In situ data collection is expensive and time-consuming [8],
so its availability in a spatial and temporal context is limited.

A remote-sensing-based approach using multitemporal and high-resolution multi-
sensor satellite data has been used to obtain new objective and cost-effective grassland
information over large areas [12–15]. The Copernicus programme of the European Union
and the European Space Agency and the launch of Synthetic Aperture Radar (SAR) Sentinel-
1 and optical Sentinel-2 satellites with high temporal and spatial resolution provide a unique
opportunity to study the monitoring of agricultural practices in grasslands with free and
open data. Until now, satellite-based monitoring of grassland has been hampered by the
availability of regular dense and gapless SITS with sufficient spatial and temporal resolu-
tion [15,16]. The optical twin satellites Sentinel-2A and -2B ensure land surface observations
every five days [17], and the radar satellites Sentinel-1A and -1B every six days for a single
orbit direction (ascending or descending) or more frequently in the overlapping areas of
adjacent orbits.

Optical satellite images are more commonly used in agricultural vegetation monitoring
studies than radar data. Optical sensors can obtain information about the greening, vitality
and density of grasslands [18]. Unfortunately, multispectral optical imagery, such as
Sentinel-2, depends on cloudless skies and sun illumination, resulting in fragmented SITS
with significant missing data gaps [15]. SAR data are complementary to optical sensors,
as their measurements mainly relate to the physical structure of the vegetation [19]. As
the radar signal can penetrate clouds in all but extreme weather conditions and works
without illumination [12,15,16] it complements the optical signal well. The density of radar
SITS is higher than that of optical SITS, especially in areas with frequent cloud cover. A
dense temporal sampling throughout the season may describe the seasonal evolution of
vegetation [20]. The temporal change in variability of vegetation cover within grasslands
detected in the dense SITS could be an effective indicator of specific processes related to
intensification or abandonment.

Studies focusing on grassland management and use intensity mainly investigated rela-
tively small study areas with homogeneous intensity levels among the grassland parcels [18]
and mostly one-year Sentinel time series (separately Sentinel-1 and Sentinel-2 scenes).
Kolecka et al. [21] evaluated the potential of the Sentinel-2 NDVI SITS (between 1 March
2017 and 1 November 2017) for mapping the intensity of permanent grassland with the
recording of cutting frequency and dates of mowing events in the region of Canton Aar-
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gau, Switzerland (1403 km2). Validation showed that the applied methodology correctly
detected 96 out of 125 (77%) mowing events. They showed that detecting individual grass
mowing events and grassland intensity mapping is possible with Sentinel-2 SITS using
only carefully selected cloud-free images at crucial moments of the growing season. Mestre-
Quereda et al. [22] use the interferometric coherence of Sentinel-1 SITS (for the year 2017)
to classify 17 different crop species in Spain. The results show that both radiometric and
interferometric features and the shortest temporal baseline coherences (six days) provide
good classification accuracy with all available intensity images. They also find that dual po-
larisation data always provide better classification results than single polarisation data, and
that the joint use of coherence and backscatter coefficient increases the overall classification
accuracy to over 86%. Holtgrave et al. [15] compared Sentinel-1 SAR VV (vertical transmit,
vertical receive) and VH (vertical transmit, horizontal receive) backscatter, VH/VV ratio,
and radar vegetation index (RVI) with Sentinel-2 NDVI, Normalized Difference Water
Index (NDWI), and Plant Senescence Radiation Index (PSRI) to distinguish four different
European agricultural land use types (e.g., permanent grassland, maise, spring barley
and winter wheat) in Lower Saxony, Germany for the year 2018. They found no general
correlation between optical and SAR indices and found that the lowest correlation is in the
case of grassland. Nevertheless, the joint use of both data types still offers great potential
for agricultural monitoring, as more information can be collected on the ground than would
be possible with only one data source.

The integration of multispectral and multitemporal remote sensing data with local
knowledge and simulation models has successfully proven to be a valuable approach for
identifying and monitoring a variety of agriculturally relevant features [12]. Discriminating
between grassland types is usually achieved using statistical, object-oriented or machine-
learning classification approaches.

This study aims to assess the suitability of Random Forest algorithm and dense
multisensor Sentinel SITS (NDVI and coherence) for classifying extensively and intensively
managed permanent grassland in all of Slovenia (nearly 3060 km2).

The main objectives of our research were the following:

• To analyse and evaluate the potential of intra-annual (from 2017 to 2019) Sentinel-1/2
SITS for distinguishing between intensively and extensively managed grassland at the
parcel level.

• To identify the importance of input features (acquisition dates, environmental vari-
ables, etc.) for grassland use intensity classification accuracy with Random Forest
algorithm and combined multisensor SITS.

2. Materials and Methods

The methodological workflow consists of the following steps: (1) pre-processing and
analysis of multisensor SITS; (2) object-orientated Random Forest classification and feature
importance assessment; and (3) classification accuracy assessment. The sequence and
linkage of steps are shown in the workflow presented in Figure 1.

We generated and analysed multivariate time series in the open-source Python library
eo-learn [23,24]. For the classification task, we used the free software CLUS (ver. 2.12) [25].
CLUS is a decision tree and rule induction system that implements the predictive clustering
framework. This framework combines unsupervised clustering and predictive modeling
and allows an extension to more complex prediction settings such as multi-task learning and
multi-label classification [25]. The feature importance evaluation and accuracy assessment
were created in a free statistical software R (ver. 4.0.2) [26].
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Figure 1. Methodological framework for time series object-based classification adopted in this study.

2.1. Study Area

The study area is permanent grassland throughout Slovenia (Figure 2). Slovenia is
located in Central Europe, combining four major geographical units—the high Alps with
their pre-Alpine hills, the rugged Dinaric Alps, the flat land of the Pannonian Plain with its
hilly edge, and the Mediterranean hills with the moderating effect of the Adriatic Sea [27].
The area of permanent grassland is defined by the official MKGP (Ministry of Agriculture,
Forestry and Food) land use layer RABA (record of agricultural and forest land use). The
permanent grassland mask used in the study covered 305,884 ha, more than 15% of the
total land area. The study area is heterogeneous in climate, soil, elevation, aspect and slope.
The grasslands range from 10 m to 1600 m a.s.l., with a mean polygon area of 0.5 ha, an
elevation of 430 m a.s.l., a slope of 8.6◦ and an aspect of 175.6◦.
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2.2. Reference Grassland Data and Training Dataset

Grassland is very diverse and heterogeneous. This seems to be an obstacle for anal-
yses based on remote sensing data [18]. The reference data for grassland intensity use
classification in Slovenia are represented by the field mapping of habitat types (2010–2020)
carried out by the Institute of the Republic of Slovenia for Nature Conservation [28]. The
basis for the fieldwork is the detailed classification of Slovenian habitat types [29] and the
aerial orthophotos on which the boundaries of individual habitat types are mapped. The
information on habitat types is based on the Palaearctic classification (PHYSIS database).
The PHYSIS system of habitat classification was initially developed as part of the CORINE
programme of the European Union for the selection and description of sites of nature con-
servation importance [30]. We worked on examples of semi-natural grassland, mesophilic
meadows and secondary grassland. Natural and semi-natural grassland represented exten-
sive samples with high biodiversity value, while secondary grassland and mesophilic mead-
ows represented intensive samples with highly intensively managed grassland (Table 1).

Table 1. Detailed habitat types and their subtypes were joined to represent general intensive and
extensive grassland classes.

Grassland Class Palaearctic Classification (PHYSIS Database)

extensive 34.1, 34.2, 34.3, 34.7, 35, 36, 37.2, 37.3, 38.2
intensive 38.1, 38.11, 38.13, 81, 81.1, 81.2

First, we have reclassified the detailed habitat typology to the more general land
cover, i.e., intensive and extensive grassland classes. We obtain an imbalance dataset of
9943 extensive and 1846 intensive grassland samples. The success of supervised classifica-
tion, such as Random Forest, depends on the quality of the training dataset and the ability
of the classifier to learn from the training dataset. With extremely imbalanced data, one
cannot achieve good accuracy. Therefore, we manually prepared a new balanced reference
dataset, a subset of the existing reference dataset with high-quality ground truth data.

We performed quality control on the prepared grassland dataset by visually evaluating
the existing land cover information (checking whether it is grassland or something else)
by reviewing the latest national orthophotos and Google Earth images. Finally, for the
classification of grassland land use intensity, the training dataset contains 491 extensive
and 768 intensive grassland polygons (blue features in Figure 2).

2.3. Sentinel-1/2 Images Pre-Processing

For grassland intensity classification, we use the time series analysis (TSA) approach
based on all available Sentinel-1 and Sentinel-2 satellite scenes acquired between 1 March
2017 and 30 November 2019. For the multispectral Sentinel-2A and -2B data, we use the fully
automated image processing chain STORM [31], which performs downloading the data
from the Copernicus Open Access Hub, pre-processing the data (geometric, atmospheric
and topographic corrections), cloud detection, and creating a mosaic from images acquired
in the same orbit. We used all Sentinel-2 images covering Slovenia—in total 586 S2 images
(approx. 190 per year), which means 1.82 TB storage. The TSA approach uses the four
spectral bands with the spatial resolution of 10 m, i.e., the bands B02 (blue), B03 (green),
B04 (red), and B08 (near-infrared). Because band ratios are less affected by atmospheric
and topographic effects than single band values, we chose three spectral indices suggested
for vegetation analysis in literature [32], i.e., NDVI, Enhanced Vegetation Index (EVI) and
Modified Soil Adjusted Vegetation Index (MSAVI). We found that all three indices are highly
correlated on permanent grassland in Slovenia and used only NDVI in the further analysis.

Sentinel-1 data in Interferometric Wide (IW) swath mode, providing dual polarisation
data (VV + VH), were used in the analysis. A custom processing chain, based in part on the
SNAP tool supplied by European Space Agency with additional steps to calculate sigma0
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and coherence products every six days, was developed [33]. We used 2521 S1 images
(approx. 840 per year), which means 11.6 TB of local storage.

For this study, we used only coherence, the estimate of the complex correlation coeffi-
cient. Given two complex SAR images s1 and s2 (e.g., Sentinel-1 Single Look Complex SLC
products), coherence is defined as

γ =
|〈s1s∗2〉|√〈
s1s∗1

〉〈
s2s∗2

〉 , 0 ≤ γ ≤ 1 (1)

where |..| denotes the absolute value, 〈..〉 an averaging operation, and ∗ the complex
conjugate product [16].

The coherence reaches the maximum value when the position and physical properties
of the scatters within the averaging window 〈..〉 are the same for both s1 and s2. Changes
in scatter distribution or placement, on the other hand, lead to a decrease in coherence.
Temporal decorrelation in the coherence time series shows changes in the radar images
over time. The growth of vegetation decreases correlation, while removing the grassland
increases the correlation, leading to increased coherence [16]. Coherence can therefore be
used to distinguish between intensive and extensive grassland management, as intensive
grassland is mowed more frequently in a year than extensive grassland.

2.4. Environmental Variables

Because of the very large-scale and heterogeneous study area, we included extended
set of topographic data in the model. Elevation, slope and aspect were derived from
DEM with a resolution of 25 m, provided by the Surveying and Mapping Authority of the
Republic of Slovenia (GURS). Elevation was measured in meters above sea level, slope and
aspect in degrees. Elevation, aspect and slope have an indirect influence on plant growth
and development due to temperature and solar radiation differences and runoff [15].

2.5. Mapping Units of Grassland Areas
2.5.1. Permanent Grassland Polygons

The conservation of permanent grassland is one of the objectives of the EU Common
Agricultural Policy (CAP), which contributes to the overall climate and biodiversity ob-
jectives of the EU [34]. Each EU member state has its own nomenclature for classifying
grassland polygons, recorded in Land Parcel Identification System (LPIS) to implement
the CAP of the EU. LPIS in Slovenia is a part of the farm register and functions as a spatial
representation of land used by agricultural holdings. The reference parcel of LPIS is the
farmer block, a compact area of agricultural land used by a farm. Graphic units of agri-
cultural parcels (GERK) are compact areas of agricultural land with the same type of land
use within each block [35]. LPIS data for all GERK in Slovenia are freely available [36].
Permanent grassland, together with permanent pasture, is a land use on which grasses or
other herbaceous forage grow naturally (self-seeded) or by cultivation (sown) and which
has not been included in the crop rotation of a holding for at least five years [37]. However,
not all permanent grassland polygons are included in the GERK database. For the grassland
area, which is part of permanent grassland but not included in GERK, we created new
objects by image segmentation.

2.5.2. Permanent Grassland Segments

Image segmentation was performed in the Harris ENVI Feature Extraction (ver. 5.3)
software using the Sentinel-2 mosaic with the acquisition date of 30 June 2019 for the
entire Slovenia. Only bands with 10 m resolution were used as colour space input (i.e.,
bands 2-4, 8) and hue, saturation, and intensity as band ratio attributes. We masked the
mosaic with permanent grassland layer RABA and applied the integrated edge-based Full
Lambda-Schedule algorithm [38] to extract features of the grassland-masked mosaic. The
best segmentation result was obtained by setting the parameter Scale Level to 20 and Merge
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Level to 70, with a 7 × 7 low pass filter, to effectively delineate features at a similar spatial
level as is the case with permanent grassland polygons in the GERK database. Segments
smaller than 10 pixels were eliminated. The segmentation layer was then merged with
GERK to form a common dataset of 519,611 mapping units (polygons) for classification.

2.6. Preparing Time Series with Eo-Learn

We created the processing pipeline using the open-source Python library eo-learn [23,24].
Due to the large amount of Sentinel-1 and -2 images (Section 2.3), we first divided the
AOI into smaller patches of rectangular bounding boxes with dimensions 10 × 10 km,
which can also be processed in case of limited computational resources. Then we started
constructing the dense coherence SITS by stacking the Sentinel-1 coherence product and
NDVI SITS by stacking the Sentinel-2 images and cloud masks into EOPatches. The result
is a multidimensional NumPy array with information on raster width, height, the date of
image acquisition, and the values of all bands. We removed the unusable pixels by applying
the cloud masks (i.e., pixels with clouds, shadows, snow, haze) from the temporally stacked
images. Due to the non-uniform acquisition dates of the satellite images provided by the
different orbits covering Slovenia and missing values (especially for optical Sentinel-2
images), we applied a five-day linear interpolation to fill the missing gaps in SITS and
create a common interval for all data.

Once bands and multi-image features are stored in EOPatches with uniform dates, they
must be prepared for classification [28]. Supervised classification methods, such as Random
Forest, require a labeled and unlabeled raster or vector dataset. For the labeled dataset,
we used polygons with information about the intensity of grassland use (Section 2.2). For
classification, we used permanent grassland polygons (Section 2.5). Both datasets were
in a shapefile format. Subsequently, the polygons were buffered 7 m inwards to avoid
edge effects and consider only interior pixels. The inter-annual SITS was generated for
all polygons. The constructed SITS was based on the 75th percentile of the index value
(NDVI, coherence VV ascending, and coherence VV descending) calculated on the pixels
within the polygon and time stacked. The NDVI SITS was also masked with a threshold
of 0.25, as we found that lower values did not represent grassland use. The SITS vectors
were smoothed using Savitzky–Golay filter [39]. We used a window size of 21 pixels
and a first-degree polynomial for filtering coherence SITS. For NDVI, we use a moving
average window with the dimension corresponding to 20% of the interval in SITS and a
second-degree polynomial.

2.7. Random Forest Classification Approach and Feature Ranking

Random Forest (RF) is an ensemble classifier that consists of a combination of decision
trees [40]. The construction of the decision tree starts at the root, where it is calculated which
input feature partitions the samples in a way that reduces the variance of the remaining
samples. This results in two nodes that repeat the procedure and further reduce the variance
of the remaining samples. This produces the desired number of decision trees forming
an RF that votes on the most likely class for the samples. The classes, in our case, are
intensively managed grassland and extensively managed grassland. Input features are time
values of NDVI and coherence SITS (Section 2.6) with auxiliary environmental variables
(Section 2.4).

Feature ranking is an essential task in machine-learning approaches. With ranking
scores, we can reduce the high-dimensionality of the input dataset such that only the
features that are the most informative about the target classes are kept. By using a scoring
function, we estimate the importance (xi) values of the descriptive attributes (features)
xi and rank the features based on their estimated importance [41]. In this study, we
evaluate the importance of xi by measuring the Mean Decrease Accuracy (MDA), also
known as the permutation importance [42]. The MDA measure has been widely used
similarly in other classification studies [17,43–45]. MDA quantifies the importance of a
feature by measuring the change in prediction accuracy when the values of the feature are
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randomly permuted compared to the original observations [46]. The importance of the
feature is determined by comparing the resulting misclassification rate to the rate obtained
without randomly permuting the values of the feature. This procedure is repeated for each
feature [40]. We used MDA for a stepwise recursive feature selection approach similar to
other studies [47,48].

3. Results
3.1. NDVI and Coherence SITS Analysis

For an assessment of class separability, annual NDVI, coherence VV ascending and
coherence VV descending SITS were analysed class-wise based on the reference dataset of
the 491 extensive and 768 intensive training samples. We examined the difference between
Sentinel-1 and Sentinel-2 data for permanent grassland types in Slovenia. Finally, we
analysed 519,611 grassland polygons, where 56% of the samples (283,256 polygons) were
classified in the same intensive or extensive grassland class in all years studied. This
database formed the basis for further TSA results.

NDVI values are related to the chlorophyll content of vegetation and depend on the
grassland type and management practices [8]. Temporal profiles of NDVI values give an
overview of the dynamic phenological processes of a particular grassland type and help
identify specific events, such as mowing dates, etc. [18,21]. The mean temporal profiles
and the standard deviation range of NDVI values (Figure 3) show the main difference
between intensively and extensively managed grassland in Slovenia. Due to unpredictable
gaps in the Sentinel-2 SITS, caused by unfavourable weather conditions, there were some
differences in the results between the years studied. However, grass growth generally starts
in March, accelerates in April, reaches its first maximum in May, and lasts in September.
The drops in the NDVI values can be related to the mowing dates. We found that the first
maximum is reached earlier in intensively managed grassland than in extensive grassland,
while the last maximum is reached at the same time (at the end of September) in both
grassland types. This confirms that intensively managed grassland is on average mowed
significantly earlier (early May) than extensively managed grassland.

The mean temporal profiles of NDVI values for the studied grassland types differ
significantly at the beginning of the growing season (in April) when NDVI values are
lower on extensive grassland than on intensive grassland. However, extensively managed
grassland generally reaches higher NDVI values during the season than intensively man-
aged grassland. Therefore, the distribution range of mean NDVI values is different for
intensive and extensive grassland. Annual NDVI values on extensive grassland range from
0.63 to 0.75 (median NDVI ≈ 0.74) and on intensive grassland from 0.66 to 0.74 (median
NDVI ≈ 0.71).
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intensive (red) and extensive (blue) grassland in Slovenia for the years 2017, 2018 and 2019.

The Sentinel-1 coherence VV (vertical transmit, vertical receive) polarised temporal
profiles are analysed separately for ascending and descending orbits. The coherence time
series profiles illustrated how the physical state of grasslands is represented in SITS. We can
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detect the presence of low/high vegetation or bare soil or see the growth and loss (mowing
events) of vegetation [49]. Figure 4 shows the mean coherence time series profiles for each
analysed class, Figure 4a for ascending orbit and Figure 4b for descending orbit.
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Figure 4. Mean temporal profiles and standard deviation range (+/− std) of coherence ascending (a)
and coherence descending (b) time series on intensive (red) and extensive (blue) grassland.

High values of coherence represent low/no vegetation and a stable state. Low values
of coherence represent vegetation in a dynamic state. When the values increase, the con-
dition of the recognised grassland has changed. Statistical analysis showed that changes,
such as cutting and plowing, cause an increase in coherence compared to the values before
an event [50]. The result indicates that annual mean coherence values were statistically
significantly higher on intensively managed grassland than on extensively managed grass-
land. The time series profile is smoother because there are more polygons in different parts
of the studied country, where there are also differences in management practices at the time
of change events. The difference in median values in the coherence time series for intensive
and extensive grassland was significant in all analysed years (i.e., 2017 to 2019).

Relationship between NDVI and Coherence

Figure 5 shows the relationship between three-year monthly average NDVI and
coherence time series data for extensive and intensive grassland types. There is no strong
correlation because coherence and NDVI illustrate different grassland parameters. NDVI
is mainly sensitive to the green, chlorophyll-containing biomass, whereas coherence is
a normalised measure of change between two complex radar images [50] and is more
sensitive to vegetation physical variations. Nevertheless, the NDVI and coherence SITS
trend is clear—high NDVI corresponds to low coherence, and vice versa.
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3.2. Grassland Classification Accuracy and Feature Selection

The classification was performed at the local level for each grassland polygon (total
of 519,611 mapping units) of 30,588 ha of permanent grassland in Slovenia. The model
was trained on the same reference dataset of intensive and extensive grassland polygons.
Input model data were combined annual SITS (about 130 different Sentinel-1 and Sentinel-
2 images each year) of two different remote sensing attributes—NDVI and coherence
(separately ascending and descending orbit). Additionally, we experimented with three
environmental variables (slope, aspect and elevation). Satellite images in the annual SITS
are acquired between March and December. Results in the confusion matrices are calculated
using 10-fold cross-validation on the reference dataset for the object-based classification of
grassland use intensity type.

In Table 2, we summarise the results based on SITS only. In 2017 and 2019, the models
achieved 84% and 80% OA, respectively. In 2018, the OA was 70%, which could be related
to having the fewest cloud-free observations. Even with radar data, there is not enough
information to distinguish between the two classes.

Table 2. Confusion matrices of the annual SITS (Sentinel-1, Sentinel-2) for the accuracy of the reference
dataset with RF classifier (UA: User’s Accuracy, PA: Producer’s Accuracy, OA: Overall Accuracy).
(a) is for the year 2017, (b) for 2018, and (c) is for 2019.

(a) Grassland class Predicted

2017 Extensive Intensive Σ UA

A
ct

ua
l extensive 361 130 491 0.735

intensive 66 702 768 0.914

Σ 427 832 1259
PA 0.845 0.843 OA 0.844

Kappa 0.665

(b) Grassland class Predicted

2018 extensive intensive Σ UA

A
ct

ua
l extensive 146 345 491 0.297

intensive 32 736 768 0.958

Σ 178 1081 1259
PA 0.820 0.680 OA 0.700

Kappa 0.289

(c) Grassland class Predicted

2019 extensive intensive Σ UA

A
ct

ua
l extensive 308 183 491 0.627

intensive 62 706 768 0.919

Σ 370 889 1259
PA 0.832 0.794 OA 0.805

Kappa 0.572

Because we know the location of the polygons, we can also calculate environmental
variables such as elevation, slope, and aspect (from the digital terrain model DTM). With
this information alone, we can distinguish the two grassland types quite well, with an
overall accuracy of 79% (Table 3). In areas with lower elevations and slopes, intensive
grassland is quite common. However, the results are not as good as when we have enough
cloud-free observations.
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Table 3. Confusion matrices of the environmental variables with RF classifier.

Grassland Class Predicted

Extensive Intensive Σ UA

A
ct

ua
l extensive 316 175 491 0.644

intensive 93 675 768 0.879

Σ 409 850 1259
PA 0.773 0.794 OA 0.787

Kappa 0.539

In the following experiments, we combined environmental variables with the SITS to
first evaluate the contribution of individual SITS. The results presented in Figure 6. show
significant differences in the overall accuracies (OAs) between the RF model, where we
used annual NDVI inputs (S2) or coherence (S1). The lowest overall classification accuracy
was obtained when only radar coherence was combined with environmental variables
(S1-DTM). The NDVI, in combination with environmental variables (S2-DTM) gives better
results. We obtain the highest OA in all analysed years with combined optical and radar
time series (S1-S2-DTM). The overall accuracy ranges from 85% to 92%. We optimised the
results using MDA feature selection and achieved the best performance (OA ranging from
88% to 95%).

Remote Sens. 2022, 14, x FOR PEER REVIEW  13  of  22 
 

 

Table 3. Confusion matrices of the environmental variables with RF classifier. 

  Grassland Class  Predicted 

    Extensive  Intensive  Σ  UA 

A
ct
u
al
  extensive  316  175  491  0.644 

intensive  93  675  768  0.879 

Σ  409  850  1259   

PA  0.773  0.794  OA  0.787 

    Kappa 0.539 

In the following experiments, we combined environmental variables with the SITS to 

first evaluate the contribution of individual SITS. The results presented in Figure 6. show 

significant differences in the overall accuracies (OAs) between the RF model, where we 

used annual NDVI inputs (S2) or coherence (S1). The lowest overall classification accuracy 

was obtained when only  radar coherence was combined with environmental variables 

(S1‐DTM). The NDVI, in combination with environmental variables (S2‐DTM) gives better 

results. We obtain the highest OA in all analysed years with combined optical and radar 

time series (S1‐S2‐DTM). The overall accuracy ranges from 85% to 92%. We optimised the 

results using MDA feature selection and achieved the best performance (OA ranging from 

88% to 95%). 

 

Figure 6. Comparison of the overall accuracy of grassland Random Forest classification for all years 

analysed, using a different combination of input data—separate optical (S2), radar (S1), and com‐

bined (S1–S2) SITS with environmental variables used for grassland intensity classification. Darker 

colours show the overall accuracy achieved from all available features. Lighter colours show the 

overall  classification  accuracy  achieved by  the model  approach with  feature  selection based on 

MDA values. 

Figure 7 shows the number of features and the achieved OA using the RF algorithm 

over  the years analysed. All available  features were not equally  important  for grassland 

intensity classification. Using MDA, we were able to select only the essential features for a 

given year and improved the final classification accuracy by 2‒3 percentage points. For ex‐

ample, there were a larger number of important features in 2017 (20) than in 2018 (9) and 

2019 (8). The most important features for each year in the study area are listed in Table 4. 

Figure 6. Comparison of the overall accuracy of grassland Random Forest classification for all years
analysed, using a different combination of input data—separate optical (S2), radar (S1), and combined
(S1–S2) SITS with environmental variables used for grassland intensity classification. Darker colours
show the overall accuracy achieved from all available features. Lighter colours show the overall
classification accuracy achieved by the model approach with feature selection based on MDA values.

Figure 7 shows the number of features and the achieved OA using the RF algorithm
over the years analysed. All available features were not equally important for grassland
intensity classification. Using MDA, we were able to select only the essential features for
a given year and improved the final classification accuracy by 2–3 percentage points. For
example, there were a larger number of important features in 2017 (20) than in 2018 (9) and
2019 (8). The most important features for each year in the study area are listed in Table 4.
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Figure 7. Results of the Random Forest model for recursive feature selection to distinguish between
intensive and extensive grassland classes, starting with the model based on all available features from
combined optical and radar data and environmental data for 2017 (a), 2018 (b) and 2019 (c). The red
lines show the selection of the final chosen model and the corresponding number of input features.

Slope, elevation and NDVI values at the beginning of the growing season (from April
to June) proved to be the most important features to distinguish between intensive and
extensive grassland in the analysed period. In 2017 and 2018, some radar coherence data
were also included as an important feature. This proves the suitability of combining NDVI
and coherence to identify the management intensity of grassland use.

Table 4. RF model with the most important features for the analysed years. The last column indicates
the value of the Mean Decrease in Accuracy (MDA).

Year The Most Informative Feature MDA

2017 NDVI (2017-04-10) 42.3
Slope 40.5

NDVI (2017-04-30) 25.3
NDVI (2017-04-05) 24.5
NDVI (2017-04-15) 25.8
NDVI (2017-05-05) 24.3

Elevation 22.7
NDVI (2017-05-10) 22.5
NDVI (2017-05-20) 20.9
NDVI (2017-05-25) 19.8
NDVI (2017-04-20) 20.3
NDVI (2017-05-15) 19.1

coherence VV descending (2017-10-28) 18.0
NDVI (2017-05-30) 18.4
NDVI (2017-04-25) 16.5
NDVI (2017-09-22) 15.3
NDVI (2017-06-04) 16.2
NDVI (2017-06-24) 15.2

coherence VV ascending (2017-07-25) 14.3
coherence VV descending (2017-05-06) 16.0

2018 Slope 93.1
NDVI (2018-04-30) 51.5

Elevation 38.9
NDVI (2018-04-20) 35.1
NDVI (2018-10-22) 35.1

coherence VV descending (2018-09-18) 30.2
coherence VV descending (2018-04-01) 30.2

NDVI (2018-04-25) 32.2
NDVI (2018-05-15) 25.2
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Table 4. Cont.

Year The Most Informative Feature MDA

2019 Slope 55.9
NDVI (2019-04-10) 45.8
NDVI (2019-04-20) 39.0
NDVI (2019-04-15) 29.3

Elevation 32.2
NDVI (2019-06-19) 29.7
NDVI (2019-06-09) 30.9
NDVI (2019-05-10) 25.6

Table 5 (combined annual SITS) and Table 6 (combined annual SITS using best feature
selection) show substantial differences between annual accuracies. Grassland classification
evaluation depends on the quality and availability of satellite imagery in the annual
SITS. The RF algorithm achieved better classification results in 2017 and 2019, while the
lowest accuracies and kappa coefficients were obtained in 2018. The producer’s and user’s
accuracy of grassland types also varied from year to year. Intensive grassland provided
more stable results in terms of accuracy (UA varied between 93% and 95%) than extensive
grassland, where UA ranged between 73% and 90%, during the period studied.

Table 5. Confusion matrices of the annual SITS (all available Sentinel-1, Sentinel-2 and environmental
variables) for the accuracy of the reference dataset with RF classifier (UA: User’s Accuracy, PA:
Producer’s Accuracy, OA: Overall Accuracy). (a) is for the year 2017, (b) for the year 2018 and (c) is
for the year 2019.

(a) Grassland Class Predicted

2017 Extensive Intensive Σ UA

A
ct

ua
l extensive 437 54 491 0.890

intensive 52 716 768 0.932

Σ 489 770 1259
PA 0.894 0.930 OA 0.916

Kappa 0.823

(b) Grassland class Predicted

2018 extensive intensive Σ UA

A
ct

ua
l extensive 359 132 491 0.731

intensive 55 713 768 0.928

Σ 414 845 1259
PA 0.867 0.844 OA 0.852

Kappa 0.679

(c) Grassland class Predicted

2019 extensive intensive Σ UA

A
ct

ua
l extensive 411 80 491 0.837

intensive 49 719 768 0.936

Σ 460 799 1259
PA 0.894 0.900 OA 0.898

Kappa 0.782

The results for 2018 differ from the results of the other years, especially for extensive
grassland; where the model gets the highest misclassification rate, user accuracy is only
73% (Table 5) and 81% in the case of using only the most relevant features based on MDA
values (Table 6). The difference in the 2018 results can also be seen in the time series profiles
in Figures 3 and 4. The beginning of the growing season is clearly different from the other
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years analysed, where missing data (observation gaps) accumulated in Sentinel-2 SITS due
to unfavourable weather in April and May.

Compared to Table 6, OA improved between 7–15%, most significantly in 2018. As
before, there was still not enough information available from the SITS alone. This trend can
also be seen in the UA for all years except the intensive grasslands of 2018, while the PA
has increased in all comparisons.

Table 6. Confusion matrices of the annual SITS (using the best feature selection with MDA from
Sentinel-1, Sentinel-2 and environmental data) for the accuracy of the reference dataset with RF
classifier (UA: User’s Accuracy, PA: Producer’s Accuracy, OA: Overall Accuracy). (a) is for the year
2017, (b) for 2018 and (c) is for 2019.

(a) Grassland Class Predicted

2017 Extensive Intensive Σ UA

A
ct

ua
l extensive 445 46 491 0.906

intensive 41 727 768 0.947

Σ 486 773 1259
PA 0.916 0.941 OA 0.931

Kappa 0.855

(b) Grassland class Predicted

2018 extensive intensive Σ UA

A
ct

ua
l extensive 395 96 491 0.805

intensive 54 714 768 0.930

Σ 449 810 1259
PA 0.880 0.882 OA 0.881

Kappa 0.746

(c) Grassland class Predicted

2019 extensive intensive Σ UA

A
ct

ua
l extensive 429 62 491 0.874

intensive 44 724 768 0.943

Σ 473 786 1259
PA 0.910 0.9211 OA 0.916

Kappa 0.822

We produced the final maps of permanent grassland use intensity based on the
classification accuracy assessment. For each year, we produced a map of intensive and
extensive grassland types for the entire country. Figure 8 illustrates the results of the
object-based classification approach for three representative subsets of the study area. We
can also obtain the confidence interval value associated with the prediction using the RF
algorithm. The interval ranges from 0 to 10, where 0 represents extensive grassland use,
and 10 represents intensive grassland use. Figure 8c shows that it is generally difficult to
clearly determine the degree of intensity of grassland use. This is also the reason why there
is still no clear definition of grassland use type, use intensity and grassland condition [18].



Remote Sens. 2022, 14, 3387 16 of 21
Remote Sens. 2022, 14, x FOR PEER REVIEW  17  of  22 
 

 

 

Figure 8. Permanent grassland classification results for representative subsets of the study
area. (a) Orthophoto, (b) intensive and extensive grassland use classification results for 2019 and
(c) confidence interval value associated with the prediction. The representative subsets of the study
area have different relief characteristics and management practices. Subset at the top is a mix of flat
and rugged terrain, subset in the middle represents flat terrain, and subset at the bottom represents
rugged Karst terrain.
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4. Discussion

This study has shown that multisensor time series of combined optical and radar
remote-sensing data combined with environmental variables can effectively classify inten-
sive and extensive grasslands in a large area of heterogeneous grassland stands. Several
studies have highlighted the potential of Sentinel-1 and -2 data to characterise and clas-
sify different land use types, either separately or combined [15,51]. Still, only a few have
used multisensor remote sensing imagery for grassland management and intensity use
classification [8,18]. Most studies examined relatively small study areas with homoge-
neous intensity levels among grassland plots; however, larger heterogeneous landscapes
with different environmental conditions and practices pose a challenge. Nevertheless,
combined Sentinel-1 and -2 imagery to identify and characterise detailed grassland use
remains underexplored. In this context, we seek to assess the potential of separate and
combined Sentinel-1 and Sentinel-2 SITS for identifying and classifying the intensity of
grassland use in a large study area covering the entire Slovenia. Our research analysed the
RF algorithm in the combination of two different remote sensing products, optical NDVI
and radar coherence, separately for the ascending and descending orbits, to identify the
most appropriate features for grassland intensity use or management type separation.

Reinermann et al. [18] noted that in most studies on remote sensing of grassland,
optical satellite data were used as vegetation indices, with NDVI representing grassland
conditions well. Several studies have investigated radar-based backscatter amplitudes,
interferometric coherence, and polarimetry-based decomposition parameters, primarily
for grassland mowing detection rather than general type classification [50,52–54]. In the
present study, the combination of NDVI and coherence proved to be very useful and robust
for grassland classification at a larger spatial scale.

In addition to the final grassland classification, our study improved understanding of
the relationships between the separate and combined multisensory SITS of NDVI and coher-
ence and the estimated biophysical parameters, such as individual grassland characteristics
related to management or intensity use. Temporal analysis of satellite-based information
allows us to gain insight into the dynamic phenological processes of a particular grassland
type and specific events, such as mowing, etc. [18,21,22,55,56].

Our study demonstrates the value of combining NDVI and coherence SITS for map-
ping and monitoring grassland use. Both SAR coherence and NDVI provided useful
information for distinguishing between intensively and extensively managed grassland
types. Temporal coherence profiles showed lower values for extensive grassland than for
intensive grassland, while the opposite was observed for optical NDVI. Comparing optical
Landsat and radar data ERS-2 SAR, Price et al. [57] found that NDVI values were more
important than radar backscatter data for classifying grassland types. Bekkema et al. [8]
concluded that for accurate grassland classification using only optical remote sensing data,
the availability of satellite imagery in spring, preferably taken in April before the first
mowing date, is essential. Our study showed similar results. NDVI values at the beginning
of the growing season (in April and May) were the most important variables for separating
intensive and extensive grassland. They can identify the main phase of highly dynamic
vegetation growth [8]. Radar coherence improves classification accuracy when the number
of cloud-free optical images is insufficient in a given season. Coherence SITS are particularly
useful in areas with high cloud cover, such as the Alps and pre-Alps areas.

However, there were no direct correlations between NDVI and coherence because
NDVI indicates biophysical grassland variables, whereas coherence captures more veg-
etation physical variation and change. Nevertheless, coherence SITS behave inversely
to NDVI SITS (Figure 5). It reaches high values in the early and late seasons and low
in the middle [50], indicating the possibility and new opportunity to improve the time
series classification approach to create denser fused radar-optical SITS. Research, including
ours, suggests that radar coherence SITS is better suited for detecting specific events at the
level of individual plots, such as mowing and grazing dates, and then incorporating these
parameters into more advanced classification analysis. Therefore, NDVI and coherence
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time series are beneficial for grassland mowing detection [10,50,58,59] and can further
improve grassland intensity mapping capabilities.

Many studies have used the RF algorithm for grassland management or intensity
classification [7,18,60]. Grabska et al. [61] found that topographic variables can improve
the accuracy of vegetation classification of RF in large heterogeneous areas because they
have an indirect influence on plant growth [15]. In our study, slope and elevation were also
classified as features with a higher importance in all analysed years.

Using MDA, we reduced the dimensionality of the input SITS and found out which
satellite image acquisition dates and attributes are more important/informative to build a
model to discriminate between intensively and extensively managed grassland in a given
year. In addition, the MDA criterion provided as an output of the RF classifier proved to
be very efficient for feature selection. The overall accuracy (RF, object-based classification)
obtained with the combination of all available annual features determined by MDA was
only 2–3% lower than that obtained with the best feature selection combination (Figure 7).

Classification accuracy was assessed using OA, PA, and the Kappa coefficient. Ex-
tensive grassland had a significantly lower producer and user accuracy than intensive
grassland in all years studied, regardless of the combination of input data. For example, in
2017, user accuracy was 91% (RF, object-based, 2 classes, 20 selected features), while for
intensive grassland it was 95%. In 2018, user accuracy for extensive grassland was only
81% (RF, object-based, 2 classes, 9 selected features), while for intensive grassland it was
93%. In 2019, the user’s accuracy for extensive grassland was again higher, at 87% (RF,
object-based, 2 classes, 8 selected features), while for intensive grassland it was 94%. The
low accuracies for extensive grassland were obtained due to its high biodiversity value
(depending on soil texture), the large study area with environmental diversity, and the
unbalanced training dataset (39% polygons for extensive grassland and 61% polygons for
intensive grassland). Therefore, further research is needed to determine how to expand
and balance the number of reference training samples to improve grassland classification
with additional attributes obtained from Sentinel SITS, including areas where samples are
not currently representative.

5. Conclusions

This study aimed to improve the understanding of the combined dense multisensory
Sentinel-1 and Sentinel-2 data SITS to classify two grassland types in a large and heteroge-
neous study area. We investigated the combination of two remote sensing products, optical
NDVI and radar coherence, to classify grasslands. Including environmental variables in
the classification further improved the classification accuracy of the results. We used the
annual combined SITS for 2017, 2018, and 2019 and the RF algorithm to classify intensive
and extensive grassland types. The analysis was carried out at the object (parcel) level.
Using the MDA-based feature selection method, we reduced the number of model input
variables by selecting the most relevant features (acquisition dates, environmental variables)
to distinguish between intensive and extensive grassland types. This improved the final
classification accuracy and provided deeper insights into large datasets of high-dimensional
multisensory radar and optical SITS. The best classification accuracy was achieved with
combined NDVI and coherence data. In particular, environmental variables and NDVI
values at the beginning of the growing season, in April and May, showed high potential for
effective classification of grassland use intensity. We also observed that radar was more
important in the absence of NDVI data. Future work will focus on time series analysis
to ensure robustness of the applied method, with the possibility of creating denser fused
radar-optical SITS. An important next step is to gain deeper insights into the dynamic
phenological processes of a given grassland type and specific events, such as mowing and
grazing dates, and then incorporate these parameters into a more advanced classification
approach to improve the final classification accuracy.
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