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Abstract: Mangroves are a globally important ecosystem experiencing significant anthropogenic and
climate impacts. Two subtypes of mangrove are particularly vulnerable to climate-induced impacts
(1): tidally submerged forests and (2) those that occur in arid and semi-arid regions. These mangroves
are either susceptible to sea level rise or occur in conditions close to their physiological limits of
temperature and freshwater availability. The spatial extent and impacts on these mangroves are
poorly documented, because they have structural and environmental characteristics that affect their
ability to be detected with remote sensing models. For example, tidally submerged mangroves occur
in areas with large tidal ranges, which limits their visibility at high tide, and arid mangroves have
sparse canopy cover and a shorter stature that occur in fringing and narrow stands parallel to the
coastline. This study introduced the multi-dimensional space–time randomForest method (MSTRF)
that increases the detectability of these mangroves and applies this on the North-west Australian
coastline where both mangrove types are prevalent. MSTRF identified an optimal four-year period
that produced the most accurate model (Accuracy of 80%, Kappa value 0.61). This model was able to
detect an additional 32% (76,048 hectares) of mangroves that were previously undocumented in other
datasets. We detected more mangrove cover using this timeseries combination of annual median
composite Landsat images derived from scenes across the whole tidal cycle but also over climatic
cycles such as EÑSO. The median composite images displayed less spectral differences in mangroves
in the intertidal and arid zones compared to individual scenes where water was present during the
tidal cycle or where the chlorophyll reflectance was low during hot and dry periods. We found that
the MNDWI (Modified Normalised Water Index) and GCVI (Green Chlorophyll Vegetation Index)
were the best predictors for deriving the mangrove layer using randomForest.

Keywords: mangroves; Landsat; Google Earth Engine; intertidal; temporal

1. Introduction

Whilst acute anthropogenic impacts, such as land clearing, are the largest cause of
mangrove loss this century, natural causes, including climate-related events, account for
38% of the total mangrove loss globally [1,2]. Within the Australia and Oceania region,
these causes are the leading driver of mangrove loss [1,2], yet there is limited data on the
mangroves in this region due to the remoteness and poor understanding of the ecology–
climate relationship as a result of limited data and field observations. Northern Australia,
in particular, is experiencing significant changes in the mangrove extent and condition [3],
demonstrated by the largest mass mangrove mortality event ever recorded.

Mangroves comprise a collection of halophytic trees with common traits that allow
them to survive in the highly saline, tidally flooded environment they inhabit [4,5]. The
climate and environment are integral to the characteristics of mangrove forests—for ex-
ample, stunted and shorter mangroves occur in high latitudinal environments [6]. These
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physiological adaptions provide variability when mapping mangroves on a large scale,
such as national or regional scales, but mapping across a large scale is important due to the
increased climatic pressures (e.g., changes in the temperature and sea level) and potential
influence these will have on mangroves now and into the future [7].

Satellite remote sensing is commonly used to map mangroves at fine spatial scales
that can develop species-level models [8] to broader spatial scales that can delineate the
surface area extent [9]. More recently, drones have been explored to provide fine-scale
species maps or estimates of a condition or structure [10]; however, these are limited to
site-specific studies due to drone flight time limitations. Despite such great achievements
in mapping mangroves [11–14], data currency remains an ongoing issue, especially on
a broader scale (e.g., regional, national, global). This is highlighted by the most current
global map of mangroves representing the 2010 timepoint extent, and within this extent,
the mangrove condition last updated in 2019 (World Mangrove Atlas) [11–14] and, within
the national datasets, is temporally variable or incomplete. For example, Australia has a
dedicated national mangrove extent layer, though it was last updated in 2017 [14], with
notable changes in the conditions reported since then [1,3,5,15,16]. A cost-effective method
for monitoring mangroves is required, especially where there is minimal ground data due
to remoteness or safety hazards (e.g., crocodiles, no road access and large tides); a lack of
resources (e.g., funding and personnel) or in dynamic regions (e.g., large tides, cyclones,
flood events and anthropogenic impacts).

The advancement in remote sensing and machine learning methods, alongside open
access and research open or minimal cost data and cloud processing environments (e.g.,
Google Earth Engine (GEE), Amazon Web Service and DataCube), provides a new mecha-
nism to improve the mapping and monitoring efforts of this ecosystem, including temporal
information, which provides a snapshot into past responses to climate and environmental
patterns, a necessary component for understanding future scenarios and important in site
selection for restoration and carbon abatement projects.

Monitoring projects require up-to-date data for routine regulatory reporting require-
ments, so that any changes in the mangrove extent or condition can be assessed—for
example, Australia reports the mangrove area and condition as part of The Australian
Government Submission to the United Nations Framework Convention on Climate Change
Australian National Greenhouse Accounts [17]. Satellite data provide an avenue to derive
mangrove information across the globe in a consistent manner. However, the spatial and
temporal resolutions of freely available single timepoint satellite data have limited the
detectability of fringing, low-density and short in stature mangrove trees, especially those
occurring in large tidal ranges, where they are not fully exposed across the whole tidal
cycle [18]. The adoption of machine learning methods with timeseries remote sensing data,
available through cloud platforms, provides new avenues to map these habitats at larger
spatial scales and with greater temporal frequency [19,20]. These new tools increase the
opportunity to detect mangroves that are periodically inundated and largely submerged—
for instance, providing opportunities for the adaptation of non-traditional band ratios for
mangrove mapping, such as the Modified Normalised Difference Water Index (MNDWI).
The MNDWI has traditionally been utilised to mask or map water extents; however, it also
has the potential to identify mangrove areas with periodic tidal inundation [18].

In this study, we utilise the entire Landsat 8 satellite collection between January 2014
and June 2021. We trial new cloud-based time-series methods that account for the variance
in the tidal range when detecting mangrove areas that are periodically inundated and that
have proved difficult to detect with traditional remote sensing methods [18]. We derive a
mangrove habitat area model for remote North-western Australia, a significant, tidal and
arid mangrove region. We investigate the efficiency of this approach by assessing the model
within the distinct geomorphic zones of the region through visual validation from high-
resolution imagery. The Multi-Dimensional Space Time randomForest approach (MSTRF)
method we develop here differs from other currently published methods, as it does not
require the systematic targeting of remote sensing imagery to account for tidal cycles [18]
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but takes advantage of the effects of periodic inundation on MNDWI values to increase
the coverage of mangroves missed by other methods. We also aim to use time-series to
account for seasonal or climatic cycles such as EÑSO, which can affect tide and climate to
help define mangrove areas.

2. Method
2.1. Study Site

The North-west Australian (WA) coastline is characterised by an arid and semi-arid
climate, with high temperatures and low rainfall, though cyclones can occur with rapid
flood or high-rain events. The region comprises two World Heritage Areas (WHA), both
of which contain mangroves; Ningaloo WHA and Shark Bay WHA, and three sites (Ord
River Floodplain, Roebuck Bay and 80-Mile Beach) listed as Ramsar sites and on the List
of Wetlands of International Importance protected under the UN Convention of Wetlands.
The region is largely undeveloped and remote with small and few populous areas; however,
industry occurs, including (specific to the mangrove area) ports and salt extraction ponds [4].
The region is of ongoing cultural significance with the various Traditional Owner groups
whose country they occur in [21].

The coastline comprises a range of biogeographic and geomorphic zones, and as a
result, the mangroves occur in a mix of dense and fringing arrangements. There are
19 species of mangrove in the Kimberley region in the north, reducing to only one:
Avicenna marina, at Shark Bay in the south (Figure 1). This study does not distinguish
between species.
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Figure 1. Study region where the mangrove habitat was modelled. Zones (black outline) refer to
regions as defined by primary sedimentary processes (source: Geoscience Australia soil layer [22]—
see Section 2. Methods). Mangroves occur throughout this geographic extent in North-western
Australia, distributed across the coastline in varying densities. Species and density increase with
higher latitudes.



Remote Sens. 2022, 14, 3365 4 of 17

2.2. Spatial Modelling
2.2.1. Satellite Images

USGS Landsat 8 satellites were utilised as they are multispectral (11 band), with a
pixel resolution of 30 m × 30 m, and have a 17-day revisit time. It is also comparable to
the other mangrove layers that have been developed (and currently utilised in research)
using Landsat satellites [12–14], meaning our study method could easily be comparable,
and increases in mangrove detection would not likely be a result of the change in pixel
size/satellite but a change at the location (‘real world change’) or as a result of model
detection.

A novel approach for obtaining affordable satellite imagery while optimising for
minimum cloud cover and greatest spectral return in mangrove habitat was employed
using an image composite technique in Google Earth Engine (GEE). The image composite
technique selects the ‘best pixel’ (e.g., cloud-free) from a range of images to produce
a composite image [23]. We created annual image collections for 2014–2020 using all
12 months of imagery per year (Figure 2). For 2021, the image collection reflected the
available data at the time of study (January–June). QA bit masking was used to exclude
images with high cloud cover and shadow from the image collection. From each annual
image collection, we used the median pixel value to produce a single most representative
11-band composite image for each year.

2.2.2. Mangrove Spatial Model Development Using the Multidimensional Space–Time
RandomForest Approach

Indices provide a method to extract useful information about the environment from
satellite data [24]; in mangroves, relevant indices are those that provide information on
green vegetation (red and near-infrared bands [25]) and water reflectance (green and middle
infrared [26]). For each yearly composite, four image indices were developed that have
been previously used in mapping mangroves (e.g., [1,12,15,18]): (i) NDVI—the normalised
difference values for Band 5 (0.85–0.88 µm) divided by Band 4 (0.64–0.67 µm), which
measures the absorbance of chlorophyll in the red band and the reflection of the mesophyll
in the near-infrared band [25], (ii) MNDWI [26])—the normalised difference values for
Band 3 (0.53–0.59 µm) divided by Band 6 (1.57–1.65 µm), which maximises the water
reflectance with the green band and minimises noise from land using the middle infrared
band [26], (iii) SR (Simple Ratio)—Band 5 (0.85–0.88 µm) divided by Band 4 (0.64–0.67 µm),
which also uses the red and near-infrared bands to detect green vegetation and (iv) GCVI—
Green Chlorophyll Vegetation Index ((Band 5 (0.85–0.88 µm)/bands 3 (0.53–0.59 µm))—1,
which estimate the green leaf biomass [27]. The resulting bands were also masked using
NASA’s Shuttle Radar Topography Mission (SRTM) v3 30-metre digital elevation layer [28]
and based on the NDVI and MNDWI values. The SRTM data was used to exclude any area
with elevation above 17 m and a slope greater than 8 degrees. NDVI was used to exclude
areas with values less than 0.25, and the MNDWI cut-off was less than −0.50. Thresholds
were selected after experimenting with different variations for this coastline. For instance,
slope and elevation represent the macrotidal environment of the Kimberly, and NDVI was
informed from previous work in the region [15]. The final band combination used in the
statistical modelling were bands 4 (0.64–0.67 µm), 5 (0.85–0.88 µm) and 6 (1.57–1.65 µm), as
well as band ratios NDVI, MNDWI, SR and GCVI.

For the supervised classification, 575 ground control points were generated and classi-
fied as mangrove or not mangrove using the best available high-resolution aerial images.
Points were generated to provide good spatial and class coverage over the whole of the
study domain and then randomly split to derive training (60%) and testing (40%) data
(Figures S1 and S2). Due to the remoteness and lack of data covering this region, high-
resolution images were used across a 2010–2021 time-period, where a point was located in
a time-period outside of 2014–2021 ESRI base map imagery, or Planet Labs satellite true
colour images (3 m × 3 m pixels) were also utilised to verify. This means the point was
labelled mangrove if mangroves were present in any image during the time-period.
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Figure 2. The four main steps involved in the MSTRF method. (1) Development of each annual image
composite and subsequent generation of annual mangrove model developed using randomForest,
(2) identification of the optimal timeframe through the accuracy assessment of model combinations,
(3) exploration of the optimal model at the geomorphic zones and (4) further validations of additional
mangrove areas at the zone scale.
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Random Forest (randomForest) modelling was conducted with training points as
dependent variables and the final band combination as the independent variables for each
year. Model development, tuning and diagnostics were conducted using the R software
package v4.1.2 and with the randomForest library v4.6-14 [29] using the rftune function.
The final optimised parameters were implemented using the smile.randomForest java
version of randomForest available through GEE [30]. Parameters were chosen for highest
explained variance and the lowest mean residuals. Each yearly mangrove model was
trained with 200 trees and a consideration of up to 5 variables at each tree split. A noise
filter was then applied by calculating the number of connected cells for each pixel with each
neighbour using the “pixel.count” function in GEE to remove mangrove pixels that had
less than 4 neighbours. The resulting raster is the mangrove habitat model for each year
over the whole north-west coastline. This was then imported into the R software package
v4.1.1 using the library terra (v.1.3.4), and testing points were used to generate independent
validation accuracy and Kappa statistics using the package “Caret” (v6.0-68).

The model accuracy for yearly mangrove models was assessed by predicting the
values against the blind validation dataset using a confusion matrix in conjunction with
the total accuracy and Kappa statistics. Models with Kappa > 0.8 have high predictive
power, values between 0.6 and 0.8 are acceptable and models with Kappa of <0.5 have no
power of discrimination [31]. All yearly mangrove models were validated individually
against the test points (40% of all points as described above) that occur within the potential
mangrove area.

To determine if a single-year or multi-year model provided a better representation
of the mangrove extent, single-year mangrove models were combined. That is, the yearly
mangrove models were summed, and the total number of times a pixel was determined
to be mangrove was generated as a cell cumulative frequency model (≥7 timepoints,
≥6 timepoints, ≥5 timepoints, ≥4 timepoints, ≥3 timepoints, ≥2 timepoints or ≥1 (all)
timepoints). The resulting mangrove models are referred to as their frequency within
the manuscript (e.g., 6 to 8 mangrove layers is ≥6 timepoints). Tests for accuracy were
conducted as per annual models described above to find the optimal mangrove model that
provided the highest accuracy and Kappa.

2.2.3. Analysis by Geomorphic Zones and Spatial Accuracy

The WA coastline comprises a range of biogeographic and geomorphic zones. As
climate and geomorphology have been shown to influence mangrove density and struc-
ture, we divided the optimal mangrove layer into smaller coastal zones. We utilised
“The National Classification of Coastal Sediment Compartments layer” derived by Geo-
science Australia based on geology, geomorphology, topography and shoreline aspect [22].
There were 20 primary compartments (referred as zones) that overlapped the study extent
(Figure 1), and a further accuracy assessment (n = 360) of the optimal mangrove model was
calculated within each geographic zone (detailed in Section 2.2.4).

2.2.4. Layer Comparison

The optimised mangrove layer was clipped to the geomorphic zone layer using
the ESRI ArcGIS Pro v2.8.1. This process was repeated with the Giri et al. (2011) and
Worthington et al. (2020) layers [12,13]. The Compute Change Raster tool in ESRI ArcGIS
Pro v2.8.1 was then used to generate a layer for the two comparisons to further investigate
the mangrove model generated ([1.] Giri et al. (2011) [12] to optimal mangrove model;
and [2.] Worthington et al. (2020) [13] to optimal mangrove model). In each comparison
the optimal mangrove model was set as the current layer, and the other layer as the
baseline. Four categories were generated depicting [i] no mangrove present in either layer;
[ii] mangrove present in baseline only; [iii] mangrove present in current (optimal mangrove
model) only; and [iv] mangrove present in both layers.

The optimal mangrove model was further explored at each geomorphic zone to further
validate additional mangrove areas. For each geomorphic zone, an independent 20 random
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points were generated within the change comparison category from above [ii] ‘mangrove
present in baseline only’ of the Giri et al. (2011) [12] comparison, using the Create Random
Points tool in ESRI ArcGIS Pro v2.8.1. These points were then visually checked against the
imagery as per the method described in Section 2.2.2.

We then explored an area of mangrove that had been identified as being present but
missed in other mangrove layers and detected using the MRSTF method (Figure S9). To do
this, we compared the wavelengths (bands 3–7) and indices (GCVI, MNDWI, NDVI and
SR) in every Landsat images between 2014 and 2021 at the site, with the annual median
composite images.

3. Results
3.1. MSTRF Mangrove Habitat Model Models

Using this MRSTF method, 13 mangrove habitat layers were derived. The accuracy of
all annual and cumulative frequency derived habitat models varied in accuracy with kappa
ranging from 0.39 (accuracy 69%) to 0.61 kappa (accuracy 80%) (Table S1). The model
deemed to be the optimal mangrove model was the model with pixels occurring in at
least 4 timepoints (of 8 total timepoints). This model had the highest accuracy (kappa 0.61,
accuracy 80%) (Table S1 and Figure S3). This model is referred to as the optimal WA
mangrove model herein.

Across the annual habitat models and apparent in the partial plots in Figure 3, MNDWI
was found to be the variable with the highest relative importance score, followed by GCVI,
then the composite bands for these two indices (B6, B4 and B5) (Table 1). The least important
variables were NDVI and SR. The MNDWI values ranged from −0.5 to 0.06, with values
ranging from −0.35 to 0.2 having the greatest association with the presence of mangroves
(Figures 3 and S4). Ranges less than this were associated with water and above 0.2 were
associated with non-mangrove habitats, including supratidal areas (Figures 3 and S4).
GCVI values that had the highest association with the presence of mangroves occurred
between 1 and 4.5. Values less than 1 were associated with all other types of non-mangrove
habitats (Figures 3 and S4). Band 6, a component of the MNDWI index, had a relative
importance similar to GCVI; values less than 2.5 were associated with a higher probability
of mangrove presence. The remaining bands, particularly the band indices NDVI and SR,
showed decreasing amounts of variable importance. These demonstrate a less apparent
discrimination between mangrove and non-mangrove habitats, as shown in Figure 3
(Table 1 and Figure S4).

Table 1. Relative importance scores for each variable used in the MSTRF mangrove habitat model for
the combination of a 4-year optimal period.

Variable RandomForest Relative Importance Score

MNDWI 116.7

GCVI 73.3

B6 (SWIR 1) 70

B4 (Red) 64.3

B5 (Near Infrared (NIR)) 61.2

NDVI 54.1

SR 48.2
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Figure 3. Partial dependence plots for randomForest showing the influence, in order of importance
(see Table 1) of remote sensing bands Landsat 8 remote sensing bands 4, 5 and 6 and band composites
GCVI, NDVI, MNDWI and SR from a 4-year optimal median composite on the prediction of mangrove
versus non-mangrove habitat. It is apparent that mangrove detectability increases when water indices
(MNDWI) reduce and indices associated with vegetation (chlorophyll) increase (e.g., GCVI, NDVI)
(see Figure S4).

3.2. Mangrove Extent and Area

The annual mangrove areas varied by 36,530 ha with the highest area recorded in 2016
and lowest in 2015 (Figure 4 and Table S2). The optimal WA mangrove model area was
276,538 ha and covered over 4000 km of coastline. Compared to existing datasets, the optimal
WA mangrove model derived an area at least 32% greater than the Giri et al. (2011) [12]
or Worthington et al. (2020) [13] datasets. The Lymburner et al. (2020) [14] area was not
compared due to the data format (web map server) accessed via the National Map [14].
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3.3. Mangrove Zone Analysis

The majority of the mangroves were found to be located in the higher latitude zones,
with the Brockman zone comprising the largest forest area (Figure 4). Overall, the optimal
WA mangrove model predicted an increase in mangrove area by 32% in zones with greater
than 80% prediction correct (see Table S3. The local uncertainty of the optimal WA man-
grove model varied between zones, with greater points correctly predicted in the zones that
had a larger area of mangroves. Within these zones, the optimal WA mangrove model was
able to detect smaller patches of mangroves, such as along creeks, and fringing coastline
mangroves either small in width, or sparse canopy (cover) density (Figure 5). Of the zones
with a model prediction validated to be over 80% correct the largest increase in mangrove
area included high latitude sites in the Kimberley and Pilbara regions of the Western Aus-
tralia (WA) coast (Table S3). The Bonaparte East zone (restricted to the WA state boundary)
reported a 57% increase in mangrove area compared to the Giri et al. (2011) [12] layer,
and 75% increase compared to the Worthington et al. (2020) [13] layer. Other zones with
greater than 40% increase in mangrove area (and minimal 80% correct prediction) when
compared with one or both comparative layers, included De Gray (48%—Giri et al. (2011);
41% Worthington et al. (2020)), King Sound (46%—Giri et al. (2011); 45% Worthington et al.
(2020)), Bonaparte West (44%—Giri et al. (2011); 35% Worthington et al. (2020)), Drysdale
(37%—Giri et al. (2011); 46% Worthington et al. (2020)), and Barrow (37%—Giri et al.
(2011); 49% Worthington et al. (2020)). Within these zones, additional mangroves similarly
consisted of fringing coastline mangroves either small in width, or sparse canopy (cover)
density (Figure 5), and also in new or modified mangrove areas (Figure S9). Where it could
be detected when multiple imagery timepoints were available these new or modified areas
were representative of dynamic environments. In particular, islands of mangroves either
had been lost or naturally developed, or mangrove lined coastlines were observed receding
in locations (Figure S5). The dynamic coastline was observed particularly within the King
Sound zone.

Whilst the optimal WA mangrove model was able to locate mangroves that had previ-
ously been missed, it was found to overestimate mangroves in some locations
(Figures S6 and S7). This was particularly noticeable in certain conditions, including
mislabelling cyanobacterial flats that occurred adjacent and landward of the denser man-
grove canopy (Figure S6), as well as in the dense and shallow seagrass areas of Shark
Bay. Less frequent commission (mislabelled as mangrove) errors occurred with terrestrial
shrub vegetation on coastal low-lying dunes, or some residential or agriculture areas in
low-lying regions adjacent to mangrove creeks, particularly around Broome and Carnarvon
(Figure S7).

There were two zones identified as having mangrove that had not been previously
identified in the national or global layers, Wallal and Zuytdorp. On visual inspection
the areas identified in Zuytdorp are a misclassification of mangroves. However, within
the Wallal zone, areas have been both correctly and incorrectly modelled as mangrove
(Figure S8).

Comparison between individual scenes and the median composites at a select site
where mangroves were shown to be newly detected in this study but persisted previously
showed the median annual composites (Figure S9) were more spectrally similar than
individual scenes (Figure 6). The largest differences between median and individual scene
images were apparent in the MNDWI index, and in the wavelengths corresponding to
the Vegetation Red Edge bands (Figure 6). The year 2018 also showed a large variance in
individual scenes and between the composite images, this was particularly noticeable with
the MNDWI index.
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Figure 5. Areas of mangrove that were identified in the optimal WA mangrove model (red). Yellow
box refers to areas not previously mapped in [12–14] layers. (A,B) mangroves adjacent to salt ponds
that were detected in the WA optimal WA mangrove model ((B)—red). (C,D) Fringing mangroves
with low width detected areal extent in the optimal WA mangrove model ((D)—red). (E,F) Less dense
section of fringing mangroves detected (E)—yellow box] in the WA optimal WA mangrove model
((F)—red). See Supplementary information for further examples of (E,F).
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Figure 6. Example of differences in Landsat satellite single image scenes (variance bars represent all
images between 2014 and 2021), and annual median composite images (line) for variables used in
habitat models derived from image spectra. B3–B7 Refer to wavelengths (central wavelength) ‘B3
(Green—560 µm)’, ‘B4 (Red—665 µm)’, ‘B5 (Vegetation Red Edge—705 µm)’, ‘B6 (Vegetation Red
Edge—740 µm)’, ‘B7 (Vegetation Red Edge—783 µm). GCVI, MNDWI, NDVI and SR refer to the
indices derived from the image spectral bands. (See Figure S9 for example of corresponding Landsat
images and Figure 5E,F).

4. Discussion

This study developed the MSTRF method to construct an optimal mangrove model,
which considerably improved the detection of mangroves along the remote WA coast-
line. This method has documented an additional area of mangrove in the region of
32% (76,048 hectares, over 4000 km of total coastline), compared to other large-scale
datasets [12–14]. Using MSTRF, this study employed a spatio-temporal aggregation of
models to the method in two ways. Firstly, it used an image composite technique within
a cloud processing environment. This technique selects the ‘best pixel’ from a range of
images to produce a composite image [23], reducing cloud cover, atmospheric and water
noise. For this study, we used a 12-month collection of images for each annual image com-
posite (approximately 21 images). Secondly, we derived a habitat model for each annual
time-period, and then combined these and used accuracy measurements to determine the
optimal mangrove model for WA. This approach has detected a greater area of mangroves
across the WA coastline, including mapping newly identified areas, and increases in zones
that have large tidal ranges, like King Sound which experienced 45% increase in mangrove
area detected compared to other large scale mangrove datasets [12,13].
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With the MSTRF approach we found the optimal time-period for identifying mangrove
areas was four timepoints. While this study did not assess drivers of change, a 4-year cycle
corresponds to the timing of a full EÑSO cycle. Changes in mangrove areal extent and
‘greenness’ have previously been reported in the study region as relating to EÑSO [5,15].
While further investigation is required, the findings of this study suggest that a single
timepoint is not adequate in mapping mangrove extent at a large scale. This study using
the MSTRF approach found that a four-timepoint model was most appropriate for the
north-west region and suggests that climate cycles should be considered when deriving
mangrove area and changes in condition.

Increasingly, mangroves are being degraded or lost due to climate induced causes,
including heat waves, floods, storms, sea level rise, cyclones, and changes in tidal inunda-
tion [2,5,15,16]. However, we are still understanding the dynamics of mangroves especially
in areas where access is difficult, and as a result data availability is low. Time-series satellite
remote sensing provides an avenue to acquire broadscale information, however in the man-
grove environment its success has been limited by adequate field validation information,
along with traditional remote sensing issues such as cloud cover, and atmospheric noise [32].
The dynamic nature of mangrove environments at the marine-terrestrial interface, means
that tidal waters bring an added complexity to mapping these trees that is not present in
terrestrial environments. The tidal ranges in parts of north-west Australia are amongst the
largest globally, such as King Sound where tidal range is greater than 10 m [33]. Mangroves
in this study averaged only 6.9 m in height [34]. At high tide, fringing mangrove trees can
be extensively covered by water, or less dense canopies can show strong water spectral
signals in the satellite images. This can result in these pixels being misclassified as water
and not mangrove.

The temporal aspect of tide and satellite image capture adds further complexity, with
water in these areas only temporally present and satellite imagery not coinciding with
only one tidal phase, resulting in water not consistently being present across individual
images, and affecting the spectral signal as shown with the variance in the MNDWI values
for the individual Landsat scenes. This means that the same pixel at different times may
have different spectral properties, representing mangrove and water, or mangrove and
sediment, leading to misclassification of mangroves in these models, and a reporting of
a smaller mangrove area [18]. As demonstrated with the MSTRF, the annual median
composite images had less variance between timepoints compared to the individual scenes.
However, at the selected site, the year 2018 showed large variance in individual scenes,
and a difference in the median annual composites. The scene (3 March 2018) which had a
large value for MNDWI coincided with a cyclone in this region (Cyclone Kelvin). Cyclones
are known to cause higher water levels and wave run-up [35], and was likely a factor
influencing the results here.

This study used a range of spectral indices to model mangrove habitat, with MNDWI,
followed by GCVI as the variables with the most importance for the models. GCVI
represents a vegetation index and as such has been commonly used for mapping man-
groves [14,27]. The MNDWI is an index more commonly used in mapping water bodies [26],
however has been utilised more recently as part of other mangrove combined indices map-
ping [26]. The MNDWI shows a relationship with mangrove prediction that relates to water
presence peaking and then declining with mangrove presence. With traditional methods of
using a single Landsat scene the inclusion of a water index could be problematic, with it
possibly relating to tidal phase of image capture more than relationship to mangroves across
a time-series, however, the composite images used in this study provide new opportunities
for mapping mangroves and produce models that when compared annually are more
spectrally similar in this dynamic environment than the individual Landsat scenes within
a yearly time period. Many studies mapping mangroves target just vegetation indices or
wavelengths that correspond with chlorophyll (e.g., red and near-infrared) however, we
demonstrate in this study the importance of considering both water and vegetation indices,
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as we found that mangrove detectability increases when water indices (MNDWI) reduce
and indices associated with vegetation (chlorophyll) increase (e.g., GCVI, NDVI).

Many of the new mangrove areas documented in this study were not previously
mapped as they reflect mixed pixels (sparse mangroves co-occurring with sediment, or
water), such as narrow bands of mangroves lining creeks and tributaries, or landward areas
of the dense canopy where sparse mangrove trees are located. These areas are increas-
ingly becoming important with mangrove landward encroachment being documented in
response to sea level rise [36]. Being able to detect this in its early stages is important for
management responses to climate changes.

The WA coastline is a complex coastline, like many across the globe. It covers a
large spatial extent, and within this encompasses a range of sedimentary and geomor-
phic processes that influence depositional and hydrology variables that affect mangrove
forest structure [33,37]. This was evident in the macrotidal delta—King Sound—which
exhibited notable changes, such as small islands of mangroves cleared, created or mod-
ified by the environment during the study period. Similar findings were reported by
Lymburner et al. [14], and Bishop-Taylor et al. [38] both whom reported receding sections
of coastline here, suggesting this is a dynamic environment that requires ongoing mapping
that is able to account for such temporal changes.

While MSTRF increased mapped mangrove area extensively, it did overfit some areas
that comprised low slope and where green non-mangrove vegetation was present. These
overfit errors were most noticeable in Broome and Carnarvon, where residential and
agricultural vegetation close to water was misclassified as mangrove. Other environments
noticeably mislabelled as mangrove included those habitats in predominantly alluvial
pan geomorphic settings, salt flat dominated landscapes, or where cyanobacterial algal
mats were present. These habitats are found within a distinct tidal range, and do not
have a canopy structure, so the model could be improved with refined thresholds here to
improve this with further training. MSTRF noticeably misclassified some of these coastal
and shallow seagrass or algal patches as mangrove in Shark Bay. This appeared to occur
uniquely in Shark Bay and is likely due to the unique dense and shallow seagrass within
this embayment. Further, exploration of the slope and regional coastline and tide models
may improve this overfit. This study did not utilise a tidal inundation model, as the
north-west coast of Australia has limited field data, and it is known to be an area with
high uncertainty and inconsistencies in correctly detecting the intertidal region here [38].
However, it could be advantageous to include a tidal model for the zones that had higher
misclassification.

The Wallal zone contains the Mandora salt marsh (80 Mile Beach), an internationally
significant site and listed as a Ramsar site under The Ramsar Convention on Wetlands
of International Importance. The site contains small patches of mangrove that are not
previously mapped in the national or global mangrove datasets but have been previously
documented [39,40]. This study was able to detect areas overlapping a section of mangroves
here. The difficulty in ground validating the mangroves, particularly in melaleuca and
marsh areas like this one, was a limitation of this study. This study relied on aerial imagery
interpretation for model validation, this was a noticeable limitation throughout the study
region, but particularly so in sites where published literature on the presence of mangroves
was limited, or dates were beyond the study time-period.

5. Conclusions

Globally, mangroves along with other marine and coastal habitats, are increasingly
being recognised as a nature-based solutions to climate change—as an opportunity to
protect our coastlines from sea level rise, and store and sequester carbon from our atmo-
sphere [5,41,42]. Employing strategies that protect these habitats is vital for the ecosystem
services they provide. However, with a focus on financial provisions for some ecosystem
services that mangroves provide, there is a need to increase our ability to detect and map
where mangroves are, and to understand how they are responding to climate change.
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Two subtypes of mangrove were targeted in this study, Ref. [1] tidally submerged forests
and ref. [2] those that occur in arid and semi-arid regions, both vulnerable to climate
changes. The spatial extent and impacts on these mangroves have been poorly documented
because they have structural and environmental characteristics that affect their ability to be
detected with remote sensing models (e.g., tidally submerged), and their remote location is
difficult to access in the field.

As such, there is a need to be able to recognise and adapt our monitoring and mapping
methods to data poor areas where uncertainty is greatest. This study has shown a multidi-
mensional space–time approach (MSTRF) to mapping mangroves along the WA coastline,
and in doing so has identified a significant area for arid and semi-arid mangroves at a
global scale. The MSTRF method identified an optimal four-year period that produced the
most accurate model (Accuracy of 80%, Kappa value 0.61). This model was able to detect
an additional 32% (76,048 hectares) of mangroves that were previously undocumented in
other datasets. We found that median composite images displayed less spectral differences
in mangroves in the intertidal and arid zone compared to individual scenes where water
was present during the tidal cycle, or where chlorophyll reflectance was low during hot
and dry periods. In particular, we found that MNDWI (Modified Normalised Water Index)
and GCVI (Green Chlorophyll Vegetation Index) were the best predictors for deriving the
mangrove layer using randomForest across the time and spatial scale we analysed.
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