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Abstract: Accurate modeling of windbreaks is essential for the precise assessment of wind protection
performance. However, in most windbreak studies, the models used the approximate shape of the
simulated trees, resulting in significant differences between the simulated results and the actual
situation. In this study, terrestrial laser scanning (TLS) was used to extract tree parameters, which
were used in a quantitative structural model (AdQSM) to recreate the tree structure and restore the
wind field environment using the computational fluid dynamics software PHOENICS. In addition,
we compared the bias, precision, and accuracy of porosity of Ginkgo biloba (with elliptical crown)
and Populus alba (with conical crown), which have been commonly used in previous windbreak
studies. The results showed that AdQSM has a high reduction rate and ability to reproduce the
field conditions of the study area. After wind field simulation, the wind speed root mean square
errors of the point cloud model at three heights (3, 6, and 9 m) were 0.272, 0.377, and 0.437 m/s,
respectively, and the wind speed correlation coefficients r were 0.967, 0.965, and 0.937, respectively,
which were significantly more accurate than those of the remaining two structures. Finally, the
porosity of the windbreak forest obtained using the modeled sample plot showed a higher correlation
with the wind permeability coefficient than that obtained using the existing approach. Windbreak
models with three different porosities under the same conditions had different effects on the wind
environment, particularly the location of the maximum wind speed reduction, variation of wind
speed with porosity, and recovery rate of leeward wind speed. TLS can accurately extract windbreak
factors and calculate the porosity, thus greatly improving the reliability of windbreak effect research
in windbreak forests. This study provides a promising direction for future research related to the
simulation of windbreak effects in windbreak forests.

Keywords: point cloud modeling; computational fluid dynamics; windbreak forest; accuracy analysis

1. Introduction

Agricultural windbreaks are considered green barriers that can prevent land desertifi-
cation and protect crops from wind and sand, especially in areas with mixed agriculture
and livestock [1]. At the same time, wind, water, sand, and natural disasters such as
drought are the main factors affecting agricultural production. To improve the ecological
environment and mitigate natural disasters, the Chinese government has implemented a
series of ecological restoration projects such as the Three North Windbreak Forest Project
and the Grain Retirement Project [2].

Tree structural parameters determine the canopy and stem properties under windy
conditions [3], which are important factors affecting their effectiveness in protecting trees
from wind. The accurate determination of structural parameters of windbreak forests and
their accurate modeling are of great significance in assessing the effectiveness of windbreak
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forests. As terrestrial laser scanning (TLS) has become more accurate, its ability to capture
3D space [4] has also improved. TLS is becoming an increasingly popular tool in forest
management, agricultural production, and ecological studies [5], tree parameters such as
porosity, tree volume, leaf area density [6], breast height, tree diameter, and crown width,
extracted from TLS data [7–9], no longer require manual measurement. In addition, the
use of point cloud data for tree species classification is becoming increasingly useful for
providing information to support forest mapping and inventory [10]. The generation of
3D point clouds by TLS allows the quantitative analysis of trees and reconstruction of 3D
tree models. TLS point cloud data modeling with AdQSM has the following advantages:
(1) accuracy: tree and stand characteristics such as position, height, canopy cover, species,
and trunk curve can be measured, and the corresponding parts of an individual tree can be
described accurately and in detail, giving their position, size, orientation, and relationship
with other trees [11,12]; (2) digital: with ease of storing and managing datasets, any attribute
can be extracted at any time after the construction is completed without using the actual
data and most of the relevant information from the original data is retained in a digital
form for future use; (3) automatic: no manual operation is required, allowing pipeline
processing of a large number of trees being tested; and (4) fast: single trees can be modeled
almost immediately (within tens of seconds).

Over the past few years, most studies conducted on windbreak forests have modeled
the resistance of the canopy as a homogeneous porous region, using approximate models,
rather than the real shape of the trees [13]. This does not accurately reflect the 3D turbulent
flow characteristics. The canopy structure in computational fluid dynamics (CFD) is
specified by the leading-edge area density, and this information is required for each grid
point in the 3D computational domain. In previous studies, some scholars saw the whole
windbreak as a 2D artificial obstacle with a simple geometry, such as a flat surface with
round holes and an industrial metal screen [14,15]. Lopez et al. synthesized an actual
3D tree model from a single image, integrating 2D or 3D trees as shapes directly from a
sparse set of images into the modeling process, requiring only labeling of leaves, trunk,
and a few branch areas [16]. However, the limitations arising from this approach are
that, for natural windbreak strips and most artificial windbreak strips, the boundaries
are complex, and it is difficult to recover the status quo. This has a significant impact on
the accurate simulation of windbreak effects because it does not reflect the true condition
of trees. Some researchers have studied the airflow of a 3D windbreak forest composed
of cypress trees, each with a conical crown, modeling the resistance of the canopy as a
uniformly porous area [17]. As the porosity is fixed, their established model of a regular
cone can only be used for one type of tree and is not universally applicable [18]. It is
difficult to simulate agricultural windbreaks comprising irregularly shaped trees. Most
of the recent studies have used numerical simulations and wind tunnel experiments to
assess the wind field distribution in windbreak forests in the presence of high winds [19,20].
These studies simulated windbreaks in their natural state using plant models at different
scales [21,22]. However, the dynamic complexity of forest structures under field conditions
cannot be controlled as in wind tunnel environments or simulation studies. Therefore,
indirect methods, such as the TLS technique, have been used more widely to determine the
forest fraction structure in applications where extended regions need to be described with
high accuracy [23].

The purpose of this study was to propose a new method for windbreak forest research
by performing a 3D reconstruction of TLS data to improve the accuracy of simulations and
then conduct a wind field simulation to accurately assess its windbreak effect [24]. The
wind velocity data measured in the field were combined with canopy models approximated
from previous studies for comparison and accuracy verification. This study paves the way
for a new wind protection effect simulation for agricultural windbreak forests.
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2. Materials and Methods

The porosity because of different canopy structures varies greatly, and the obstructive
effect on airflow differs. Therefore, we compared the wind protection effects of windbreaks
with respect to wind; particularly, the permeability performance of canopy structures with
different porosities. The experimental steps to complete this study were as follows: (a)
extraction of the protective forest parameters using TLS and modeling by AdQSM, the
modeling software Blender was used to mimic the canopy of ginkgo and poplar trees to
create oval and conical models; (b) importing the protective forest model into the CFD
software PHOENICS for wind field simulation; and (c) comparing and analyzing the
simulation results of tree crowns with different porosities and selecting the best crown
model. The complete workflow is illustrated in Figure 1.
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2.1. Selection of the Study Area

Three criteria were used to select the study area: (a) windbreak tree species should be
representative of other similar area species; (b) windbreaks should be located away from
villages, towns, and other residential areas to avoid blockage of airflow; and (c) local wind
and sand hazards should be serious and frequent in the area.

Taking all of these factors into consideration, we chose Zhangbei County, Hebei
Province, China (40.48–42.47◦N, 113.54–118◦E). The region has a mid-temperate continental
monsoon climate with arid, windy, and low rainfall with a mean annual temperature of
2–6 ◦C, and the mean annual precipitation is approximately 300 mm. The study area was a
double-row windbreak forest, 30 m long and 5 m wide, located between agricultural fields,
with flat terrain and poplar trees. The surrounding crops were mainly oats and cabbages.

2.2. Data Acquisition
2.2.1. Acquisition of Sample Plot Inventory Data

A double-row windbreak forest was selected, and the locations of individual trees (in-
cluding latitude and longitude coordinates) were recorded to measure tree height, diameter
at breast height, and crown spacing. The health status of each tree was also recorded. The
actual situation is shown in Table 1.
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Table 1. Sample site overview.

Stem Density
/(Planthm−2)

Tree Height
(Min~Max/Mean)/m

Sample Plot Size
/(m ×m)

Diameter
(Min~Max/Mean)/cm

472 5.7~14.3/12.1 30 × 10 18.7~55.2/32.95

2.2.2. Measurement of Wind Speed and Air Volume

Fourteen monitoring sites were set up before and after the windbreak. In front of the
forest, we set up sites at 3 H and 0.5 H, where H represents the average tree height of the
sample site, in meters. The other monitoring sites were set up behind the forest. Wind speed
and wind direction collection points were set up at 3, 6, and 9 m from the ground for each
monitoring site. Each wind speed collection point monitored the instantaneous wind speed
and wind direction simultaneously for more than 1 h. Wind speed was measured on the
windward and leeward sides of the windbreak using an anemometer (YGC-FS) and wind
direction meter (YGC-FX). Instrument parameters are shown in Table 2. Each measurement
point consisted of a wind vane, light electric cup anemometers, and a wind speed alarm.
These components were connected using data cables. During the measurement, all sensors
were fixed to a high mast as needed. The data logger automatically recorded instantaneous
wind speed and direction signals from the anemometer and wind direction meter every
minute. The actual situation is shown in Figures 2 and 3.

Table 2. Detailed parameters of the instruments used in the field measurements.

Variable Sensor Type Manufacturer Accuracy Resolution Ratio Measurement Range

Wind speed YGC-FS YIGU Brand ±(0.3 + 0.03 V)/s 0.1 m/s 0–45 m/s
Wind direction YGC-FX YIGU Brand 0–360◦ 1◦ 0–360◦
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2.2.3. Calculation of Air Permeability Coefficient

The anemometer was set at 3, 6, and 9 m from the ground at the forest edge on the
leeward side of the forest belt, and the wind speed was simultaneously measured at three
heights v1’, v2’, and v3’; at 3 H on the windward side of the forest belt (representing the
wind speed in the open field), the anemometer was also set at 3, 6, and 9 m from the ground
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and wind measurements at the three heights were also carried out simultaneously as v1,
v2, and v3. The wind permeability coefficient was calculated [25] as:

α0(%) =
v1′ + v2′ + v3′

v1 + v2 + v3
× 100% (1)

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 22 
 

 
Figure 3. Structure of the tree and measurement position. Two stations were placed in front of the 
forest, one in the forest and eleven behind the forest. The stations were placed at equal intervals 
from 1 H onwards in the post-forest. 

2.2.3. Calculation of Air Permeability Coefficient 
The anemometer was set at 3, 6, and 9 m from the ground at the forest edge on the 

leeward side of the forest belt, and the wind speed was simultaneously measured at three 
heights v1’, v2’, and v3’; at 3 H on the windward side of the forest belt (representing the 
wind speed in the open field), the anemometer was also set at 3, 6, and 9 m from the 
ground and wind measurements at the three heights were also carried out simultaneously 
as v1, v2, and v3. The wind permeability coefficient was calculated [25] as: 𝛼 (% = ’ ’ ’  × 100％ (1)

2.2.4. Calculation of Absolute Error, Relative Error, and RMSE 
The following calculations were used: 

Δ = |𝑟 − 𝑟 |  (2)𝐸 = 𝑟 − 𝑟𝑟 × 100%    (3)

RMSE = ∑ (  (4)

where Δ is the absolute error (m/s), E is the relative error (%), and RMSE is the root mean 
square error, m/s; r1 is the calculation result of each model; r2 is the actual measurement 
result of the sample site. 

2.2.5. Calculation of Porosity 
Current porosity measurement methods include visual inspection, square grid view 

frame method, probability estimation method, mathematical modeling method, and the 
use of the digital image analysis software Image-Pro Plus [26]. Combining a digital camera 
and the image processing software Photoshop [27] is the most common method for po-
rosity determination in windbreak forest stands. However, these methods provide forest 
strip porosity with a crude approach, in which the conversion of color images into gray-
scale images for forest strip branches and pore segmentation is achieved by the naked eye. 
The solid areas of trees and pores are identified with a complicated and slow operation 
process, with low efficiency, which cannot avoid the interference of human factors. Addi-
tionally, measurement accuracy is greatly affected by wind speed and direction at the time 

Figure 3. Structure of the tree and measurement position. Two stations were placed in front of the
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2.2.4. Calculation of Absolute Error, Relative Error, and RMSE

The following calculations were used:

∆ = |r1 − r2| (2)

E =
r1 − r2

r2
× 100% (3)

RMSE =

√
∑n

i=1(r1 − r2)
2

n
(4)

where ∆ is the absolute error (m/s), E is the relative error (%), and RMSE is the root mean
square error, m/s; r1 is the calculation result of each model; r2 is the actual measurement
result of the sample site.

2.2.5. Calculation of Porosity

Current porosity measurement methods include visual inspection, square grid view
frame method, probability estimation method, mathematical modeling method, and the
use of the digital image analysis software Image-Pro Plus [26]. Combining a digital camera
and the image processing software Photoshop [27] is the most common method for porosity
determination in windbreak forest stands. However, these methods provide forest strip
porosity with a crude approach, in which the conversion of color images into grayscale
images for forest strip branches and pore segmentation is achieved by the naked eye. The
solid areas of trees and pores are identified with a complicated and slow operation process,
with low efficiency, which cannot avoid the interference of human factors. Additionally,
measurement accuracy is greatly affected by wind speed and direction at the time of filming;
therefore, it is not suitable for forest strip structure research. In this paper, we scanned
the entire sample plot using TLS on the vertical line of the forest strip to determine the
permeability coefficient. The spliced sample point cloud was input into the CloudCompare
software and cropped to obtain a tree point cloud, which was modeled using the accurate
and detailed quantitative structure model (AdQSM). Porosity was measured using the
transparent diaphragm check method as follows:

β(%) =
S0

S
× 100% (5)
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where S0 is the light-transmitting void area, and S is the measurement range area.

2.3. Point Cloud Data Processing
2.3.1. Acquisition of TLS Data

We used a FARO Focus 3D X330 scanner to scan the sample plots and obtain their
point cloud data. The FARO Focus 3D X330 is a high-speed 3D laser scanner with an
extremely long measuring distance that allows the measurement of large, difficult-to-access
woodlands at a distance in fewer scans, greatly increasing the speed of measurement. The
specific parameters are presented in Table 3.

Table 3. FARO Focus 3D X330 parameters.

Performance Index FARO Focus 3D X330

Max. range/m 330
Scanning speed/(points/s) 976,000

Range error/mm 2
Visible range/(◦) 300◦ (V) × 360◦ (H)

Scanning resolution/(◦) 0.009◦ (V) × 0.009◦ (H)
Laser wavelength/nm 1550

A total of 14 scanning stations were set up in and around the center of the sample plot.
The sample plot settings, targets, and station locations are shown in Figure 4.
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Figure 4. Experimental setup and scanning data collection: the sample plots were scanned using a
terrestrial laser scanner (TLS), and scanners were placed on each side and lateral position to ensure
full coverage of the target trees.

Each TLS was placed in turn at different locations and 3 m from the target tree. After
the TLS scanning procedure was finished, each scan from a different angle was integrated
into a single coordinate system by using a registration process to acquire full coverage
scanning data from the objective trees. The first scan was placed at the center of each plot,
and the rest were distributed along the periphery of each plot; the duration of each scan
was 5 min. The device provides a 300◦ × 360◦ field-of-view acquisition, enabling optimal
scanning performance of high-resolution scans up to 330 m and generates 555 M pts/scan.
The TLS has a maximum distance range of 300 m (for most surfaces), a scanning speed of
1 M pts/s, and the collected TLS data had an average point density of 1,362,692 pts/m2.
A field-instant method was used to calibrate the laser scanner. In practice, targets were
placed within 1 m of the preset locations to minimize the shading effect between trees and
to facilitate better data acquisition. The scan results are shown in Figure 5.



Remote Sens. 2022, 14, 3331 7 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22 
 

 
Figure 4. Experimental setup and scanning data collection: the sample plots were scanned using a 
terrestrial laser scanner (TLS), and scanners were placed on each side and lateral position to ensure 
full coverage of the target trees. 

 
Figure 5. Study area from a terrestrial laser scanning point cloud taken using the FARO Focus 3D 
X330. These trees were placed back in after the point cloud was divided into single woods. To dis-
tinguish the different trees, they are given different colors. 

2.3.2. Filtering of Ground and Off-Ground Points 
All the collected TLS data were preprocessed following the same procedure, includ-

ing transformation, clipping, denoising, filtering, and normalization. After the pre-pro-
cessing phase, the point clouds were extracted and imported into the CloudCompare soft-
ware V.2.10. where the cloth simulation filter algorithm, as a third-party plug-in, was ap-
plied to separate and extract the ground from the off-ground points. In the general pa-
rameter setting tab of the surface base filter, the relief terrain option was chosen because 
of the slightly inclined plane in the plots. For calibration, cloth resolution was set to 1.1; 
for maximum iterations, we used 500. 

2.3.3. Three-Dimensional Structural Reconstruction of the Windbreak Forest Belt 
The 3D model of the windbreak forest sample site was modeled using AdQSM. 

AdQSM can read the input point clouds in approximately 4–8 s and quickly model a single 
tree with a realistic appearance in terms of trunk and crown dimensions. A single tree is 
represented as a closed, fully convex polyhedron, and the single tree model reconstructed 
by AdQSM can estimate parameters such as volume, tree height, diameter at breast height, 
total branch count, live crown height, and crown size, allowing monitoring of natural pro-
gressive changes in biomass and sudden changes caused by storm damage, crop harvest-
ing, fire, or pests and diseases. The 3D tree reconstruction by AdQSM provides an oppor-
tunity for a realistic representation of the windbreak forest scenario. Its accuracy and re-
alism can be applied to point cloud modeling. This information is essential for developing 
effective windbreak forest management strategies. In this study, we collected 

Figure 5. Study area from a terrestrial laser scanning point cloud taken using the FARO Focus 3D
X330. These trees were placed back in after the point cloud was divided into single woods. To
distinguish the different trees, they are given different colors.

2.3.2. Filtering of Ground and Off-Ground Points

All the collected TLS data were preprocessed following the same procedure, including
transformation, clipping, denoising, filtering, and normalization. After the pre-processing
phase, the point clouds were extracted and imported into the CloudCompare software
V.2.10. where the cloth simulation filter algorithm, as a third-party plug-in, was applied
to separate and extract the ground from the off-ground points. In the general parameter
setting tab of the surface base filter, the relief terrain option was chosen because of the
slightly inclined plane in the plots. For calibration, cloth resolution was set to 1.1; for
maximum iterations, we used 500.

2.3.3. Three-Dimensional Structural Reconstruction of the Windbreak Forest Belt

The 3D model of the windbreak forest sample site was modeled using AdQSM.
AdQSM can read the input point clouds in approximately 4–8 s and quickly model a
single tree with a realistic appearance in terms of trunk and crown dimensions. A sin-
gle tree is represented as a closed, fully convex polyhedron, and the single tree model
reconstructed by AdQSM can estimate parameters such as volume, tree height, diameter at
breast height, total branch count, live crown height, and crown size, allowing monitoring
of natural progressive changes in biomass and sudden changes caused by storm damage,
crop harvesting, fire, or pests and diseases. The 3D tree reconstruction by AdQSM provides
an opportunity for a realistic representation of the windbreak forest scenario. Its accuracy
and realism can be applied to point cloud modeling. This information is essential for
developing effective windbreak forest management strategies. In this study, we collected
measurements of the diameter at breast height, height, and crown width of single trees
before modeling, and related data after modeling was completed, and performed error
analysis. Figure 6 shows the collected point cloud data and the results after modeling.

2.4. Wind Field Simulation
2.4.1. Geometric Model and Computational Domain

In this section, wind speed was evaluated using a 3D model of the alternative wind-
break forest. The model principle and placement of the windbreak forest are shown in
Figure 7. The windbreak forest had 30 trees with an average height of 12 m, divided into
two rows of 15 trees each, with a spacing of 2 m between the trees in the same row and
a spacing of 5 m between the front and back rows. The inflow boundary was 8 H from
the nearest trees; the spacing between the left boundary and the left windbreak forest was
6 H; the spacing between the top boundary and the top of the tallest trees was 5 H; and the
outflow boundary and the nearest spacing between the outflow boundary and the nearest
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trees was 12 H, which satisfied the CFD criterion and was large enough to avoid backflow
pressure.
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2.4.2. Boundary Conditions

According to the boundary conditions, the calculation domain was divided into inlet
and outlet.

The wind speed 9 m above the ground in different directions was obtained by aver-
aging the cumulative wind speeds at different frequencies in August at the sample site in
Zhangbei. This value was set as the initial velocity in the simulation and was set to 7 m/s.

To consider the influence of the crop surface on the flow velocity, the exponential
power-law flow velocity was used as the inlet flow velocity boundary condition, using the
following equation:

U(z) = Us

(
z
zs

)α

(6)
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I(z) = 0.1×
(

z
zG

)(−α−0.05)
(7)

k(z) = (I(z)×U(z))2 (8)

ε(z) = C0.5
µ × k(z)×Us ×

α

zs
×
(

z
zs

)α−1
(9)

where ZG is the atmospheric boundary layer height (determined by the local topography),
ZS is the reference height, Z is the calculation point height, Cµ is a constant (0.09), US is the
average wind speed at the reference height, UZ is the wind speed calculation point, and α
is the ground roughness coefficient. Since the study area was located in the countryside,
the ground roughness coefficient was set to 0.16.

In this study, the inlet was defined as the velocity inlet boundary, the outlet was
the specified constant pressure, the upper boundary and left and right boundaries were
defined as symmetric boundaries, and the ground and windbreak forest boundaries were
determined by the wall function method.

2.4.3. Numerical Model

In this study, PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration
Code Series) software [28] was used to build a model to simulate the wind field environment
of a windbreak forest. The PHOENICS software is a general CFD software for simulating
heat transfer, flow [29], chemical reactions, and combustion [30] processes and can be used
to solve steady-state flow turbulence models in three-dimensional space.

The basic control equation for PHOENICS simulations is the Navier–Stokes (N-S)
equation [31], expressed as follows:

∂(ρφ)

∂t
+ div

(
ρuφ− Γφ∇φ

)
= Sφ (10)

where φ is the variable to be found, such as the temperature and velocity; ρ is the density,
kg/m3; u is the velocity in each direction (m/s); Γ is the convective term; Sφ is the source
term; and t is the time (s).

We chose the improved RNG k− epsilon model, which is a turbulence model com-
monly used in engineering calculations. The method is low-cost, highly applicable, easy to
use, and fast to compute, and has been widely used in the numerical simulation of outdoor
wind field environments.

Currently, some scholars use the standard RNG k-epsilon model to calculate ambient air
temperature and wind speed [32,33], Although the standard k− ε model has been widely
used, the improved RNG k− ε model yields higher accuracy by modifying the turbulent
viscosity, considering the rotating mean flow, and increasing the mainstream strain rate
reflected in the epsilon equation. The momentum and mass conservation equations can be
expressed as follows:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P∗

∂xi
+ v

∂2Ui
∂xj∂xj

− ∂

∂xj

(
uiuj

)
+

1
ρ

Ftree,i (11)

∂Uj

∂xj
= 0 (12)

where xi, Ui, P∗ are the parameters of the Cartesian coordinate system (i = 1,2,3), respec-
tively; ith denotes the average velocity air volume and the deviation of pressure from the
reference value; ρ and υ are the air density and kinematic viscosity, respectively; and Ui
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denotes the fluctuation of the average velocity component from i. The Reynolds stress in
Equation (9) is parameterized as follows:

− uiuj = Km

(
∂Ui
∂Uj

+
∂Uj

∂Ui

)
− 2

3
δijk (13)

where Km and k are the turbulent diffusion coefficient and turbulent kinetic energy of
momentum, respectively. The turbulent diffusion coefficient of momentum is determined
by the turbulent kinetic energy and its turbulent kinetic energy dissipation rate ε, as follows:

Km = Cµ
k2

ε
(14)

where Cµ is the empirical constant (0.09) for the improved RNG k− ε turbulence closure
scheme.

The prediction equations for the turbulent kinetic energy and the improved RNG k− ε
turbulence closure format are:

∂k
∂t

+ Uj
∂k
∂xj

= −uiuj
∂Ui
∂xj

+
∂

∂xj

(
Km

σk

∂k
∂xj

)
− ε + Ftree,k (15)

∂ε

∂t
+ Uj

∂ε

∂xj
= −Cε1

ε

k
uiuj

∂Ui
∂xj

+
∂

∂xj

(
Km

σk

∂k
∂xj

)
− Cε2

ε2

k
− Rs + Ftree,k (16)

where Rs is the given strain rate, expressed as:

Rs =
Cµη3(1− η/η0)ε

3

(1 + β0η3)k
(17)

η =
k
ε

[(
∂Ui
∂xj

+
∂Uj

∂xi

)
∂Ui
∂xj

]1/2

(18)

where Cε1, Cε2, σk, σε and η0 are empirical constants, as follows:

(Cε1, Cε2, σk, σε , η0) = (1.42, 1.68, 0.7179, 0.7179, 4.377, 0.012).

3. Results and Analysis
3.1. Model Accuracy Validation
3.1.1. Comparison of Simulated and True Values of Wind Speed

To analyze and test the accuracy of the three models, we compared the accuracy of the
measured data of the sample site with the simulation results of the three different models.
The same locations and heights were selected for the pre-forest, in-forest, and post-forest
areas.

Finally, we obtained the wind speed data from 14 different locations, and each model
was divided into three heights. The absolute error, relative error, and root mean square
error of the three simulations were used to quantify the differences between the simulations
and were calculated as follows:

From the calculation results in Table 4, the accuracy of the point cloud model is higher
than that of the other two models at most positions. The maximum relative error was
91.9% for the 0.5 H conical canopy at 9-m height and the minimum was 0.1% for the 7 H
ellipsoidal canopy at 3-m height; the root mean square errors were 0.272, 0.377, and 0.437
for the point cloud model at 3, 6, and 9-m heights, respectively; the RMSEs were 1.184,
1.635, and 2.272 for the ellipsoidal model at each height, respectively, and the RMSEs for
the conical model at each height were 0.759, 1.600, 1.921. In most positions, the error of
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the simulation results of the point cloud model was the smallest, and the errors of the
simulation results of the other models varied according to the position and height.

Table 4. Errors of wind field simulation results for three different models are shown.

Model
Type Location

Absolute Error (m/s) Relative Error (%) Root Mean Square Error (m/s)

3 m 6 m 9 m 3 m 6 m 9 m 3 m 6 m 9 m

Point
cloud
model

−3 H 0.292 0.369 0.359 5.3 5.9 5.3

0.272 0.377 0.437

−0.5 H 0.028 0.491 0.224 0.6 8.9 3.5
0 H 0.147 0.906 0.575 3.3 17.1 9.4

0.5 H 0.293 0.225 0.249 6.5 4.7 4.0
1 H 0.141 0.181 0.525 4.1 4.4 10.3
2 H 0.163 0.029 0.284 5.1 0.8 5.9
3 H 0.206 0.195 0.495 5.9 4.9 9.3
4 H 0.212 0.150 0.507 7.1 3.6 8.9
5 H 0.284 0.061 0.011 10.5 1.4 0.2
6 H 0.276 0.277 0.426 9.5 5.9 7.7
7 H 0.347 0.548 0.637 9.6 11 11.2
8 H 0.231 0.254 0.553 5.3 4.4 9.1

Ellipsoid
model

−3 H 0.128 0.214 0.227 2.3 3.4 3.3

1.184 1.635 2.272

−0.5 H 0.705 0.160 2.385 14.4 2.9 37.3
0 H 1.212 0.890 4.047 26.9 16.8 66.3

0.5 H 1.747 3.050 4.017 38.8 63.5 64.8
1 H 3.088 3.558 3.961 90.8 86.8 77.7
2 H 1.718 2.839 3.495 53.7 76.7 72.8
3 H 0.761 2.056 2.186 21.7 51.4 41.2
4 H 0.255 0.831 1.045 8.5 19.8 18.3
5 H 0.600 0.355 0.178 22.2 8.3 3.2
6 H 0.442 0.399 0.149 15.2 8.5 2.7
7 H 0.002 0.391 0.245 0.1 7.8 4.3
8 H 0.652 0.831 0.177 14.8 14.3 2.9

Cone
model

−3 H 0.205 0.281 0.286 3.7 4.5 4.2

0.759 1.600 1.921

−0.5 H 1.292 1.105 0.548 26.4 20.1 8.6
0 H 1.181 2.923 3.565 26.2 55.2 58.4

0.5 H 1.478 3.897 5.697 28.2 81.2 91.9
1 H 1.060 2.172 1.726 31.2 53.0 33.8
2 H 0.849 1.957 1.139 26.5 52.9 23.7
3 H 0.062 1.250 0.859 1.8 31.3 16.2
4 H 0.049 0.717 0.665 1.6 17.1 11.7
5 H 0.500 0.200 0.060 18.5 4.7 1.1
6 H 0.509 0.157 0.360 17.6 3.3 6.5
7 H 0.390 0.080 0.484 10.8 1.6 8.5
8 H 0.165 0.229 0.370 3.8 3.9 6.1

Note: Yellow and green markers are the maximum and minimum values, respectively.
The representative wind speed at 3-m height was used as the reference value for

comparison and validation. From the wind speed trends and absolute errors in Figure 8a,
we calculated the average deviation of the point cloud model to be 0.128 m/s, the average
deviation of the ellipsoidal model to be 0.654 m/s, and the average error of the conical
model to be 0.56 m/s among the 14 positions at the same height in the whole sample
site. This was significantly higher than that of the other two models, and the wind speed
error was largest at 3 H in front of the forest and 4 H behind the forest. Among them, the
ellipsoidal model had the largest error of up to 3.088 m/s.



Remote Sens. 2022, 14, 3331 12 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

8 H 0.165 0.229 0.370 3.8 3.9 6.1 
Note: Yellow and green markers are the maximum and minimum values, respectively. 

The representative wind speed at 3-m height was used as the reference value for 
comparison and validation. From the wind speed trends and absolute errors in Figure 8a, 
we calculated the average deviation of the point cloud model to be 0.128 m/s, the average 
deviation of the ellipsoidal model to be 0.654 m/s, and the average error of the conical 
model to be 0.56 m/s among the 14 positions at the same height in the whole sample site. 
This was significantly higher than that of the other two models, and the wind speed error 
was largest at 3 H in front of the forest and 4 H behind the forest. Among them, the ellip-
soidal model had the largest error of up to 3.088 m/s. 

 
(a) (b) 

 
(c) 

Figure 8. We compared the wind speeds obtained from simulations under different models and 
obtained the wind speed trends of the three models at different heights and their absolute errors 
with the measured results. In the three graphs, the longer the vertical lines, the larger the absolute 
errors. (a) The red line has the largest error at this height; (b) the blue line has a large error before 
the 1 H behind the forest, and the red line has a large error behind it; and (c) the error of the red line 
is the largest in all this position. 

Figure 8. We compared the wind speeds obtained from simulations under different models and
obtained the wind speed trends of the three models at different heights and their absolute errors with
the measured results. In the three graphs, the longer the vertical lines, the larger the absolute errors.
(a) The red line has the largest error at this height; (b) the blue line has a large error before the 1 H
behind the forest, and the red line has a large error behind it; and (c) the error of the red line is the
largest in all this position.

3.1.2. Comparison of Model Structure and True Values of Individual Trees in Windbreak
Forests

During the sample site inventory, we manually measured the diameter at breast height,
height, and crown width of each tree. The AdQSM automatically calculated parameters
such as the diameter at breast height, height, and crown width for the point cloud model.
The results of the comparison are presented in Table 5.

From the calculation results in Table 5, it is generally seen that the modeling effect is
more accurate when using TLS to collect point cloud data of windbreak forests and AdQSM
for individual tree modeling. The absolute and relative errors were slightly larger because
the crown width error was measured manually using a tape measure, and for five of the
trees, the modeled crown width error was large, with a maximum error of 9.6%; however,
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for the diameter at breast height and tree height, the modeled results were very close to the
true values.

Table 5. Calculation results of single tree height, diameter at breast height, and crown width.

Serial
No.

Diameter (cm) Tree Height (m) Average Crown Width (m)

Measured
Point
Cloud

Modeling

Absolute
Error
(cm)

Relative
Error
(%)

Measured
Point
Cloud

Modeling

Absolute
Error
(cm)

Relative
Error
(%)

Measured
Point
Cloud

Modeling

Absolute
Error
(cm)

Relative
Error
(%)

1 43.452 43.890 0.428 0.98 12.754 12.879 0.125 0.98 2.04 2.236 0.196 9.60
2 40.198 40.307 0.109 0.27 9.983 9.998 0.015 0.15 3.42 3.117 0.303 8.86
3 46.874 47.024 0.150 0.32 13.936 13.661 0.275 2.00 3.35 3.628 0.278 8.30
4 44.513 44.405 0.108 0.24 8.573 8.582 0.009 0.10 4.26 3.903 0.357 8.38
5 31.637 31.422 0.215 0.68 13.544 13..571 0.027 0.20 3.03 2.848 0.182 6.00

3.2. Reliability Analysis of Actual Wind Speed Measurements and Each Simulation Result

From the comparison results of the simulated and measured data of different models
at different heights, the correlation coefficients of the point cloud models at three heights
from 3, 6, and 9 m were 0.967, 0.965, and 0.937, respectively. A decreasing trend was
observed with increasing height. The correlation coefficients of the ellipsoidal model were
0.5358, 0.8654, and 0.6126, respectively, indicating that this model had a higher simulation
accuracy at 6-m height. The correlation coefficients of the conical model were 0.8732, 0.7699,
and 0.3728, respectively, indicating that the accuracy of this model gradually decreased
with increasing height. The simulation results showed that the simulated experimental
results of the point cloud model were in good agreement with the test data, in line with
the wind speed variation law, and with the highest fitting accuracy. Figure 9 shows the
correlation analysis of the three models at different heights.
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Figure 9. Evaluation of simulated wind speeds for three canopy models at 3-m, 6-m, and 9-m heights.
(a–c) are fits to data from different model experiments and simulations at 3 m height, (d–f) are fits at
6 m, and (g–i) are fits at 9 m. The red line indicates the fitted regression, the pink area represents the
confidence interval, and the light pink area represents the prediction interval.
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3.3. Velocity Analysis of Different Positions

To verify the reproducibility and accuracy of the TLS model input CFD, the simulation
results were analyzed together with two other canopy models of different structure types,
and the resultant data were compared to observe the wind velocity flow field patterns
at different locations of the sample site. As shown in Figure 10, the wind velocity in the
Y-direction before the airflow reached the windward side of the canopy is the entrance
wind velocity. At the same height, the wind velocity after the airflow has passed through
the three canopy types showed a step change, owing to the obstructing effects of the forest.
In the canopy model using real modeling of point cloud data, the area of the region of low
wind velocity was the largest because of low porosity, followed by the ellipsoidal canopy;
the conical canopy had the smallest area.
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Figure 10. Simulation of the three models in the wind field. The wind speed distribution character-
istics around the protective forest at different heights represent different wind speeds (0, 2, 4, 6, 8,
10 m/s), blue, green, and yellow areas represent the airflow distribution characteristics at different
heights; the blue area has the lowest wind speed. The wind speed in the yellow region ranges from
8 < v < 10; green is 4 < v < 8; and blue is 0 < v < 4. From (a,d,g), we can see that the wind speed
decreases as the height increases. But in (b,e,h) and (c,f,i), there are some positions that are contrary
to the actual situation. This may be the result of different canopy types.

The greatest reduction in wind speed was observed in the 0.5–1 H region behind the
three modeled forest strips at 3-m height. The modeling of a windproof forest established
by point clouds reduced the wind speed from 7 m/s to 2.984 m/s, or by 57.4% [34]. The
wind speed distribution in the region of 5–10 H ranged from 3.174 to 5.724 m/s, with a
reduction of approximately 18.2 to 54.7%. When the horizontal distance was greater than
10 H, the wind speed value returned to the level of the open-field wind speed value, that
is, the windbreak forest belt loses its protective function. The aerodynamic effect of wind
speed reduction in a certain area of the forest belt was fully reflected [35]. When the wind
passes through the canopy and dry layer of the forest belt, the airflow is divided into two
parts, and the airflow above the back of the forest sinks to meet the part of airflow passing
through the forest to form vortices; thus, the back of the forest belt has a certain wind
reduction area range, so all observation points behind the forest belt have different degrees
of wind protection benefits. In the back of the forest, owing to the upper layer of airflow,
the wind protection effectiveness was gradually reduced to only 18.2% at 10 H in front of
the forest. Therefore, the wind protection effectiveness of windbreak forest strips varied at
different horizontal distances. Considering 5 H after the forest belt of the different models
as the control, the wind protection effectiveness of each observation point after the forest
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belt was different, and the wind speed reduction was 57.4% for the point cloud model,
55.7% for the ellipsoidal model, and 56.4% for the conical model.

It is not difficult to find that the windbreak wind-blocking effect is greatest at a height
of 3 m because of the greatest width of the canopy here; the smaller the porosity at the
same time, the more pronounced the blocking effect. The maximum difference between the
maximum and minimum values of velocity was 3.72 m/s inside the real canopy sample
established by TLS data, while the velocity difference was only 2.21 m/s at other locations
within the forest because the airflow can pass through more easily inside the sparse canopy.
From (a) and (g) in Figure 10, it can be seen that there is an increase in airflow velocity
at the lower and higher parts of the stand, which is because of the blocked airflow from
above and below the canopy, causing an increase in wind speed. Thus, the TLS-modeled
3D forest stand better reflected the velocity field distribution, pressure field distribution,
and kinetic energy intensity variations.

3.4. Kinetic Energy Cloud Diagram for Three Models

To reveal the effects of the three windbreak forest structures on wind speed more
clearly, we selected a vertical surface at the same location in the middle of the study area to
determine the vertical turbulence degree distribution as an inverse view of the simulated
wind speed of each model (Figure 11). The kinetic energy intensity clouds show that in
the real model established by the TLS data, the kinetic energy was mainly gathered at the
back of the forest. The kinetic energy generated by all three stand models was concentrated
at 0–5 H after the windbreak, and the kinetic energy formed around the canopy of the
real model established by the point cloud data was significantly lower than that of the
remaining two canopies, it means it has the best blocking effect on the airflow. The general
rule of kinetic energy change for all three models started from 5 H, and the further away
from the forest stand, the higher the kinetic energy; that is, a kinetic energy reduction zone
is formed in the range from 0 to 5 H. Therefore, in the middle of the stand, the area of the
post-forest low kinetic energy zone was the largest because the point cloud model had the
smallest porosity, which made it difficult for the airflow to pass through, causing low wind
speed.
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Figure 11. Cloud map of turbulent kinetic energy distribution for three canopy models. The turbu-
lence distribution characteristics around the protective forest at different heights represent different
turbulence intensities (0, 1, 2, and 3 m2/s2), and the blue, green, and yellow areas represent the
turbulence distribution characteristics at different heights; the blue area has the weakest turbulence
intensity. The intensity of the yellow region ranges from 2 < KE < 3; green for 1 < KE < 2; and blue for
0 < KE < 1.

4. Discussion

In this study, we used TLS to scan a double-row farmland windbreak forest and
modeled the point cloud data using AdQSM. The accuracy of the point cloud model and
the ellipsoidal and conical models commonly used in related studies were verified using
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the CFD software PHOENICS, which was used to conduct wind field simulations of the
experimental sample sites. Herein, we discuss the most important findings of this study.

4.1. AdQSM Applicability Assessment
4.1.1. Restoring the Structural Aspects of Trees

The AdQSM method based on the TLS point cloud reconstruction of trees is important
for estimating the structure factor of an individual tree. In this study, the accuracy of tree
structure measurements in windbreak forests with TLS was very high, especially for tree
height and diameter at breast height, with an accuracy of over 95%. The tree crown had
the worst extraction accuracy, with an average of 92%. This was because the point cloud of
the upper part of the canopy was missing because of partial shading between the trees at
the top of the tree during modeling, resulting in a partially incomplete final model. In this
study, based on the results of Kumazaki and Kunii [33], five single trees were randomly
selected from the TLS-scanned experimental site, and the modeling results were compared
with the real results using AdQSM. For these five random samples, the absolute errors of
three factors (diameter at breast height, height, and crown width) were less than 5 mm, the
relative errors of diameter at breast height and height were less than 2%, and the relative
errors of crown width were larger (approximately 8%) because of the shading between trees.
Although the five trees were randomly sampled at different locations in the experimental
area, the differences between the breast diameter and tree height estimated by AdQSM and
the true values were small.

4.1.2. Fitting of Wind Permeability Coefficient and Porosity

We fitted the measured wind permeability coefficients at 10 different locations in the
study area with the porosity values calculated using two different methods: the AdQSM
modeling method and the digital image analysis method (Figure 12). A one-dimensional
exponential regression analysis method was applied, with porosity (β) as the independent
variable and air permeability coefficient (α0) as the dependent variable. The correlation
coefficient derived from the AdQSM modeling method (0.8142) was higher than that
derived from the digital image analysis method (0.6129). The approximate conversion
relationship between the porosity and wind permeability coefficient was obtained according
to Donghui et al. [36]. For a two-row forest belt, α0 = β0.6 therefore, the windbreak forest
calculated by the AdQSM modeling method is more accurate, and the modeling using
AdQSM in this study met the requirements of the windbreak effect simulation. This
indicates that the porosity of the windbreak forest determined using TLS is more accurate
and can also be used for the determination of windbreak forest porosity.
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4.2. Accuracy Analysis of Measured Wind Field Data and Simulated Wind Field Data

To compare the magnitude of the effect of different types of canopy structures on
the wind protection effect of windbreaks, we conducted wind field simulations under the
same conditions of plant spacing, canopy width, and mean height for all three models;
however, the wind speed results obtained differed significantly depending on the canopy
structure. The main reason for this is that porosity is one of the most important structural
parameters of windbreaks, which determines their efficiency in reducing wind speed and
shading areas. In all windbreak studies, the best optical porosity values for the most
effective windbreaks ranged from 20 to 40%. In this study, the porosity of the point cloud
model windbreak forest was approximately 34%, which is within the range reported by
Wu et al. and others [37,38]. In contrast, the calculated porosity was approximately 51%
for the ellipsoidal model windbreak and 67% for the conical model windbreak, which
was out of range. Thus, the findings indicate that windbreaks with different porosities
have significantly different degrees of wind reduction in wind simulations. The point
cloud model showed a mean wind speed reduction of 58% 5 H behind the stand, and the
same position showed a mean wind speed reduction of 49% for elliptical canopies and
43% for conical canopies, which is similar to the results of Torita and Satou and Bitog
et al. in the relationship between windbreak structure and wind reduction [39]. Different
canopy structures determine different porosities, and for double-row windbreaks, the
second row of trees enhances resistance and improves the overall wind reduction efficacy
of the windbreak. With a certain spacing between the front and rear rows, the effective
density of the entire windbreak increases because of the blocking effect of the second row
when the wind passes through the first sparse and then dense stand. Unlike the study
by Gross, the difference in porosity leading to the difference in the internal structure of
windbreaks varied greatly for the results of wind and sand fixation.

From the simulation results in Section 3.1, it can be observed that the greatest reduction
in wind speed is observed when the airflow passes through the windbreak, that is, in
the 0.5–1 H region behind the forest zone, for all three models. However, owing to the
difference in canopy structure, for the conical canopy with the largest porosity, the porosity
increases as the height continues to increase, resulting in a smaller area and a faster rate
of reduction in the low wind speed region 0–8 H behind the forest, which is the same as
the results of Hagen et al. and Torshizi et al. In addition, the point cloud model can better
simulate the wind separation recirculation process and its size and location with porosity,
leading to a critical porosity of separation that is consistent with the observed values. The
simulated location of the maximum wind speed reduction, variation of the maximum wind
speed with porosity, rate of leeward wind speed recovery, and simulated aerodynamic
properties agree with the field observations. From the aspect of kinetic energy, for the same
wind speed and direction, in the point cloud model with the lowest porosity, the blue area
of the low-speed region is larger than that of the other two models, which indicates that
when the wind passes through the forest belt, owing to the small porosity of the point cloud
model, the wind pass through normally. Rather, part of the airflow was obstructed by the
forest belt and lifted to the top of the forest belt. After crossing the forest belt, this part of
the airflow forms a high wind speed region, whereas, behind the forest, the airflow above
the sinks meets with the part of the airflow passing through the forest belt to form vortices
to form a low wind speed region. The wind speed recovers rapidly as it moves away from
the forest belt until it approaches the initial wind speed, which is similar to the conclusions
of Mayaud et al. (2016) that the wind speeds return to equilibrium in an exponential form
after traversing the forest [40].

In summary, the point cloud model was able to accurately restore the structure of the
trees in the experimental sample site, where the simulations yielded results closest to the
true values of wind speed in the sample site at most locations. This is unmatched by the
other structural models.
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4.3. Study Limitations

Owing to resource limitations, we selected only one local tree species for the simulation.
The simulation results may vary depending on the experimental area. Moreover, there are
several types of windbreak configuration structures, and double-row windbreaks are only
one of them. The windbreak effects of different windbreak configurations vary significantly,
and the results of this study can provide a reference for future windbreak-related studies.
In addition, there are various CFD simulation tools, and different computational fluid
dynamics simulation software may yield different results for this study and should be
explored in future studies. Moreover, the wind field meter used in this study is a three-cup
wind field meter, which can only achieve a single point measurement, and the height of the
observation is determined by the height of the stand; therefore, there are inevitable errors
in the measurement. If a wind measurement LIDAR system is used to measure the wind
field information of the study area as a whole, the research results may be more accurate.
Due to the forest canopy, it is difficult for TLS to obtain the upper forest canopy point cloud,
which leads to less accurate modeling results. For the acquisition of forest canopy point
cloud data in the future, advanced unmanned aerial vehicles should be combined with
both types of point cloud data for modeling to carry out accurate studies of windbreak
effects in windbreak forests. Therefore, accurate modeling of individual trees remains the
focus of future research.

5. Conclusions

In this study, we used TLS and AdQSM to model the effects of a windbreak forest
on agricultural land and PHOENICS to simulate the wind field and analyze the effects
of canopy models with three different porosities on the wind environment. The results
showed that modeling TLS data with AdQSMA can extract forest structure parameters,
demonstrating its usefulness in windbreak forest-related studies. Compared with tradi-
tional approaches, this method has the advantages of automation, accuracy, speed, and
efficiency. We also showed that different canopy types had different effects on the wind-
break effect. Among them, the simulation results of the point cloud model were the most
accurate for determining the maximum wind speed reduction, variation of the maximum
wind speed with porosity, and recovery rate of the leeward wind speed. We analyzed the
effects of different windbreak model structures on wind speed, reflecting the advantages of
TLS applied in windbreak forest engineering. Only the accurate modeling of windbreaks
can provide an accurate assessment of the wind effect of windbreaks. The research method
used in this study will provide a reference for future scientific research on windbreaks.
Finally, the superiority of TLS in the extraction of structural factors and other applications
of windbreaks indicates a promising direction for future research related to the simulation
of windbreak effects.
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