
Citation: Yang, Z.; Yuan, X.; Liu, C.;

Nie, R.; Liu, T.; Dai, X.; Ma, L.; Tang,

M.; Xu, Y.; Lu, H. Meta-Analysis and

Visualization of the Literature on

Early Identification of Flash Floods.

Remote Sens. 2022, 14, 3313. https://

doi.org/10.3390/rs14143313

Academic Editor: Yue-Ping Xu

Received: 4 June 2022

Accepted: 7 July 2022

Published: 9 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Communication

Meta-Analysis and Visualization of the Literature on Early
Identification of Flash Floods
Zhengli Yang 1,2 , Xinyue Yuan 1,2, Chao Liu 1,2 , Ruihua Nie 1,2, Tiegang Liu 1,2, Xiaoai Dai 3, Lei Ma 4,
Min Tang 5, Yina Xu 5 and Heng Lu 1,2,*

1 State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University,
Chengdu 610065, China; yangzhengli@scu.edu.cn (Z.Y.); yuanxinyue@stu.scu.edu.cn (X.Y.);
liuchao@scu.edu.cn (C.L.); nierh@scu.edu.cn (R.N.); liutiegang79@scu.edu.cn (T.L.)

2 College of Hydraulic and Hydroelectric Engineering, Sichuan University, Chengdu 610065, China
3 College of Earth Science, Chengdu University of Technology, Chengdu 610059, China;

daixiaoa@mail.cdut.edu.cn
4 School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; maleinju@nju.edu.cn
5 China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China; tangmin05@ey.crec.cn (M.T.);

xuyn@ey.crec.cn (Y.X.)
* Correspondence: luheng@scu.edu.cn

Abstract: Flash flood is one of the extremely destructive natural disasters in the world. In recent years,
extreme rainfall events caused by global climate change have increased, and flash flood disasters
are becoming the main types of natural disasters in the world. Due to the characteristics of strong
suddenness, complex disaster-causing factors, great difficulty in prediction and forecast, and the
lack of historical data, it is difficult to effectively prevent and control flash flood disaster. The early
identification technology of flash floods is not only the basis of flash flood disaster prediction and early
warning, but also an effective means of flash flood prevention and control. The paper makes a meta-
analysis and visual analysis of 475 documents collected by the Web of Science Document Platform
in the past 31 years by comprehensively using Citespace, Vosviewer, Origin, etc. We systematically
summarize the research progress and development trend of early identification technology of flash
flood disasters from five key research subfields: (1) precipitation, (2) sediment, (3) sensitivity analysis,
(4) risk assessment, (5) uncertainty analysis. In addition, we analyze and discuss the main problems
encountered in the current research of several subfields and put forward some suggestions to provide
references for the prevention and control of flash flood disasters.

Keywords: flash floods; identify; precipitation; sediment; sensitivity analysis; risk assessment;
uncertainty analysis

1. Introduction

The term “flash flood” is widely used to refer to floods caused by natural or human-
induced events, such as rainstorm [1,2], snowmelt [3,4], glaciers [5,6], volcanoes [7,8], and
dam break [9], but is not uniformly and clearly defined in many documents. French et al. [10]
believed that a flash flood is a kind of surface runoff formed by short-duration rainstorms
in mountainous and canyon areas. Flash floods are also understood as a high-peak surface
runoff event caused by high-intensity rainfall [11]. Borga et al. [12] defined flash floods as
the result of extreme rainstorms in small source basins, which depend on the correlation
among rainfall distribution, landform, and hydrological factors, and may lead to geological
disasters such as debris flow and landslide. Some scholars believe [13] that flash floods
are short-duration and high-intensity precipitation, usually occurring in small basins,
characterized by time concentration and poor water storage capacity. Due to the influence
of topographic and climatic characteristics, some areas are particularly prone to flash floods
and environmental risks. Dejen et al. [14] consider flash floods to be an extreme flood
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event that is also a rapid, short-lived, dangerous phenomenon with negative environmental
and socio-economic impacts. According to the definition given by the National Weather
Service (NWS) [15], flash floods are those caused by the rapid and extreme influx of high
water levels into normally dry areas, or the rapid rise of water levels in small basins due to
heavy rainfall, dam collapse, or ice jam within 6 h. As rainstorms and flash floods are the
most widely distributed with highest frequency of outbreak and most serious hazard, flash
floods mentioned in this paper refer to the flash floods that occur in hilly areas and urban
areas. Flash floods often wreak havoc in these areas and can sometimes be accompanied by
mudslides and landslides.

The hazards of flash floods are very prominent all over the world [16–22], causing
quite painful life and economic losses [23]. For example, a case study of the Erbil-Kurdistan
region of Iraq shows that compared with developed countries, flash floods are more
destructive in less developed areas [24]. The Lubi flash flood in 1962 was the most serious
flash flood in Spanish history [25]. In October 1999, a torrential rain event occurred on the
eastern slopes of the Sierra Madre Mountains in eastern Mexico [26]. Flash floods triggered
by the torrential rain damaged three of the four states, killed 384 people, damaged 212 cities,
and affected about 198,000 people. After two hours of rainfall at a speed of 200 mm/h, the
flash flood transported a large number of fine and coarse sediment particles, resulting in
the rise of the flash flood water level and killing more than 800 people. A deadly flash flood
in Algeria [27] on 9–10 November 2001 killed more than 760 people. On 7 February 2021,
flash floods caused severe damage to two hydropower projects, Rishiganga and Tapovan
Vishnugad, in the Chamoli district, eventually killing more than 200 people [28]. Flash
floods in Uttarakhand in June 2013 killed nearly 5700 people, left 110,000 trapped, and
caused power outages in the region, delaying rescue efforts in remote areas [29]. In recent
years, with the development of social economy [30], the pressure of human activities on land
resources has been increasing, and global warming has also intensified the hydrological
cycle and the occurrence of short-duration heavy rainfall events in some areas and, in
particular, the frequency and disaster-affected extent of flash floods in mountainous areas
have increased significantly. For example, after the Wenchuan [31] earthquake in Aba
Prefecture, Sichuan, due to climate reasons, flash floods occurred from July to September,
which was consistent with the rainfall in the region. As shown in Figure 1, a scene photo
was taken after the flash flood caused by heavy rainfall in the area on 20 August 2019, in
which the bridges were broken, the houses were destroyed, the river banks were washed
out, and a large amount of solid sediments was released, which greatly reduced the flood
discharge capacity of the river.
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Figure 1. Flash flood on 20 August 2019 in Aba Prefecture, Sichuan. (a) The bridges were broken;
(b) the houses were destroyed (photo taken by author).

The distribution of flash flood disasters in time and space is uneven [32], which is
mainly manifested as different group occurrences of flash flood disasters and different
combinations of flash flood disaster types in different regions, which shows the charac-
teristics of regional differentiation; the uneven distribution of the flash flood disasters in
time is mainly manifested as the sudden occurrence of disasters. In addition, as flash flood
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disasters have problems of fast occurrence [33], great difficulty in monitoring [34], and
lack of data [35], it is very difficult to accurately identify the location and time of flash
floods [36]. With the continuous development of monitoring sensors [37–39] and computer
technology [40,41], various early identification technologies [42] are more and more widely
applied to the research of flash flood disasters. Flash floods are caused by a number of
factors, including climate change, population growth, and urban development. These
factors all contribute to a reduction in the amount of land that is impervious to water, which
in turn leads to an increase in the volume of runoff. In light of this, a large number of re-
searchers looked into how changes in land use and land cover (LULC) may be contributing
to an increase in the number of instances of flash flooding. Of course, they used remote
sensing technology to identify prone areas (The Impact of Spatiotemporal Changes in Land
Development (1984–2019) on the Increase in the Runoff Coefficient in Erbil, Kurdistan
Region of Iraq) [43]. As an important part of early warning systems (EWSs) [44], early
identification technology has gradually developed into a favorable tool to identify high-risk
areas and predict hydrological conditions, so as to minimize the loss caused by flash flood
disasters. Therefore, many countries and regions threatened by flash flood disasters pay
more and more attention to the research on the early identification technology of flash
flood disasters.

In recent years, scholars have carried out a lot of research on the early identification [45]
of flash flood disasters and accumulated a lot of research results, but few of them have
conducted meta-analysis and visualization research by using document metrology tools,
and there is no comprehensive review of documents on specific analyses of subfields
according to the results of cluster analysis and research trends. Compared with our
previous study [46], this study adopts more common bibliometric analysis methods and
knowledge graph technology, and focuses on a comprehensive review of the main results
of applying various technologies to the early identification of flash flood disasters, not
limited to remote sensing and geographic information system technologies. First, we
make a meta-analysis and visual analysis of the documents retrieved from the Web of
Science through document analysis and data mining tools such as Citespace, Vosviewer,
and Origin. Second, we summarize and analyze the research process and hot topics in
the past 31 years by integrating the methods of document metrology, data mining, and
knowledge mapping, and summarize the development trend and research direction of
early identification technology of flash flood disasters from five key research subfields:
(1) precipitation, (2) sediment, (3) sensitivity analysis, (4) risk assessment, (5) uncertainty
analysis. Finally, we analyze and discuss the main problems encountered in the current
research of several subfields, and put forward some relevant suggestions.

2. Data and Methods
2.1. Data Source

Papers were retrieved on 2 May 2022. The time span was set from “unlimited” to
2022, and a total of 31 years (from 1991 to 2022) of documents published were retrieved.
The retrieval strategy is shown in Figure 2. The core search terms were “flash flood*” and
“identify”. The term “flash flood*” means similar terms such as “flash flood”, “flash floods”,
“flash flooding”, etc. The term used in the search here is ”identify”. These articles were
mainly included in the core collection of the science network Web of Science. A total of
789 documents were retrieved, and the retrieval was carried out in one day to avoid changes
caused by daily database update. According to the uniqueness of document DOI and title,
700 documents were saved in the Web of Science by using the duplicate checking function
of Office software Excel to delete duplicated data and extended duplicated items of DOI
and title. The search results are rich, and there are inevitably some weakly related content
that needs to be further screened in the future. In order to ensure the representativeness
of literature data and the reliability of meta-analysis and visual analysis, we first defined
the research field as “early identification of flash floods”, and established specific inclusion
and exclusion criteria for the selection of papers through repeated discussions in four
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meetings, as shown in Table 1. Then, the Excel table of the literature record information
downloaded from the WOS database was used to identify each item, and the screening
range included the title, abstract, and keywords of the paper. Recognizing that flash floods
mainly occur in mountains and cities, the study area of this paper excludes glaciers, deserts,
and coastal areas. Papers on flash floods caused by rainfall were kept, but papers on flash
floods caused by glacier lake dam break, glacier melt, dam break flood, and tsunami were
excluded. We chose to focus only on the five subfields of early identification of precipitation,
sediment, sensitivity analysis, risk assessment, and uncertainty analysis in flash floods,
and excluded papers on trace elements, child feeding, isotopes, crop growth, molecular
genetics, and computer servers. Proceedings papers, early access, editorial materials, and
meeting abstracts were excluded. Articles, review articles, and letters were retained so
that our research efforts could focus on papers published in peer-reviewed or editorially
supervised publications.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 28 
 

 

plicate checking function of Office software Excel to delete duplicated data and extended 
duplicated items of DOI and title. The search results are rich, and there are inevitably 
some weakly related content that needs to be further screened in the future. In order to 
ensure the representativeness of literature data and the reliability of meta-analysis and 
visual analysis, we first defined the research field as “early identification of flash floods”, 
and established specific inclusion and exclusion criteria for the selection of papers 
through repeated discussions in four meetings, as shown in Table 1. Then, the Excel table 
of the literature record information downloaded from the WOS database was used to 
identify each item, and the screening range included the title, abstract, and keywords of 
the paper. Recognizing that flash floods mainly occur in mountains and cities, the study 
area of this paper excludes glaciers, deserts, and coastal areas. Papers on flash floods 
caused by rainfall were kept, but papers on flash floods caused by glacier lake dam break, 
glacier melt, dam break flood, and tsunami were excluded. We chose to focus only on the 
five subfields of early identification of precipitation, sediment, sensitivity analysis, risk 
assessment, and uncertainty analysis in flash floods, and excluded papers on trace ele-
ments, child feeding, isotopes, crop growth, molecular genetics, and computer servers. 
Proceedings papers, early access, editorial materials, and meeting abstracts were ex-
cluded. Articles, review articles, and letters were retained so that our research efforts 
could focus on papers published in peer-reviewed or editorially supervised publica-
tions. 

 
Figure 2. Literature search strategy. 

Table 1. Inclusion–exclusion criteria. 

Inclusion Exclusion 
Flash flood areas, including: mountains and cities Glaciers, deserts, coastal area 

Flash floods caused by precipitation, extreme rainfall, rainfall, rain-
storm Glacier lake dam break, glacier melt, dam break flood, tsunami 

Whether the title, keywords, and abstract contain the following terms: 
precipitation, sediment, sensitivity analysis, risk assessment, uncertain-

ty analysis 

Trace elements, child feeding, isotope, crop growth, molecular genetics, 
computer server  

Peer reviewed or has editor oversight, types of literature, including 
articles, letters, and review articles 

Proceedings papers, early access, editorial materials, meeting abstracts 

Finally, we applied the inclusion and exclusion criteria to the deduplicated 700 pa-
pers, screened them independently by 3 authors, and then held a meeting to decide 
whether or not to include each paper. Papers unanimously approved by 3 authors were 

Figure 2. Literature search strategy.

Table 1. Inclusion–exclusion criteria.

Inclusion Exclusion

Flash flood areas, including: mountains and cities Glaciers, deserts, coastal area

Flash floods caused by precipitation, extreme rainfall,
rainfall, rainstorm Glacier lake dam break, glacier melt, dam break flood, tsunami

Whether the title, keywords, and abstract contain the following
terms: precipitation, sediment, sensitivity analysis, risk

assessment, uncertainty analysis

Trace elements, child feeding, isotope, crop growth, molecular
genetics, computer server

Peer reviewed or has editor oversight, types of literature,
including articles, letters, and review articles

Proceedings papers, early access, editorial materials,
meeting abstracts

Finally, we applied the inclusion and exclusion criteria to the deduplicated 700 papers,
screened them independently by 3 authors, and then held a meeting to decide whether
or not to include each paper. Papers unanimously approved by 3 authors were retained,
and 475 papers were finally determined to be included in the paper sample library of this
study. As shown in Table 2, using the Excel software, key information such as document
year, author, title, document source, citation number, and keywords were extracted to form
a document analysis feature table.
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Table 2. Characteristics of the included studies.

Year Authors Title Journal Cite Fre-
quency Keywords

2006 Cao, Z.X.
et al. [47]

Shallow water hydrodynamic
models for hyperconcentrated

sediment-laden floods over
erodible bed

Advances in
Water Resources 63

Sediment transport;
sediment-laden flow; erosion and
sedimentation; floods; unsteady
flow; hyperconcentrated flow;

alluvial rivers; the Yellow River;
fluvial morphology; shallow

water hydrodynamics

2015 Garambois
P.A. et al. [48]

Characterization of catchment
behaviour and rainfall selection

for flash flood hydrological model
calibration: catchments of the

eastern Pyrenees

Hydrological
sciences journal 13

Sensitivity analysis; hydrological
model calibration; catchment

behaviour; regionalization; global
flash floods

2016 Amponsah,
W. et al. [49]

Decision-Making of LID-BMPs for
Adaptive Water Management at
the Boise River Watershed in a
Changing Global Environment

Water 2

Uncertainty analysis; water
management; climate variability;
urbanization; Best Hydrological

Simulation Program
Fortran (HSPF)

2016 Douinot, A.
et al. [32]

Accounting for rainfall systematic
spatial variability in flash

flood forecasting

Journal of
Hydrology 26

Rainfall spatial variability; flash
flood; flash flood guidance;

hydrological response; physical
based model

2021 Dejen, A.
et al. [14]

Flash flood risk assessment using
geospatial technology in Shewa

Robit town, Ethiopia

Modeling Earth
Systems and
Environment

2 Risk assessment; geospatial
technology; flash flood

2.2. Meta-Analysis

Meta-analysis is to collect, sort out, and analyze the previous empirical research car-
ried out by researchers on a research topic by virtue of statistical concepts and methods,
so as to find out the clear relationship mode between the problem and the variables con-
cerned [50–52]. The idea of meta-analysis can be traced back to the 1930s. The scholar Gene
Glass [53] first used the meta-analysis to represent the process and method of integrating
and analyzing numerous empirical studies with the same topic through statistical analysis
so as to obtain the most representative conclusions. By referring to the relevant documents
published by the Web of Science document database, this paper makes a quantitative anal-
ysis and qualitative comprehensive evaluation with document metrology tools, provides
data mining and comprehensive comparison for the total number of documents, discipline
categories, high-productivity institutions, high-productivity publishers, high-productivity
authors, and citation of documents, and then draws it with Origin software.

2.3. Visual Analysis

At present, there are many kinds of software tools for visual analysis of documents.
VOSviewer has the advantages of non-overlapping nodes and labels, and high degree of
relationship display. It can display results from multiple views, build multiple matrices, and
support text mining. The disadvantage is that the function is simple, the modification map
cannot be adjusted at will, and the evolution path of a field cannot be displayed through
time evolution [54]. The advantages of CiteSpace are that it has diverse functions, beautiful
maps, and rich connotations. It can build common relationship networks, quantitatively
analyze visualization results using a variety of bibliometric analysis methods, and show
the evolution of a field from multiple perspectives. The disadvantage is that the amount
of data and the format requirements are high, the software is complex, and the nodes and
labels overlap [55–58]. In this paper, VOSviewer (version 1.6.7) is mainly used for word
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cloud analysis, collinear analysis, and thermodynamic diagram analysis of keywords, while
CiteSpace (version 5.8.R3) is mainly used for mutation analysis, cluster analysis of research
hotspots, analysis of time zone charts of research development trends, and analysis of the
outbreak of published time sequences of keywords.

3. Results

The change in the total number of documents, research direction, influence, number
of citations, keywords, and other elements can directly reflect the changing process of
the research enthusiasm of early identification technology of flash flood disasters in the
past 30 years, and it is also an important index to measure the development trend of early
identification technology of flash flood disasters in this period of time.

3.1. Analysis of the Total Number of Documents

This paper analyzes and explains the number of articles published over the years
using document management software Endnote X9, statistical software Excel, and mapping
software Origin 2018. As shown in Figure 3, in terms of the overall time trend of publishing
documents (1991–2022), the number of documents published shows an exponential growth
trend, indicating that the research in the field of early identification of flash flood disasters
has attracted more and more attention from international scholars. It can be seen from
the number of documents published in each year that the research in this field has mainly
experienced three stages.
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(1) 1991–2006 is the beginning stage: Although the number of documents published in
this stage was small (less than 5 in each year), documents were published every year,
indicating that the research in the past 11 years had the characteristics of continuity.
Through further analysis, it was found that although the research on identification
technology of flash flood disasters in this stage had just started, there were still some
pioneering documents that inspired the later research in this field. For example, the
document on identifying surface features published in 1995 [59] was not only one of
the important components of weather forecasting, and but also helped to explain the
flash floods caused by concentrated heavy rainfall, which meant it was cited in as
many as 53 documents in subsequent research.

(2) 2007–2013 was a period of slow development: There has been continuous research in
this field since 1994. As can be seen from Figure 3, the number of documents remained
at or below 20 until 2013, showing a relatively slow growth rate. At this stage, with
the exploration of flash flood disasters and the development of science and technology,
compared with the first stage, the number of documents published had increased, and
some documents with great referential significance had appeared one after another.
A representative document was about identifying and analyzing the hydrological
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and meteorological causes of flash floods by analyzing the high-resolution data of 25
extreme flash floods in Europe [60], which not only emphasized the importance of
establishing and expanding flash flood databases, but also highlighted the necessity
of developing new methods for flash flood disaster assessment.

(3) 2014–2021 is a stage of rapid development: With the rapid progress of information
technology, network technology, and computer hardware, the early identification
technology of flash flood disasters had developed rapidly, showing a vigorous devel-
opment trend, and the number of documents published was increasing. The number
of documents published in 2021 was 74, reaching a phased peak. It was expected that
the trend of a high number of documents published would continue in 2022.

In terms of the number of documents published by countries (regions), scholars from
100 countries (regions) have published papers related to the early identification technology
of flash flood disasters. The spatial distribution of the number of documents published
is the macroscopic expression of national or regional research forces, which can reflect
the regional differences in a certain field and the situation of academic exchanges and
cooperation. Figure 4 shows that scholars are distributed in different countries (continents).
Although the number of studies varies greatly, it can reflect that the field of flash floods
has been widely studied by researchers in different countries (continents) to a certain
extent. The United States had carried out the most research in this field (175 documents),
followed by India (77 documents), and then Italy [61–67] (71 documents). China ranked
fourth (70 documents), and France ranked fifth, with 64 published documents. The top five
countries accounted for 56.70% of the total number of documents published, indicating
that the research pattern of early identification of flash flood disasters takes the United
States, India, Italy, China and France as the core, other developed countries (continents)
as the priority, and developing countries as the supplement. Three of these countries are
considered developed countries (the United States, Italy, and France), which means that
the advantages of these countries in terms of science and technology, infrastructure, and
economic development levels have provided important contributions to the development
of this field.
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3.2. Discipline Category

According to the analysis of the document library on the early identification of flash
flood disasters, it was found that 63 discipline categories (analysis of labeling results by
WOS) were involved in this field, which indicated that the research on the early identifica-
tion of flash flood disasters involves a wide range of disciplines. The top five discipline
categories were water resources [68], geosciences multidisciplinary [69], meteorology atmo-
spheric sciences [70], environmental sciences, and civil engineering [71], and there were 281,
244, 193, 192, and 72 documents representing these five discipline categories, respectively.
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(1) Representative results in water resources: Gaume et al. [68] guided hydrological
analysis with simple hydrological models based on the SCS method and motion and
wave equation, which revealed some laws of the hydrological rainfall runoff relation-
ship during flash floods, playing an important role in enlightening other scholars to
estimate the frequency and forecast of flash floods. The number of documents cited
was 170, which had a strong influence in this field.

(2) In terms of geosciences multidisciplinary, due to different terrain, landform, and
hydrometeorological conditions of the basin, there were significant differences in
accurately identifying and simulating typical types of flash flood to make flash floods
adapt to the space and time, which exerted great significance for reduction in the de-
gree of hazard of flash flood disasters. Zhai et al. [69] selected 177 cases with different
climatic and geographical characteristics, and identified and simulated typical types
of flash flood and corresponding indicators of flash floods through statistical analysis
and hydrological modeling, providing new insights for the simulation of flash flood
behavior processes in medium and small basins.

(3) Recent research of meteorology atmospheric sciences was to explore the correlation
among peak flow, rainfall change, and basin landform through machine learning [70],
clarifying the relationship among them by the method of multidimensional statistical
modeling as well as creating a simple model with low deviation and variance for flash
flood disaster prediction.

(4) A study on environmental sciences was to draw the past and present land utiliza-
tion/land cover (LULC) [71] categories based on historical maps and remote sensing
data, and then estimate the surface runoff depth of specially designed rainstorms
in two periods by executing the soil conservation service curve number (SCS-CN)
methodology in the ArcGIS environment, filling the gap in the research on the impact
of increased surface runoff caused by human factors on flash floods in the basin.

(5) A study related to civil engineering [72] was to identify the sections most vulnerable to
flash flood disasters by innovatively combining a flash flood disaster map with a road
chain plan. The results obtained by this method could be used to help government
departments formulate protection strategies of infrastructures.

3.3. Influence Analysis

Influence of the institutions: As the institution with the largest number of documents
published, the National Oceanic and Atmospheric Administration [73–75] published a
total of 35 documents (as shown in Figure 5), mainly focusing on atmospheric and oceanic
changes, providing early warning of disastrous weather, managing the utilization and pro-
tection of marine and coastal resources, and studying how to improve the understanding
and protection of the environment. The National Research Council and the League of Euro-
pean Research Universities tied for second place [74–81]. The former is the largest public
research institution in Italy and also the only institution affiliated with the Research Depart-
ment to carry out multidisciplinary activities. The latter, as an alliance of Europe’s leading
research universities, was initially established by 12 top European research universities in
2002. Egypt’s Knowledge Base ranked fourth [82–84]. The fifth ranked institution was the
National Center for Scientific Research in France [48,85–88]. It is the largest government
research institution in France, the largest basic scientific research institution in Europe, and
one of the world’s top scientific research institutions. Due to its international reputation for
its outstanding contributions in the field of science, it is also regarded as the “wind vane”
of the development of science and technology in the world. It can be seen here that in the
field of early identification of flash flood disasters, the number of documents published by
each of the top 5 institutions is almost the same, showing that this field has been widely
studied by mainstream research institutions and will have considerable research prospects
in the future.
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Influence of the publishers: The papers retrieved in this study have been published by
as many as 131 publishers, of which 49 publishers have published two or more papers on
the identification of flash flood disasters. Elsevier published the largest number of papers
(totaling 158), and became the most influential publisher in this field; Springer Nature
ranked second due to 111 published papers in total; MDPI ranked third and published a
total of 72 papers. Figure 6 shows that the number of papers published by the top three
publishers accounted for 56.66%, indicating that the papers on the early identification
technology of flash flood disasters were relatively concentrated, and mainly published by
the three most influential publishers in this field.
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Influence of the authors: A total of 2830 authors have published papers in this field.
As shown in Figure 7, the authors publishing the largest number of papers are Gourley
and Morin, who tied for first place with 11 papers. Gourley et al. were committed to
the research of hydrology and meteorology, and their five documents were published
in the Journal of Hydrology. Their contributions in this field were mainly reflected in:
(1) carrying out statistics and analysis of human impact by using a flash flood event database
and introducing physical parameters [89]; (2) measuring the severity of flash floods by
introducing a new variable called “flashiness“ [90]; (3) proposing a new method [91] to
collect near real-time high-resolution observation data on environmental conditions and
disastrous consequences, and improving the accuracy of predicting the temporal and
spatial changes in flash flood disasters by evaluating the radar-based prediction tools.
Morin et al. focused on the research of hydrology and geosciences, aiming to determine
the significant differences of three weather systems (namely, Mediterranean cyclone (MC),
active red sea trough (ARST), and subtropical jet stream (STJ)) that can trigger flash floods
in hydrometeorology [92]. They also proposed to replace the lower threshold of secondary
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flow in transient alluvial rivers in arid environments with an initial geomorphic index
of flash floods in an alluvial river (AFIG) [93], so as to reliably estimate flash floods and
establish a flash flood early warning system. The authors with the second largest number
of published papers are Kirstetter and Schumacher [89], who had extensive cooperation
and also carried out research in hydrology and meteorology. Schumacher et al. mainly
researched atmospheric science and hydrometeorology, and he proposed a conceptual
model of extreme rainfall processes near the middle atmospheric circulation [94].
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3.4. Citation Analysis of Documents

From the perspective of analyzing the number of documents cited, this paper describes
and analyzes the distribution structure of documents cited in early identification of flash
flood disasters, and carried out statistics on the number of documents cited in this field
from 1991 to 2022, as shown in Figure 8. It can be seen from the time of document citations
that the number of documents cited from 1991 to 2007 increased steadily but was relatively
small as a whole, which is consistent with the trend of documents published in Figure 2,
showing that although early scholars began to pay attention to this field, there were fewer
research results in this period of time and the number of documents cited was relatively
low due to the backwardness of monitoring and calculation at that time. Thanks to the
development of sensor and computer technology, the number of documents cited has
shown a rapid growth trend since 2008. More advanced early identification technology of
flash flood disaster has been gradually mastered by people, and scholars have carried out
further research this field.

The highly cited documents are an important knowledge base in a research field,
reflecting the research hotspots in this field, and are an important basis for exploring the
research context and development direction. If a document is highly cited in a period
of time, it means that this document has higher quality and greater influence, and can
be used as a key reference for learning and research. Table 3 lists the top 5 highly cited
documents in early identification of flash flood disasters. The document ranked first has
been cited 581 times, and it is a comprehensive document describing the use of convection
permissive models (CPMs) for regional climate modeling in order to provide more reliable
regional-to-local climate information. The second-ranked document is also representative
of the slow-moving phase of the field. As this document has played an important role in
solving the problem of lack of data in this field with its rich flash flood disaster database, it
has been cited many times. Although covering many aspects, this document was published
in 2010, and the extreme flash flood events in this document occurred early, which not only
made it difficult to meet the needs of early warning of flash flood disasters that continue
to occur every year, but also made it difficult to adapt to the urgent needs of constantly
developing early identification technology for updating the flash flood database. Therefore,
this document put forward the necessity of updating the flash flood data sample database.
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Table 3. Analysis of highly cited papers (top 5).

Author Cite Fre-
quency Year Title Research Contents

Prein et al. [95] 581 2015

A review on regional
convection-permitting climate

modeling: Demonstrations, prospects,
and challenges

It summarized the research results of the
added value of convection permissive model,

climate model, and large-scale model. The
improvement in climate statistics data related

to deep convection, mountainous areas, or
extreme events was most obvious.

Marchi et al. [60] 353 2010

Characterisation of selected extreme
flash floods in Europe and

implications for flood
risk management

It collected and analyzed the data of
25 extreme flash flood events, summarized
the data files derived and analyzed from
variables by using hydrological model,

emphasized the importance of building and
expanding the flash flood database after the

investigation of flash flood disaster.

Borga et al. [12] 232 2014
Hydrogeomorphic response to

extreme rainfall in headwater systems:
Flash floods and debris flows

It summarized the current European and
international research on early warning
systems for flash flood and debris flow,
expanded the research status, closed a

knowledge gap, and improved the early
warning ability for extreme hydrological and
geomorphic processes through identification.

Youssef et al. [96] 216 2011

Flash flood risk estimation along the
St. Katherine road, southern Sinai,

Egypt using GIS based morphometry
and satellite imagery

It estimated the flash flood risk of
Ferran-Catherine Road in southern Sinai,
Egypt by the use of remote sensing data.

Gochis et al. [97] 143 2015 The Great Colorado Flood Of
September 2013

It explored the meteorological and
hydrological factors that cause flash flood

events, and discussed the weather
characteristics and mesoscale cycle

characteristics of the events after providing
the basic timeline.
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3.5. Keywords Analysis

This paper makes a visual analysis of the keywords in documents related to flash flood
disasters from 1991 to 2022 through the comprehensive use of VOSviewer (version 1.6.7)
to obtain the research progress, hotspots, and cutting-edge trends in this field. As shown
in Figure 9 using “overlay visualization”, the text box and the label form an element,
and the element color represents the cluster to which it belongs. Different clusters are
represented by different colors, and the same color represents a cluster. The shorter the
distance between two adjacent nodes is, the closer the relationship between two adjacent
nodes will be. The view also has a timeline view function. As can be seen from the legend
in the lower right corner, the colored band from blue to yellow represents the time sequence
of keywords. Surface runoff, machine, and GIS technique are the keywords that appear at
the end, showing the development trend of this field.
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The mutation keywords refer to the keywords whose frequency changes sharply in a
certain period of time [55–58]. The detection of mutation words is used to detect words
with a sudden increase in frequency in some years. Keywords with a sudden increase in
frequency growth rate in some years (whether high-frequency words or low-frequency
words) are more likely to reflect local hotspot changes in a certain field and represent the
research frontier in this field. This study carries out the burst test of the keywords in early
identification of flash flood disasters from 1995 to 2022 by using CiteSpace (version 5.8.R3)
burst detection technology. The specific parameter configuration is as follows: set the
time division to 1 year, select the source of subject headings as “Title”, select the co-word
analysis type as “Non Phrases”, select the network type as “Term, Keyword and Reference”,
set the threshold value as the default value, prune the time zone segmented network with
“Minimum Spanning Tree” in the pruning scheme, and draw the visual chart of mutation
analysis after extracting the research frontier terms by running the option of burst detection
(Burstness) in the control panel, as shown in Figure 10. The label line consists of six parts,
in which the strength line represents the mutation intensity of the keyword. The greater
the intensity is, the higher the frequency of occurrence of the keyword in the mutation
time period is; begin and end lines, respectively, represent the start and end time of the
keyword mutation. The formed time period is the time when the keyword becomes the
hotspot frontier. The thick red line below the time period refers to the heat, that is, the time
that the word became a hotspot.
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Figure 10 shows the start and end years and the emergence intensity of keywords in
the field of early identification of 25 flash flood disasters. From 1995 to 2001, no new words
appeared except for the mutation keyword of “storm”, which is consistent with the small
number of documents published in this period, shown in Figure 3. After the research on
the early identification technology of flash flood disaster entered the development stage,
the mutation word “heavy precipitation” began to appear in 2002, which was also an
earlier research content, with a longest duration of 7 years and a larger intensity of 2.91;
“resolution” appeared in the same period and lasted longer (13 years), but its mutation
intensity was weaker than that of “heavy precipitation” (2.38 < 2.91); in less than eight
years from 2014 to 2022, a total of 22 mutation keywords appeared successively, which
also proved that the division method of judging whether the research in this field has
entered the stage of rapid development through the number of documents published is
appropriate. The new mutation words such as “dynamic”, “debris flow”, and “rainfall”
appearing successively in this stage indicated that the new research content in the field
of early identification of flash flood disaster was developing in a diversified direction. In
particular, the contents that were still continuously researched as of May 2022, such as “risk
assessment”, “morphometric analysis”, and “machine learning”, were also the research
focus at present and in the future, and would be undoubtedly hotspot issues worthy of
attention and in-depth research in the field of early identification of flash flood disasters.

3.6. Cluster Analysis of Research Hotspots

As a characteristic function of VOSviewer, the visualization method of a density map
uses the total frequency or total co-occurrence frequency of nodes to measure the weight
of nodes, so as to intuitively reflect the frequency density of co-occurrence between high-
frequency words [54]. The basic principle is that the keyword density mainly depends
on the number of knowledge units around a knowledge unit and the weight of these
knowledge units. The more surrounding nodes there are, the shorter the distance between
these nodes is, and the higher the density will be. The greater the weight of the node is,
the higher the density is. In order to find the research focus and hotspots in the field of
early identification of flash flood disaster more intuitively, we further draw the keyword
co-occurrence density view, as shown in Figure 11. Blue and yellow in the figure are used
to represent the density near a subject, and each node displays different colors according to
its density. The more concentrated the nodes near another node are, the greater its weight
is, and the closer its color to yellow will be; otherwise, its color will be closer to blue. Taking
“map” as the center, three important research areas have been formed, and other research
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areas such as “warning” have also received high attention. These main keywords have
been taken as the center to form some related research hotspots, which has constituted the
basic research pattern in the field of early identification of flash flood disasters.
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In addition, the cluster analysis of research hotspots is a multiclass analysis process
that integrates keywords into keywords with similar meanings [55–58], and is based
on analyzing the similarity of keywords. We cluster the co-occurrence analysis map of
keywords in periodical documents and mark the formed clusters. There are three clustering
marking algorithms in Citespace: latent semantic label (LSI), log-likelihood ratio (LLR), and
mutual information (MI). According to the content and characteristics of this study, the LLR
log maximum likelihood algorithm is selected for keyword cluster analysis to filter smaller
clusters and retain only larger clusters, forming a total of 18 larger clusters. According
to the criteria for cluster determination, the greater the value Q of the map information
module is, the better the clustering results. When Q > 0.3, the cluster community structure
is significant; when the map contour coefficient S > 0.5, the clustering result is reasonable;
when the map contour coefficient S > 0.7, it means the clustering is convincing. As shown
in the upper left corner of Figure 12, when Q = 0.5749 > 0.3 and S = 0.8647 > 0.7, the
clustering structure is significantly efficient and convincing. As shown in Figure 12, some
clusters are hidden because they have low correlation with the research content of this
paper. Each node represents a keyword, and the connecting line represents the common
line of keywords. Different colored blocks represent different clusters, and the cluster size is
inversely proportional to the cluster number. Cluster names are the keywords that appear
most frequently in each cluster. These clusters reflect the research hotspots in the field of
early identification of flash flood disasters, and are closely overlapped and coincide with
each other in practical research.

3.7. Analysis of Development Trend

To further analyze the future research trend in the field of early identification of flash
flood disasters, another function of CiteSpace software called “TimeLine” mode [55–58] can
be used to run the documents from 1994–2022. The analysis of the core words co-citation
timeline is shown in Figure 13. The clusters unrelated to this research are hidden, but only
seven clusters with strong correlation are retained. The horizontal axis is the time span,
while the vertical axis is the cluster partition. Each node represents different keywords.
This figure can explain the evolution law of keywords on the timeline well. The size of the
arc span in the figure represents the span time of its keywords.
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The timeline view in Figure 13 of research development trends displays the evolution
of research contents in the field of early identification of flash flood disasters in the time
dimension, and divides all keyword clusters into multiple categories, which clearly shows
the development process of each research direction. As continuous research from 1991
to 2022, #0 morphometric analysis had a large number of nodes and most abundant
research content; the research on #10 shallow landslide and #11 hydrological drought had
significantly reduced numbers of nodes in the past two years, and showed a shrinking
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trend. However, although the research in the several directions of #6 climate change started
later, the research contents were quite rich and have continued until now, which would
also be a hot research direction in the future.

4. Research of the Subfields

By combining meta-analysis, keyword mutation analysis, research hotspot analysis,
and other methods, this paper describes a comprehensive analysis and finds that the
primary problem of early identification of flash flood disaster is to accurately identify the
precipitation. As precipitation and sediment movement interact with each other, another
important problem of early identification of flash flood disaster is to consider the impact of
water level rise due to sediment deposition. In addition, sensitivity analysis and mapping
of disaster-causing factors are the basis of disaster risk assessment and uncertainty analysis.
Therefore, through comprehensive consideration, this paper divides the research in the
field of early identification of flash flood and sediment disasters into the following five
subfields: precipitation impact, sediment impact, sensitivity analysis and mapping, risk
assessment, and uncertainty analysis.

4.1. Precipitation

Precipitation is a phenomenon in which the water vapor in the atmosphere falls to the
ground in the form of liquid and solid water after condensation [98]. Its uneven spatial
distribution and instability over time are the direct causes of flash floods. It is also the
source of surface runoff [99] and may lead to a surge in the runoff, causing catastrophic
damage to protected objects and significant changes in landform. It is very important
to deeply understand the meaning of rainstorms with complex and nonlinear behavior,
identify and control the development of the threshold based on hydrological theory [100],
and accurately evaluate and predict flash flood risk. Therefore, in the early identification
of flash flood disaster, it is necessary to fully consider the impact of precipitation, and
focus on how the spatial variability of rainfall affects the severity of flash floods. A better
understanding of the spatial variability of rainfall will help to describe and identify the
characteristics of flash floods and identify the driving factors and interactions of major
disasters in the research area. Meanwhile, it is also necessary to focus on the rainfall
intensity. The basin landform inhibits the impact of lower rainfall intensity, while higher
rainfall intensity overwhelms other factors as a key factor, resulting in flash floods.

Based on Figure 14, this paper uses a pennant diagram of precipitation keywords for
key node Precipitation, as shown in Figure 14a. The “Precipitation” node involves many
research contents. The closer the keyword is to “precipitation”, the stronger the correlation
between the research content and “precipitation” will be. Therefore, it can be found that
“event”, “climate change”, and “flash flood” are most relevant research contents, because
flash floods are caused by rainfall, and precipitation is the direct and key factor of flash
flood disaster. The function of Node Details can also be used to make conclusions about
the outbreak of the published time sequence of the keyword “precipitation” according to
occurrence times of the keyword. As shown in Figure 14b, the number of documents pub-
lished shows an upward trend on the whole. The keyword “precipitation” was interrupted
for many years in the early stage, but it began to continuously appear in a large number
of documents after 2019, indicating that the research in this direction has begun to regain
vitality, and “precipitation” will still be a hot research direction in the future.
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Precipitation remote sensing and numerical weather prediction are the basis of the
forecasting system for flash flood disasters [101]. The early identification of flash flood dis-
asters requires not only precipitation prediction in a very short time, but also precipitation
data with high spatial and time resolution [102]. Due to the high spatial discontinuity [103]
of rainfall events in depth and intensity, and the lack of long-term high-resolution rainfall
observation, it is challenging to accurately estimate rainfall values. Due to its limitations,
the traditional manual identification method needs a lot of time to obtain a large amount of
data, which greatly limits the amount of data used for feasibility analysis in the research.
In recent years, geospatial data represented by remote sensing images and other relevant
data sets were used to generate various thematic data sets through complex algorithms,
and the more representative methods are shown in Table 4.

Table 4. Research methods.

Research Object Content Conclusion

Surface water flash floods
(SWFs) [104]

IRIP mapping model based on
physical distributed

hydrological model simulated
surface runoff according to

precipitation input

The greater the susceptibility
score of IRIP was, the more
SWFs detected by detection

algorithm based on
remote sensing

Rainfall threshold, rainfall
value [105]

The FFG principle was
applied to the Wenersbach

catchment area with excellent
data coverage by using

BROOK90 water budget
model, which runs on an

hourly basis according to four
precipitation types and
different levels of initial

soil moisture

The adjustment of the flash
flood guidance (FFG) methods

might provide reliable
support for flash
flood forecasting

Extreme rainfall and its
variation [106]

The recently developed
Australian radar archives

(AURA) were examined to
identify objects that meet

specific relevant standards,
and identify daily heavy and

extreme rainfall by
multiple methods

The number of days in the
linear system accounted for
more than half of the total
rainfall in Melbourne and

70–85% of
strong/extreme rainfall
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4.2. Sediment

A large number of flash flood disaster events showed that large flash floods would
cause major disasters, and small flash floods would also cause major disasters under the
influence of sediment [47]. After experiencing many flash flood disaster events, people
found that due to the rapid changes in flash floods, the coupling of flash flood and sediment
movement in mountainous areas would lead to severe disasters. The coupling effect of
sediment and flash flood was often the key factor that led to major flash flood disasters,
which often led to disastrous consequences of “small flash flood and large disaster”. Heavy
rainfall triggered many collapses and landslides, and a large number of low-viscosity loose
clastic sediments were suspended in steep bank slopes and ditches, providing sufficient
material sources for flash flood disasters. The flood and sediment disaster was mostly
manifested as a complete chained disaster process of “rainstorm–flash flood–surge in
sediment supply–gully bed response–water level rise–disaster”. The flood disaster and
sediment disaster were often interwoven to form flash flood and sediment disaster, which
was mainly manifested in the cumulative erosion and deposition at inappropriate locations
caused by the change in sediment transport law. The easily silted river reach is shown in
Figure 15.
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4.3. Sensitivity Analysis

Sensitivity analysis is an important means of risk identification and management for
flash flood disasters [107]. Flash flood sensitivity mapping has been regarded as the basic
stage of flash flood early identification and risk reduction. As many influencing factors are
involved, it is easy to misjudge the flash flood disaster by using a single sensitivity analysis
method. To date, there has been no method that can be applied to the flash flood sensitivity
analysis and mapping in all regions, and the specific selection of analysis methods is often
determined by many factors, such as the data type, research object, and research area. At
present, there are various sensitivity analysis methods (as shown in Figure 16), which
can be generally divided into four categories: experience driven, data driven, mechanism
driven, and intelligence driven.
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(1) Experience-driven model: It forms its own experience and understanding of the early
identification of flash flood disasters based on the qualitative technology and expert
knowledge, and puts forward the weight of the contribution of various factors to the
occurrence of flash flood disaster, but it is limited in its range of application and low
in accuracy due to its inherent subjectivity [108].

(2) Data-based flash flood object-oriented model: It relies on the analysis data to identify
the relationship between independent flash flood-related variables and flash floods,
mines and quantifies the correlation between flash floods and various single factors
by statistical analysis methods related to spatial analysis or mathematical regression,
such as information quantity, evidence weight, cluster analysis, etc., and predicts the
risk of flash flood disaster through the comprehensive analysis of multiple factors.
The data used in the data-driven model include not only maps, remote sensing images,
digital databases, and other data, but also hydrological statistical data obtained or
derived, as well as spatial data of basin geographical features such as geology, soil, and
land utilization, all of which can be integrated into a GIS environment for sensitivity
analysis and mapping [109].

(3) Mechanism-driven model: It obtains rainfall conditions, terrain and landform condi-
tions, solid material source conditions, and other series of quantitative parameters
formed by flash flood disasters by means of investigation, mapping, and geophysi-
cal exploration, and quantitatively calculates the characteristic parameters of flash
flood disaster sensitivity mapping through theoretical analysis, physical modeling,
numerical simulation, and other technical methods according to the relevant theories
of hydrometeorology, river dynamics, and sediment dynamics to realize sensitivity
analysis and mapping of early identification for flash flood disasters [110].

(4) Intelligent-driven model: It makes a sensitivity analysis and mapping according to
the development law of flash flood disaster, selects reasonable evaluation indexes
and quantifies them, and then performs data cleaning and sample set construction
and finally establishes a flash flood disaster sensitivity evaluation model based on
artificial intelligence algorithms such as artificial neural networks, deep learning
method, decision tree, and support vector machine through sample training, so as to
identify and predict potential flash flood disaster units [111].

The above four analysis methods have their own advantages and disadvantages, and
they often need to be used comprehensively and complement each other. The typical cases
of these four analysis methods in sensitivity analysis and mapping of early identification of
flash flood disasters are shown in Table 5.
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Table 5. Typical cases of sensitivity analysis.

Study Research area Purpose Method Conclusion

Experience driven Boscastle (UK) [112]

Evaluated the different
criteria used to assess

the hazards to
personnel during flash

flood events

Associated the flash flood
risk level with the

characteristics of the
human body by widely
used empirical method
and mechanics based

method when the safest
route was determined

The criterion based on
mechanics was more

desirable in determining
the ideal escape route

when the characteristics
of flash floods and the

corresponding response
of the human body

were considered

Data driven Kuala Lumpur [113]

Evaluated the flash
flood sensitivity,

vulnerability,
socio-economic impact,

and comprehensive
flash flood index

Provided the location
where flash floods easily

occur based on the
disaster points at each

determined location and
verified the basin based
on 50-ARI rainfall model

The comprehensive
interactive color flash

flood sensitivity analysis
map was provided

Mechanism driven Jiangxi province of
China [114]

Divided the
geographical space into
homogeneous regions

with similar flash flood
generation mechanisms

Established a two-stage
hybrid self-organizing

map clustering algorithm
to determine the

homogeneous area of
flash floods

The zoning map divided
historical flash flood
events with different

densities into different
regions, which was

conducive to disaster
prevention in the future

Intelligence driven the Prahova river
basin [115]

Evaluated the
application effect of
analytic hierarchy
process (AHP), fi

(kNN), and K-Star
(KS) algorithms

Ten pairwise comparison
matrices by AHP model

were built for calculating
the normalized weight of

each flash flood
predictive factor

The kNN-AHP
integrated model had the

best effect

4.4. Risk Assessment

Risk assessment refers to the probability or possibility of flash flood disasters occurring
in a certain area and time period through the comprehensive action of dynamic inducing
factors such as rainfall, earthquake, and engineering activities on the basis of sensitivity
analysis [14]. Comprehensive risk assessment is very important for comprehensive and
efficient flash flood management [116]. Risk assessment reflects the severity of local flash
floods and can identify areas vulnerable to flash floods; it has been proved to be an effective
tool for managing [117] and mitigating flash flood disasters and can help to improve the
flexibility of disaster reduction plans. For example, one of the multicriteria decision-making
methods is used to assess the risk of flash floods, identify small river basins with high flash
flood risk, and prioritize the risk of flash floods, so as to decide how to allocate resources
and select the best recovery plan in the research area. There are many influencing factors
that can cause flash floods, and the risk assessment of flash flood disasters involves all
aspects of the research area, so many factors such as rainfall, terrain, and population shall
be considered. In addition, flash floods generally occur in unmeasured catchment areas.
Due to the lack of spatially well-distributed rainfall or flow data and the incompleteness of
many important information data, it is often difficult to correctly assess the risk of flash
floods. Therefore, in order to reduce the dependence on data, a new conceptual framework
has been proposed to expand the application of the vulnerability index in damage level
prediction by using a comprehensive multiparameter method, which is the first step [118]
in strengthening flash flood disaster prediction to support risk reduction in areas with
scarce data. For the research on the risk assessment of flash flood disasters, the document
statistical results have shown that the research on risk assessment methods of flash flood
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disasters has made great progress. Scholars have researched flash flood disaster assessment
from different perspectives, and achieved some useful results. Table 6 shows several
representative models of risk assessment of flash flood disasters.

Table 6. Typical cases of risk assessment.

Research Area Method Result

Lin et al. [119]

Through the comprehensive assessment of the flash flood risk,
the improved analytic hierarchy process (IAHP) method, and

the iterative self-organizing data (ISODATA) in the GIS
environment, the integration of maximum likelihood

(ISO-Maximum) was analyzed

The method of the weight of risk index
was used to identify different risk clusters

Popa et al. [120]

A database containing historical flash flood locations and
rainstorm areas was created for training and testing the models.
The models were calculated by GIS technology so as to generate

flash flood and flash flood vulnerability maps

MLP-FR hybrid model had the
highest performance

Ahmad et al. [121]

The two methods used to evaluate the flash flood risk of five
basins in Dir Lower were morphological sorting method and

El-Shamy, both of which used the morphological parameters of
flash flood sensitivity

The two methods were used to determine
and identify subbasins with high,

medium, and low flash flood sensitivity

4.5. Uncertainty Analysis

For the early identification of flash flood disaster, focus is needed on different spatial
ranges (basins, administrative regions, and monitoring points) and different research objects
(rainfall estimation, flash flood process, time response), and an early identification system
of flash floods by using historical flash flood disaster location, weather radar data, DEM,
land utilization, and other data according to different impact factor combinations (rainfall,
underlying surface, social economy, current situation of flood control capacity, etc.) and
different model (hydrological model, weather forecast model, intelligent learning model,
etc.) tests [122]. The system is essentially a highly complex nonlinear system [123] with
uncertainty, as shown in Figure 17. For example, the traditional observation systems of
rainfall, water flow, and sediment discharge cannot monitor the development of flash flood
disasters on the time and space scales. Therefore, a lack of knowledge on the atmospheric,
hydrological, and geomorphic control of these hydrological and geomorphic processes will
result in highly uncertain early warning and risk management. Indirect peak discharge
estimation after flash floods provides key information for promoting the understanding
of hydrometeorological process of flash floods, especially when the peak observation is
combined with flash flood simulation in hydrological models. However, the estimation of
indirect peak flow is affected by significant uncertainty, which will be amplified when flash
floods are related to important geomorphic processes [124].

From the aspect of document statistics, the research on the uncertainty analysis of flash
flood early identification mainly focuses on three terrain areas (namely, basin, mountain,
and hill) [125], but less on the flat and plateau terrain; in terms of rainfall in the research area,
arid and semi-arid areas are the key research areas. Due to the unique landform conditions
and the influence of the high rolling of surrounding ridges, mountainous areas are more
likely to experience flash flood disasters than cities. When the airflow on the windward
slope of the mountain is forced to rise, it will cause the atmosphere to rise. If the slope
of the hillside is very steep and the wind speed orthogonal to the mountains is strongly
separated, the effect of terrain can cause heavy precipitation. The rising movement of the
atmosphere after precipitation caused by steep terrain is the direct cause of rainstorms.
Therefore, mountainous areas are the key areas for uncertainty analysis and research. As
the research has rarely involved cities, it was not until 2020 that some scholars built an
integrated socio-economic vulnerability index (ISEVI) [126] for urban areas and verified it
with the uncertainty of the Monte Carlo method. As there were many influencing factors of
uncertainty and the research objects were very rich, such as rainfall estimation, flash flood
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process, and space–time response, Wang et al. [127] analyzed the sensitive factors such as
mean slope of basin, soil moisture, average width of main stream, and basin shape, and
the result showed that VFM and cross entropy can be jointly used to identify the sensitive
factors related to flash flood disaster in unmeasured basins of small hills. Due to the lack of
hydrological, meteorological, and geospatial information and other data, especially in areas
where the data are scarce and the measurement of the catchment areas is poor, the existing
monitoring network cannot record highly dynamic and small-scale rainstorms well, so the
uncertainty analysis is hindered. For example, if spatial and temporal rainfall patterns with
insufficient identification [128] are used, there will be uncertainty in distributed rainfall
runoff modeling, which will underestimate the amount of rainfall and runoff received in
the catchment area. In order to solve this problem, some scholars have proposed a reverse
hydrological modeling method for randomly reconstructing the spatial and temporal
rainfall model, and found that this spatial and temporal rainfall mode is reasonable after
the real-world research of flash flood events in arid mountainous areas.
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5. Conclusions

This study adopts a variety of bibliometric methods and knowledge graph technolo-
gies, conducts a meta-analysis and visual analysis of the literature in the past 31 years, and
systematically summarizes the progress and trends of early identification technology of
flash flood disasters. Our outcomes are presented as follows:

(1) The numbers of papers published on early identification of flash floods, and their cita-
tion, have increased dramatically in the last 10 years (Figures 3 and 8). Those papers
come from numerous research centers (Figure 5) and are distributed across a wide
array of publication outlines (Figure 6). Node and keyword analysis indicates that pri-
mary research areas include precipitation/rainfall and risk management/assessment
(Figures 9 and 11).

(2) It is necessary to establish the conditions for the occurrence of different types of
disasters by investigating rainfall information of typical flash floods that have oc-
curred, and combine them with physical rainfall experiments so as to establish the
discrimination conditions for early identification of rainfall impact in areas prone to
flash flood and sand disasters.

(3) When research on the early identification of flash flood disasters is performed, it is
necessary to fully consider the role of sediment, focus on the role of mutual feedback
of water and sediment, and study the flash flood movement and sediment movement
as a disaster system.

(4) As the multisource data are obtained by different measurement methods and means,
there are considerable differences in data format, spatial resolution, and coordinate
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system. Therefore, a unified standard should be established before the basic data are
used for flash flood disaster identification sensitivity analysis and mapping.

(5) Comprehensive consideration should be given to the inclusion of multiple factors
in the scope of risk assessment when the risk assessment is made. Since different
early identification methods have their own advantages and disadvantages, they need
to complement each other and be used in combination. Considering the different
characteristics of disaster sites and disaster areas, corresponding research methods
should be adopted according to different research objects.

The results of this study show that, in the past 31 years, although people have made
great progress in the field of early identification of flash floods, flash flood disasters have
the characteristics of burstiness and uncertainty. Therefore, there are still many problems
to be solved, such as unclear formation mechanism of flash flood disasters, immature
early identification theory, and imperfect early identification technology. Relying on a
single discipline to solve these complex problems is challenging. In the future, early
identification technology in hydrology, geology, remote sensing, artificial intelligence, and
other disciplines will have broad application prospects. In particular, the application
of artificial intelligence in this field will help improve the level of forecasting and early
warning, and it is also a research area for our further investigation.
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