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Abstract: Bubble plumes, as main manifestations of seabed gas leakage, play an important role in the
exploration of natural gas hydrate and other resources. Multibeam water column images have been
widely used in detecting bubble plume targets in recent years because they can wholly record water
column and seabed backscatter strengths. However, strong noises in multibeam water column images
cause many issues in target detection, and traditional target detection methods are mainly used in
optical images and are less efficient for noise-affected sonar images. To improve the detection accuracy
of bubble plume targets in water column images, this study proposes a target detection method based
on the bag of visual words (BOVW) features and support vector machine (SVM) classifier. First, the
characteristics of bubble plume targets in water column images are analyzed, with the conclusion
that the BOVW features can well express the gray scale, texture, and shape characteristics of bubble
plumes. Second, the BOVW features are constructed following steps of point description extraction,
description clustering, and feature encoding. Third, the quadratic SVM classifier is used for the
recognition of target images. Finally, a procedure of bubble plume target detection in water column
images is described. In the experiment using the measured data in the Strait of Georgia, the proposed
method achieved 98.6% recognition accuracy of bubble plume targets in validation sets, and 91.7%
correct detection rate of the targets in water column images. By comparison with other methods, the
experimental results prove the validity and accuracy of the proposed method, and show potential
applications of our method in the exploration and research on ocean resources.

Keywords: multibeam water column image; bubble plume; target detection; bags of visual words;
support vector machine

1. Introduction

As one of the most widely used ocean survey equipment, multibeam sonars can
acquire the full coverage of underwater topographic survey and simultaneously construct
seabed backscatter strength images. In recent years, recording and processing the whole
water column backscatter data using multibeam sonars have become possible, with the
rapid improvement of computer processing power and storage capacity [1].

Multibeam water column images have been used to investigate marine biological
resources (fish/fish school [2,3], krill [4], and seabed eelgrass [5,6]), study ocean physical
changes such as internal waves [7,8], find underwater shipwrecks [9,10], and detect gas
clouds [11] and bubble plumes [12-15] from seabed seeps. Innangi et al. [16] proposed
a detection method of fish schools using multibeam water column images and obtained
3D shapes of various fish schools. Hughes Clarke et al. [9,17,18] studied the imaging
principle, noise interference, and other basic knowledge of multibeam water column
imaging, which laid a foundation for subsequent research. They also used water column

Remote Sens. 2022, 14, 3296. https:/ /doi.org/10.3390/1s14143296

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs14143296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4834-944X
https://orcid.org/0000-0002-9434-1388
https://orcid.org/0000-0003-3796-8405
https://doi.org/10.3390/rs14143296
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14143296?type=check_update&version=2

Remote Sens. 2022, 14, 3296

2 of 24

image to estimate the minimum depth of a shipwreck (mast peak), which could provide
a safety guarantee for shipping. Marques [19] used multibeam water column images to
recognize and precisely locate spherical suspended targets and monitor seabed landslide
activities. Gardner et al. [20] found a bubble plume with a depth of 1830 m and a height of
1400 m by using water column images collected from Kongsberg EM302 multibeam sonar
in the coastal area of northern California. Weber et al. [21] discovered a bubble plume with
1100 m height using water column images from Kongsberg EM302 in the Gulf of Mexico.
Various applications, especially in marine resource exploration and environment research
of multibeam water column images have been proven by these studies.

Bubble plumes are the main manifestations of seabed gas leakage. The leaked gases
could be the natural gas (methane), meaning the potential storage of natural gas hydrates.
The gases also could be the mixed gases produced by decomposition of underwater dead
plants and animals. Therefore, bubble plumes play important roles in the exploration of
important resources (like natural gas hydrate) and the research of underwater environ-
ment [22-25]. How to accurately and efficiently recognize and detect bubble plumes in
multibeam water column images is a hot research issue at present [26].

To recognize targets in sonar images, classifying the special target features has been
proven as a feasible solution. Many studies have focused on detection and recognition
of sonar image targets using classifiers of image features. Dobeck et al. [27] achieved
automatic mine target detection and recognition in sonar images by using a k-nearest
neighbor classifier of 45 extracted features, such as shape and intensity of mine targets.
Tang et al. [28] studied the multi-channel texture classification algorithm by applying
wavelet packet and Fourier transform on side-scan sonar images. The experimental results
showed that the feature extraction method is vital for image classification. Reed et al. [29]
achieved the recognition of sand slope targets in side-scan sonar images based on texture
features, standard classifier, and Markov random field. Rhinelander et al. [30] combined
feature extraction, edge filter, median filter, and support vector machine (SVM) classifier to
achieve target detection and recognition in side-scan sonar images. Song et al. [31] studied
the sonar image target segmentation method based on Markov random field and extreme
learning machine. Wang [32] studied a target detection algorithm in side-scan sonar images
using feature extraction method based on a neutrosophic set and diffusion maps. Moreover,
a combination of various feature extraction methods (gray-level co-occurrence matrix, local
binary pattern, Gabor, Tamura, multifractal spectrum, and others) and various classifiers
(AdaBoost, back-propagation neural network, convolutional neural network, and others)
have been applied on various targets in different sonar images.

In conclusion, numerous target feature extraction methods and classifiers have been
used for target recognition and detection in sonar images. For various target recognition in
different types of sonar images, the optimal features and classifiers are quite different. For
the bubble plume target in multibeam water column, the optimal features and classifiers
have yet to be studied. Zhao et al. [33] used Haar-like and local binary pattern feature
and AdaBoost classifier to recognize the gas plume targets in multibeam water column
images. This feature is suitable for vertical and strong-strength bubble plume targets, but
recognition accuracy of inclined and weak-strength bubble plume target still needs to
be improved.

In recent years, deep learning methods have been widely applied in recognition and
detection of sonar image targets [34,35]. Deep learning methods usually need a large
number of samples and labels to ensure model accuracy and generality. However, due to
the particularity of sonar data collection and the difficulty in finding underwater targets, it
is difficult to guarantee the sufficient number of sonar image target samples, which brings
problems to the accuracy target recognition [36-38]. Another feasible solution is automatic
sample augmentation using deep learning methods (like generative adversarial networks)
in the case of small or even zero samples [39-41]. However, differences remain between
the augmented and real samples, and the accuracy improvement of target recognition and
detection using augmented samples still needs to be studied.
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Therefore, in this article, we analyze the characteristics of bubble plume, select an
applicable feature extraction algorithm and reasonable classifier, and finally realize the
automatic accurate recognition and detection of bubble plume targets in multibeam water
column images.

2. Theories and Methods
2.1. Basic Principle of Target Detection in Multibeamn Water Column Images

The multibeam echo sounder system contains multiple sub-systems, including global
navigation satellite system (GNSS), motion reference unit (MRU), gyro-magnetic compass,
the bathymetric sonar and other auxiliary sensors [42,43]. Multibeam sonars emit sound
waves through the projector arrays and then receive the backscatter strengths at multiple
angles through the hydrophone arrays. By continuously recording the backscatter strengths
from the transducer to the seabed and even under the seabed, we can obtain the observation
of the whole water column, the seabed and surface sediments. The bubble plumes are some
of the most important targets in the water column image because they could indicate the
possible storage of natural gas hydrates or decomposition of underwater dead plants and
animals. The bubble plumes usually were leaked from the seabed, rise to a certain height,
and then dissipate. When the sound waves travel through these two different propagation
medias (i.e., gas and water), the backscatter strengths from the bubbles are stronger than
those from surrounding water, as shown in Figure 1.
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Figure 1. Bubble plume detection in multibeam water column image. (A) is the principal diagram of
target detection in multibeam water column images, where S; is the sampling point at equal time
intervals and 6 is the beam incident angle; (B) is the measured multibeam water column image
containing the bubble plume target.

In the multibeam water column images, the bubble plume targets are different from
the background noises (Figure 1B). Some characteristics of the bubble plume targets in the
water column images can be analyzed and concluded as follows:

1. The bubble plume targets have much brighter grayscale features than the water
column image background because the backscatter strengths from the gas bubbles are
much stronger than those from the surrounding water;

2. The bubble plume targets have special shape features. These targets are generally
plume-like or ribbon-like shapes, which are obviously different from other water
column targets (such as fish and fish school);
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A:Target image

3. The bubble plumes also have special orientation features. The bubble plumes usually
range from the seabed to a certain height, and are usually approximately perpendicu-
lar to the seabed, but may be bent and oblique due to the ocean current effects. Due to
side-lobe effects, bubble plumes in the minimum slant range are easier to detect;

4.  Special texture features exist around bubble plume targets. Due to the changes of two
different propagation media, the texture features of the bubble plume and surrounding
water are quite different.

These feature differences between the bubble plumes and background noises are the
basis for the target recognition and detection method in a multibeam water column image.

As analyzed, the bubble plume targets have special grayscale, shape, orientation, and
texture features. In the following sections, the bag of visual words (BOVW) features of
bubble plume targets are extracted and used to represent these features, and the SVM
classifier is used for binary classification of the BOVM features. Then, the recognition and
detection procedures of bubble plume targets in the water column image are introduced
in detail.

2.2. BOVW Features of Multibeam Water Column Images

The BOVW features were originally used for text classification by calculating the
frequencies of important words in the text. The BOVW feature applies the same idea
into image classification [44]. The images do not contain any concrete words; therefore,
visual vocabulary needs to be constructed using feature point extraction methods, such as
speeded up robust features (SURF) (Figure 2B), then the visual vocabulary is established
by clustering these SURF descriptors (Figure 2C), and finally, the BOVW features can
be encoded by calculating the frequencies of each visual words in the visual vocabulary
(Figure 2D). These steps are shown in Figure 2 as:

1. Step 1. All the SURF descriptors (64-dimensional eigenvectors) of interest points from
sample images are extracted by SURF detection or uniform-grid-point selection;

2. Step 2. Due to the excessive number SURFs extracted, the SURFs of all sample images
were clustered using k-means to obtain k category;

3. Step 3. For any image, the SURF points can be extracted using the interest point
selection (Step 1) and calculated as 64-dimensional eigenvectors, then these SURF
descriptions are classified into each category (Step 3);

4. Step 4. The occurrence frequencies of all the SURF clustering categories are calculated
to form the k-dimensional BOVW feature vector.
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Figure 2. BOVW feature extraction from water column images based on SURFE.

2.2.1. SURF Descriptors Extraction

The visual vocabulary of BOVW features need to be constructed by clustering the
extracted point features from all different categories of sample images. SUREF, as a scale
invariant feature, can be used as both detectors and descriptors of interest points at any
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scale [45]. In multibeam water column image, SUREF is also suitable for the detection and
description of bubble plume target feature points [46].

The SURF method uses the Hessian matrix H(p, 0) to detect and describe the interest
points p(x, y) at scale o as

B Lxx(P/(T) ny(p' (7) (1)

Hip,o) = Lyx(P/U) Lyy(PrU) ’

where L is the convolution of the Gaussian second-order derivative with the image.

As shown in Figure 3, detected SURF points from the target images and background
noises are significantly different in feature scale, orientation and distribution, which proves
the effectiveness of SURF points as the visual words of water column images. However,
affected by different kinds of noises, detected SURF points from different water column
images could vary greatly under the same Hessian threshold. If SURF detection is used to
find interest points, some features of the target and background images could be ignored.
Therefore, we use the uniform-grid-point selection to ensure that all the features in the
target and background image can be extracted (Figure 2B).

Target-related features Noise features
[
5 o Noise features o <
©
&
2 =
2 &
100 wQ 100
=
o g
E 150 ::0’_ 150
& o
e 60 ) 200
o=t 0 g
2 =
k= g
g 250 » @ 250
- 50 100 150 200 250 150 200 250
oD
- 4 . .
S A. Bubble plume target image B. Background noise image

Figure 3. SUREF differences between bubble plume target and background image in multibeam water
column image (Hessian threshold was set as 250). The radiuses of these circles indicate the scales of
these detected points, and the lines in these circles mean the main directions of these features.

The SURF descriptors are used to describe the uniform-grid selected points in the
water column images. Before feature description, the main orientation of the descriptor
is set as upright because no rotation is applied in the water column images. The steps for
extracting SURF descriptors are listed as follows:

1. Select the regions around key points and divide them into 4 x 4 small regions;

2. Calculate Four features (dx, dy, |dx| and Idy!) of the sampling point corresponding
to the Haar response in each small region;

3. Construct and normalize the 64-dimensional (4 x 4 x 4) eigenvector of each key point.

Therefore, all the SURF descriptors of the uniform-grid selected points in the image
can be described using the normalized 64-dimensional eigenvectors (Figure 2B). The grid
size would determine the number of extracted points, which would be discussed in the
experimental section.

2.2.2. Clustering SURF Descriptors

The visual vocabulary of water column images is constructed based on SURF descrip-
tors of uniform-grid selected points. For sample sets containing many images, all of the
SUREF descriptors (i.e., the 64-dimensional eigenvector) of each image need to be extracted
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x10*

and summarized to obtain the special BOVW features that can describe the bubble plume
targets. Moreover, these extracted SURF descriptors need to be clustered to limit the BOVW
feature dimension. k-means, as an efficient clustering method, is suitable for clustering
these SURF descriptors. The steps are the following;:

1.  The k-mean++ algorithm is used to initialize k centroids ¢(j) (j =1, ..., k);
2. The Euclidean distance L; between each SURF 64-dimensional eigenvector v and the
centroids c(j) is calculated as

@)

@

Each eigenvector is assigned to the nearest centroid and the k centroids are recalculated;
4.  Steps 2 and 3 are repeated until all the cluster assignments are stable (Figure 4B).
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Figure 4. Change of k (as 300) cluster centroids and corresponding assignments after several iterations.
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(A) is the initial clustering result using k-mean++ algorithm, (B) shows the training processes of
k-means clustering, and (C) is the final clustering result.

The clustering number k determines the visual vocabulary number and the dimension
of BOVW features. Considering the noises affecting water column images, an extremely
small visual vocabulary number will lead to the confusion of different features, and an
extremely large visual vocabulary number will cause a huge waste of calculation resources.
Therefore, determining k is important and would affect the final recognition accuracy,
which would be discussed in the experimental section.

2.2.3. Image Coding Using BOVW Feature

In the previous section, a k-size visual vocabulary is obtained by clustering all the
visual words (SURF eigenvectors). For a single image, the BOVW feature is the k-size
vector by counting the occurrence frequencies of all the visual words in the vocabulary. The
histograms of visual words are shown in Figure 5.

To make BOVW features suitable for following target recognition and detection, the
BOVW feature [x1, x3, ... xj, ..., x;] needs to be normalized using L, normalization, as

X;
Y= ———
k2
\/ Lie1 %5

where y is the corresponding normalized vector and k is the vocabulary size.

The SURF descriptors extracted from bubble plume targets and background noise
image are obviously different in scales and orientations (Figure 3); therefore, BOVW features
as bags of these SURF descriptors can effectively represent grayscale, shape, orientation,
and texture features of bubble plume targets. In the following sections, BOVW features are
used for target recognition and detection.

®)
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Figure 5. BOVW feature encoding of positive ((a): bubble plume target) and negative ((d): background
noise) samples. (b,e) show occurrence frequencies of visual words extracted from (a,b), respectively.
(c,f) are normalized from (b,e), respectively.

2.3. Bubble Plume Recognition Using Support Vector Machine

Based on the SURF descriptor differences between bubble plume target and back-
ground noise images, the recognition of bubble plume targets can be done by classification
of the BOVW features. Taking the target images as positive samples and the background
images as negative samples, recognition becomes binary classification. In this section, a
SVM classifier is used to binarily classify the BOVW features of bubble plumb target and
background noise image. The overall procedure is shown as Figure 6.

\

Model prediction

[
1)
E BOVW features o
3 > OO &4 ,
& 0] o o 1 Target image
E % k-dimensional vector o > o a

5]

£

=

non BOVW features g

: TTITTTT] -1 Background noise

k-dimensional vector Support Vectors

Background noise

Model training

A

Figure 6. Procedure of SVM binary classification on BOVW features.

2.3.1. Support Vector Machine

As a kernelized method, selection of kernel functions seriously affects the classification
accuracy of the SVM classifier. To process the extracted BOVW features (k-dimensional
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eigenvectors), our work uses the nonlinear SVM classifier using the quadratic polynomial
kernel. For any eigenvectors x; and x;, the quadratic polynomial kernel function « is:
2
(%, %)) = (xfx))". @)
Based on the SVM dual problem, SVM classification of the BOVW eigenvectors consists
of the following steps:

1. Selection of the quadratic polynomial kernel function, where the SVM problem could
be converted to the convex quadratic programming problem as follows:

® =1 i=1j=1 )

2. Based on the sequential minimal optimization (SMO) algorithm, the optimal solution is

o = (ka5 .., 0k)T" (6)

3. Selection of oc]-* as one component of &, satisfying 0 < vcj* < C (C s the hyperparameter,
called box constraint, to avoid overfitting). Then, we calculate

m
* 2
b* =y — Y il x)" @)
i=

4. The kernel function is used to replace the inner product, and the quadratic SVM becomes

N 2
flx) =Y aiyi(x/x)” +b* 8)
i=1

The hyperparameter box constraint and feature scale also affect the SVM classification
accuracy and need to be updated during SVM training.

After training, the SVM can be used for prediction of input images. The binary loss
is a function of the class label and classification score that determines how well a binary
learner classifies an image into the class. The prediction score P is calculated using Hinge
binary learner loss function which provides a negated average binary loss in a domain as
(=00, 00).

_ max( 0, 1-y;f(j) )

P= 5 , ©)

where, y; is a class label for the SVM binary classifier in the set (-1,1), and f(j) is the model
score for input image j.

2.3.2. Recognition Procedure of Bubble Plume Targets

To recognize the bubble plume targets in the water column images, we carefully
establish the positive and negative sample sets, construct the visual vocabulary based
on clustering SURF points, and encode BOVW features of each sample image. Then, the
SVM binary classifier is trained and used to recognize the target sample images. The flow
diagram of bubble plume target recognition is shown in Figure 7. Only training image
samples are used in establishing the visual vocabulary.
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Figure 7. Flow diagram of bubble plume target recognition in water column sampling images based
on BOVW features. During the training procedure, the parameters in BOVW feature extraction need
to be updated by continually changing the interest point extraction method and the number of the
visual vocabulary until the recognition accuracy reaches the maximum value.

2.3.3. Recognition Accuracy Assessment

The prediction results of the target recognition model only contain two results, namely,
the bubble plume target images or background noise images; therefore, the confusion
matrix can be used to describe model accuracy for binary classification, as shown in Table 1.
The accuracy assessments using the confusion matrix are listed in Table 2.

Table 1. Confusion matrix of binary classification.

Predicting Results

Truth
True False
Positive True Positive (TP) False Positive (FP)
Negative True Negative (TN) False Negative (FN)

TP and FP indicate that positive samples are identified as positive and negative samples, respectively, while TN
and FN indicate that negative samples are identified as negative and positive samples, respectively.
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Target

Detection

‘ ‘OV‘N —

Table 2. Accuracy assessment of SVM binary classification.

Accuracy Assessment Computational Formula
TP+TN
Accuracy A= TP+FP+TN+FN (10)
TP
Precision ratio P= 1p7rp 11)
_ _ TP
Recall ratio R= 17N (12)
. _ 2TP
Harmonic mean B = srpirpreN (13)

2.4. Target Detection Using BOVW Features
2.4.1. Precise Target Localization

Based on the recognition method, the flow diagram of bubble plume target detection
is shown as Figure 8.

SVM Predication

=) )

| Precise Localization

0000

Figure 8. Target detection using SVM classifier and BOVW features. The processing steps are shown
in (a-g).

A moving search window (Figure 8b) is used to traverse the water column image
(Figure 8a), and the score of each window image is predicted by the recognition model
based on the BOVW feature and SVM classifier. The size of the moving search window is
close to the sample image size, and the moving step was set as 1/4 of the search window
size. After traverse, the bubble target is covered by many search windows (Figure 8c), and
the outline rectangle of these detection windows can be extracted (as the green boundary
in Figure 8d). The initial detection of the bubble plume target is obtained, and more precise
detection results (Figure 8g) are processed by precise localization (Figure 8d-f).

The precise localization method is intended to achieve more accurate detection bound-
ary by gradually shortening the boundary range of the detection frame to obtain higher
model prediction scores. The steps are as follows:

1. First, gradually shrink the left boundary to the right, calculate the prediction scores of
the reduced images, and select the maximum-score position as the final left boundary;

2. Second, gradually shrink the right boundary to the left, calculate the scores of the
reduced images, and select the maximum-score position as the final right boundary
as the red boundary in Figure 8e;

3. Third, based on the above detection boundary, gradually shrink the top boundary
to the bottom, calculate the scores of the reduced images, and select the zero-score
position as the final bottom boundary;
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4. Finally, gradually shrink the bottom boundary to the top, calculate the scores of the
reduced images, and select the zero-score position as the final top boundary as the
yellow boundary in Figure 8f.

According to the shape and orientation characteristics of the bubble plume target, the
prediction score gradually increases as the initial detected left/right boundary shrinks to
the right/left, but gradually decreases when the target begins to get lost in the image (after
the maximum score). As to the top and bottom boundaries, the prediction score does not
change significantly when the image shrinks in the top-bottom direction. However, when
the image shrinks exceeding the bottom/top boundary and does not contain any targets,
the score rapidly decreases to the zero value.

For the multiple-target case, independent detection areas can be distinguished and
obtained based on the connectivity of detection frames. In each independent detection area,
accurate detection of these targets can be achieved using the aforementioned method.

2.4.2. Detection Accuracy

Intersection over Union (IolU) is a common standard for measuring the detection
accuracy of image targets. IoU measures the correlation between ground truth and predicted
bounding boxes. Higher correlation means higher detection accuracy.

For ground-truth box as A and predicted box as B, the IoU of A and B can be
calculated as

ANB
=—. 14
loll = Z—— (14)
Taking 0.5 as the IoU threshold, the correct detection can be defined as
true, IoU > 0.5
Correct = {/alse, IoU < 0.5° (15)

The correct detection rate is calculated using the correct detected target number N,
divided by the total target number N:

N,
rate; = WC (16)

3. Experiments and Results

To verify the validity and performance of the proposed method in this study, the
measured multibeam water column data in the Strait of Georgia in 2012 were used for
bubble target recognition and detection in the experiment, as shown in Figure 9. The
multibeam sonar used was Kongsberg EM 710 with an operating frequency of 73-81 kHz,
across-track beam aperture of approximately 130° and fixed beam number of 128 was
recorded in the measurement. In the experiment, our method was implemented using
MATLAB codes and built-in functions, as explained in Appendix A. The experiment
consists of two parts:

1.  BOVW feature extraction and training and validation of SVM classifier. During data
preparation, the measured multibeam data were used to construct the water column
images. The images containing bubble plume target and only background noises
were extracted as positive and negative samples and distributed in the training and
validation sample sets. Then, the BOVW features were extracted from these images
and the SVM classifier was trained using these features;

2. Bubble target detection in water column images. Based on the recognition model
using BOVW and SVM, the precise detection method of bubble plume targets was
applied to detect all of the bubble plume targets in the water column images of the
EM 710 multibeam sonar to prove the validity and generality of our detection method.
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Figure 9. Experimental regions (Strait of Georgia) of multibeam water column data.

3.1. BOVW Feature Extraction and Classification

51°

In this experiment, the recorded multibeam water column data (in *.wcd and *.all file)
were decoded based on EM data format. Then, the water column images were constructed

using the water column data packets.

3.1.1. Sampling from Multibeam Water Column Images

Positive samples which contain the bubble plume targets, and negative samples which
contains only background noises, are manually extracted and labeled to establish the
sample set, as shown in Figure 10. To avoid the problem of sample imbalance, the numbers
of positive and negative samples are the same as 700. The size of each sample image was

unified as 256 x 256 pixels.

...\

=l
NEZ
.

Figure 10. Positive and negative sampling from raw water column images.

Negative samples without bubble plume target in the image

The positive samples included partial or whole bubble plume targets in water column
images. These positive samples were identified and labeled manually. The negative samples
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contained various noise background images and some other targets (like fishes) which were
not discussed in this study. Meanwhile, because the water column images are fan-shaped,
the edge parts of the fan-shaped images were also considered in the positive and negative
samples to avoid the impact of edge SURF points on visual vocabulary construction.

3.1.2. Visual Vocabulary Construction and BOVW Feature Encoding

The visual vocabulary is the basis for encoding BOVW features. To construct the visual
vocabulary, the total sample set was divided into the training and validation set in a ratio
of 7:3. The visual vocabulary was constructed based on the image data of the training set to
achieve the BOVW feature encoding of both the training and validation sets.

The SURF point descriptions of all the images in the training set need to be extracted
according to the reasonable selection method, and then all SURF points were clustered
to construct the visual vocabulary. Considering the sample image size as 256 x 256 px,
several different SURF point extraction methods using 8 x 8, 16 x 16, 32 x 32 grids and
SUREF detector with different vocabulary word number k were selected and compared in the
experiment, respectively, and the corresponding results were listed and shown in Table 3.

Table 3. Parameter selection in constructing visual vocabulary.

SURF Point Word Number SURF Point Strongest Point Number Training Validation
. of Visual . for Each
Extraction Method Number PointNumber Accuracy Accuracy
Vocabulary Category
200 0.62 0.60
. 300 0.84 0.83
Grid [8 x 8] 400 4,014,080 3,211,060 1,605,530 0.86 0.83
500 0.71 0.69
200 0.74 0.73
. 300 0.81 0.76
Grid [16 x 16] 400 1,003,584 802,816 401,408 0.74 072
500 0.79 0.77
100 1.00 0.90
200 1.00 0.93
Grid [32 x 32] 300 250,880 200,704 100,352 1.00 0.95
400 1.00 0.94
500 1.00 0.94
200 0.86 0.79
300 0.47 0.46
Detector 400 419,928 331,000 165,500 0.96 0.89
500 0.92 0.80

The training and validation accuracy were calculated using the same SVM classifier.

The training and validation accuracy of each SURF point extraction method using the
quadratic SVM classifier were calculated, and the validation accuracies were sorted out as
Figure 11.

Table 3 shows that different SURF point extraction methods have significant effects on
the accuracy of the recognition model. In the grid extraction methods, with the increase
in the grid size, the number of extracted SURF points gradually decreased, but the model
accuracies may increase or decrease, indicating the particular importance of that reasonable
feature scale. The detector method discovered feature points through the SURF detection
algorithm. When the vocabulary word number was set as 300, the training and validation
accuracies were both less than 0.5, which showed the difficulty of finding enough feature
points in noise-affected sonar images by SURF algorithm.
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Figure 11. Validation accuracies of recognition model using BOVW feathers with different SURF
point selection method.

By comparison, the grid selection method using 32 x 32 px grids was used in the
experiments, and the vocabulary word number k was set as 300.

3.1.3. SVM Classifier Training and Validation

To train an SVM classifier, the kernel function needs to be specified first. Different
classifiers were used to classify the BOVW features obtained in Section 3.1.2, and the
validation accuracy, training time, and prediction speed of each classifier were computed
and listed in Table 4. By comparison, the quadratic SVM classifier had the highest validation
accuracy, reasonable training time, and prediction speed. Therefore, the quadratic function
was chosen as the SVM kernel function.

Table 4. Comparison of different classifiers using BOVW features.

e Validation Prediction Speed .. .
Classifier Accuracy (%) (Observatiolr)lls) Training Time (5)
Medium Tree 90.3 750 8.15
Linear Discriminant 92.5 850 10.36
Logistic Regression 72.1 550 20.63
Linear SVM 98.3 860 10.16
Quadratic SVM 98.6 810 10.01
Cubic SVM 98.4 800 10.56
Medium Gaussian SVM 97.9 1200 11.07
Medium KNN 95.2 950 12.61
Bagged Trees Ensemble 96.9 600 19.65

After determining the kernel function, the hyperparameters, including the box con-
straint and feature scale, also need to be optimized. The hyperparameter box constraint
(also called soft margin) controls the maximum imposed penalty of observed values that
violate the margins to prevent model overfitting. If the box constraint is larger, the SVM
classifier allocates fewer support vectors, resulting in longer training times.

SVM classifiers are also sensitive to the feature scales. The hyperparameter Feature
Scale is used to scale the feature parameters, which means that all the elements of the
BOVW features should be divided by the Feature Scale value. During the training pro-
cess, the hyperparameters of the SVM classifier were optimized by finding the minimum
model validation loss when constantly changing the Box Constraint and Feature Scale
hyperparameter values, as shown in Figure 12.
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Figure 12. Optimization of hype-parameter Feature Scale and Box Constraint by finding the minimum
SVM function value.

After training, the SVM model was used to predict the image data, and the results
of some water column images were listed in Table 5. As shown in the table, these images
which contained bubble plume targets (Table 5a—d) had more valid SURF points and more
abundant visual words. Noise background images (Table 5f—g) usually had fewer valid
SUREF points and the corresponding visual words were relatively simple.

Table 5. Prediction results of water column images set using BOVW features.

Test Image BOVW Feature Prediction Score Prediction Class Manual Label
3 03
(@) 3 (0, —2.8254) Bubble plume Bubble plume
§ 0.3
o025
g 0.2
(b) %ms (0, —1.4815) Bubble plume Bubble plume
3 o1
L% 0.05
0
§ 0.3
g 025
g 0.2
(0) go1s (0, —2.6271) Bubble plume Bubble plume
S o1
£ 0.05 | M

o
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Table 5. Cont.

Test Image BOVW Feature Prediction Score Prediction Class Manual Label
g 03
o025
g 0.2
(d) gots (0, —1.2373) Bubble plume Bubble plume
$ 01
f;_'-) 0.05
0
§ 0.3
g 0.25
E 0.2
(e) gots (—1.4502, 0) Noise Noise
S o1
E 0.05
00 100 200 300
g 03
Eo2s
g 0.2
() go1s (—1.3467, 0) Noise Noise
S o1
oL
0 100 200 300
g 03
o025
E 0.2
(8) %ms (—1.2134, —0) Noise Noise
S o1
IE 0.05
0
§ 03
o025
g 0.2
(h) goe (—0.9665, —0.0335) Noise Noise
3 0.1
L?% 0.05
00 100 200 300
Visual word index
Overall Confusion Matrix {ggg (1)8(5)] Validation Accuracy 0.98

For images in Table 5c,e, the noise backgrounds were quite similar, so the BOVW
features of these two images were also similar to each other. However, obvious differences
existed in the frequencies of special visual words (i.e., near index 190) between these two
images, which proved the validity of the BOVW features in the recognition of the bubble
plume targets. By calculation, the prediction accuracies of the training and validation set
were 0.99 and 0.98, respectively.

3.2. Automatic Detection of Bubble Plume Target in Water Column Image

After verifying BOVW features and SVM classifier in recognition of bubble plume
targets, we carried out the target detection experiment of water column images based on
the proposed procedure (Figure 8).

Fixed and floating anchors are typically used in the detection of the possible targets to
find the initial positions, as shown in Figure 13. The usage of fixed anchors (Figure 13a)
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may result in missing detection of small targets or losing parts of large targets. The usage
of floating anchors can effectively avoid these problems, but may result in large initial
detection boxes (Figure 13c). Therefore, further precise target localization is needed, as

shown in Figure 14.

(b)

SRR IR S PP M) S Ep—— Ep—

[ |Detected [__] None

Figure 13. Target detection results using fix anchor boxes (a) and moving anchor boxes (b). (c) is the

maximum boundary of (b).
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Figure 14. Precise target localization of bubble plume target: (a) prediction score of three detection
boxes; (b,c,e,f) prediction score curves in left, right, top, and bottom shrinking direction; (d) final

detection box result.
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As shown in Figure 14c,e, the prediction score of the image gradually increased
by constantly narrowing the detection box in the left/right directions. When the target
boundary was reached, the score reached the maximum value, then started to decrease.
When the detection box reached the other boundary of the target, the score would be close
to zero because the image contained only background noises. Thus, the position of the
maximum prediction score indicated the left and right boundary of the target detection
box. Moreover, the maximum-score position in the left/right direction should correspond
to the zero-score position in the right/left direction.

After determining the left and right boundaries, the top and bottom boundaries could
be further obtained. Due to the orientation of the bubble plume target, the top/bottom
boundaries could not be determined by the minimum value of the score curves, as shown
in Figure 14b,f. Thus, the position of the top/bottom boundary should be determined by
the minimum value of the bottom/top score curves. The final detection box is shown in
Figure 14d, with prediction score 3.49 much larger than the initial score 0.88.

More water column images from the experimental data were processed by our detection
method, and the detection results were obtained in Figure 15. As shown in Figure 15, the
bubble plume targets of different sizes and backscatter strengths had been correctly detected.
Taking the IoU value not less than 0.5 as the correct results, we calculated the correct detection
rate of bubble plume targets in all the testing water column images as 91.7%. Therefore, the
experimental results prove the validity and correctness of our detection method.

Water column image (i) Our method (ii) Manual results (iii) IoU

0.8250

0.9799

0.8685

1: 0.9381
2:0.9317

1:0.8017
2:0.8834
3:0.8762
4:0.7291

Figure 15. Comparison of our predicted and ground-truth detection results. (a—e) are five water
column images which contain bubble plume targets. The yellow and green detection boxes show
predicted and ground-truth results.
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4. Discussion

In this section, our recognition and detection method of bubble plume targets in water
column images was compared with other methods.

4.1. Feature and Classifier Comparison

To compare with the proposed method, various combinations of feature extraction
methods and classifiers were used for the recognition of bubble plume targets in the water
column images. These extracted features included gray-level cooccurrence matrix (GLCM),
Tamura, local binary pattern (LBP), histogram of oriented gradient (HOG), the combination
of these features, and Haar-LBP [33]. The results are shown in Table 6.

Table 6. Comparison validation accuracies of various feature extraction and classifier.

Featu;;el;lﬁ:;ctlon 153?:;:; Classifier Accuracy (%) Prec1s:((;or; Ratio Reca(lol/(;{atlo Fy (%)
GLCM (d=1) 12 Linear SVM 77.59 75.32 82.07 78.55
GLCM (d =5) 12 Medium Tree 71.03 67.84 80.00 73.42
GLCM (d =10) 12 Cosine KNN 70.69 67.65 79.31 73.02

GLCM (d = 1&5) 24 Logistic Regression 82.41 81.76 83.45 82.59
Tamura 3 Medium Tree 79.31 81.48 75.86 78.57
Tamura 6 Fine Tree 84.48 84.25 84.83 84.54

LBP (64 x 64) 59 Medium Gaussian SVM 90.00 94.62 84.82 89.45
LBP (64 x 64) 10 Medium Gaussian SVM 79.31 78.15 81.38 79.73
LBP (32 x 32) 236 Cubic SVM 94.14 94.44 93.79 94.12
HOG (32 x 32) 36 Weighted KNN 82.76 82.31 83.45 82.88
HOG (16 x 16) 324 Quadratic SVM 89.66 89.66 89.65 89.65
HOG (8 x 8) 1764 Linear SVM 76.55 74.21 81.38 77.63
GLCM + Tamura 30 Quadratic SVM 91.72 90.60 93.10 91.84
GLCM + LBP 83 Quadratic SVM 91.38 90.54 92.41 91.47
GLCM + HOG 60 Quadratic SVM 90.34 87.74 93.79 90.67
Tamura + LBP 65 Quadratic SVM 93.10 92.52 93.79 93.15
Tamura + HOG 42 Quadratic SVM 90.34 90.91 89.66 90.28
LBP + HOG 95 Quadratic SVM 90.34 89.80 91.03 90.41

GL%@T;‘;SE“ * 125 Quadratic SVM 95.17 95.80 94.48 95.14
Haar-LBP [33] - AdaBoost 95.80 99.35 82.70 90.26

BOVW 300 Quadratic SVM 98.62 99.30 97.93 98.61

The parameter d of GLCM feature means the calculation step in pixels. Tamura features contain coarseness,
contrast, directionality, line likeness, regularity and roughness. 8 x 8,16 x 16, 32 x 32 and 64 x 64 in LBP and
HOG features means the selected unit sizes in pixel.

The results in Table 6 showed that the GLCM features could achieve the accuracy
of 0.824 by combining steps 1 px and 5 px, the Tamura features achieved an accuracy of
0.845 when all six features were used, and the HOG features could reach 0.897 accuracy
using 16 x 16 pixel calculation units. However, the recognition accuracies still need to be
improved when using these feature descriptions of bubble plume targets.

The combination of LBP features and cubic SVM could reach 0.941 recognition accuracy
when selecting 32 x 32 pixel computing units, indicating that LBP features could effectively
express the direction characteristics of bubble plume targets. By combining LBP with Haar
features, the precision ratio could be 0.994, but the accuracy was slightly improved to 0.958
due to the insufficient recognition accuracy of negative samples (noise background). This
result showed that the applicability of LBP directional features on noise background images
needed further improvement. The method proposed in our study could obtain a precision
ratio of 0.993 and accuracy of 0.986, thereby proving the advantage of BOVW features in
recognizing the bubble plume targets.
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4.2. Detection Result Comparison

To compare with the previous method [33], we processed the same water column
image using histogram similarity detection method and our method to obtain the following
results, as shown in Figure 16.

ToU: 0.4439 ToU: 0.8458

Figure 16. Comparison between our detection method and histogram-similarity detection method.
The red, yellow, and green rectangles are the detection boxes of the histogram similarity method, our
method, and ground truth, respectively. IoU values were calculated using Equation (13). (A): Raw
Water Column Image; (B): Detection Result using Histogram Similarity; (C): Our Detection Result;
(D): Manual Ground Truth.

As shown in Figure 16B, the two main problems of the detection method based on
histogram similarities were the fixed width of detection boxes and the miss detection of
targets in low-echo-intensity areas, resulting in the IoU value less than 0.5. By using a more
reasonable detection strategy, our method avoided these two problems and obtained the
IoU value as 0.85. Our detection result was very close to the manual ground-truth result.
The comparison results further proved the effectiveness of our proposed detection method.

4.3. Advantage Compared with Deep Learning Methods

Deep learning methods are widely applied in the recognition and detection of various
image targets, but the high accuracies of deep learning methods need to be guaranteed by a
large amount of data samples and corresponding manual labels. For targets in multibeam
water column images including bubble plumes, establishing a large number of sample data
could be very difficult, which would limit the accuracies of deep learning recognition and
detection models.

In our method, based on the characteristics of bubble plume targets, we only need to
extract several hundreds of sample data to achieve high-accuracy recognition and detection
results. Our method is highly suitable for bubble plume target detection in new water areas
without existing sample data. For other types of water column image targets, the proposed
method can also be easily retrained according to the special features of these targets.

4.4. Other Important Issues
4.4.1. Using SURF to Detect the Target

To discuss the ability of SURF detection on targets under noise interference in water
column images, we directly using SURF method to detect interest points in the image
(Figure 17A), and the detection results were obtained as Figure 17B. Moreover, with restric-
tions on feature direction (near left or right) on scale, the detection results as Figure 17C
were obtained. In Figure 17C. the detected SURF points were all around the targets, which
proved that conventional SURF with reasonable parameters can extract effectively feature
points in water column images.
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Figure 17. Using SURF directly to detect the target. (A) is the original image, (B) is the SURF
detection result of (A), and (C) is the SURF detection result of (A) with restrictions on feature scale
and direction.

4.4.2. Ghost Targets and Targets outside the Minimum Slant Range

Besides the real bubble plume targets, ghost targets and targets outside the minimum
slant range (MSR) also need to be paid attention, as shown in Figure 18.

Ghost target Real target

Targets outside MSR \ Ghost target

&,

| S St e e~ il .
LIAER ""“"""‘"“‘"/AM

RO

Figure 18. Different types of targets in the water column images.

The ghost targets are not really existing and are caused by the side lobe, presenting
a similar shape to the target. However, due to the orientation of these, ghost targets are
quite different; SURFs of ghost targets are different from those of real targets. Therefore,
our method using BOVW features achieved good recognition rate on ghost targets.

Our method mainly focuses on the targets inside MSR, because the backscatter samples
outside MSR are heavily affected by side lobes. The detection of targets outside MSR is
quite a challenge, which would be studied in our future works.

4.4.3. Application on Other Multibeam Water Column Data

The multibeam water column images measured by different sonar in different wa-
ter conditions could be quite different. The multibeam water column data (Cruise ID:
EX1402L3) [47] measured in Gulf of Mexico, 2014, were chosen for this discussion, as
shown in Figure 19A. The multibeam sonar was Kongsberg EM 302 with an operating
frequency of 26.5-31.7 kHz, across-track beam aperture of 130° and fixed beam number of
288 was used. Due to different frequencies and different water conditions, the extracted
features of the water column image (Figure 19B) are quite different from those of the data
in our experimental section. The trained model using multibeam data of EM 710 sonar
cannot be directly used for data measured using EM 302. To recognize and detect targets in
this measurement, the BOVW features and SVM model need to be re-trained. Moreover,
how different sonars and water conditions affect the accuracy of our method would be our
future research direction.
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Figure 19. Multibeam water column data in Gulf of Mexico. (A) is the track lines, and (B) shows a
multibeam images of this measurement.

5. Conclusions

Based on the characteristics of bubble plume targets in multibeam water column
images, our proposed method extracts the BOVW features of the targets and uses the SVM
classifier for target recognition. On this basis, we further propose a precise target detection
method of bubble plume targets in water column images. Through experiments on the
measured data, the validity and correctness of each step in the target recognition method
were verified, including sample set establishment, parameter selection of BOVW features,
and SVM classifier optimization. The validation accuracy of our recognition method
was 98.6%. In the target detection experiment, based on the high-accuracy recognition
model, the accurate detection rate of bubble target targets in the water column images
was 91.7% and most of the detection results were close to the manual ground truths.
Compared with various combinations of features and classifiers, the advantages of BOVW
and SVM in target recognition was proved. Compared with the previous detection method,
the proposed method solved the existing problems and effectively improved the target
detection accuracy. The proposed recognition and detection method can also be applied to
more types of water column image targets, and also has significance to the exploration and
research of underwater resources.
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Appendix A

The proposed method was implemented using MATLAB codes and built-in functions.
The raw multibeam data were decoded using our written MATLAB code based on EM
data format document. Then multibeam water column images were constructed using
the decoded data. The samples were extracted and labeled manually, and the target and
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noise samples were stored in different folders. The BOVW feature extraction were realized
using the “bagOfFeatures” function from MATLAB computer vision toolbox. The function
parameters need to be carefully selected as discussed in Table 3. The SVM model training
were realized using the “templateSVM” function from MATLAB statistics and machine
learning toolbox with reasonable parameters. The model prediction scores were obtained
using the “predict” function from MATLAB statistics and machine learning toolbox. The
detection methods were realized by our MATLAB codes following the steps in Section 2.4.1
and Figure 14. The MATLAB academic license was offered by Anhui University.
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