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Abstract: The fusion of global navigation satellite system (GNSS) and interferometric synthetic aper-
ture radar (InSAR) deformation data can leverage the advantages of GNSS high temporal resolution
and InSAR high spatial resolution, and obtain more abundant deformation data for constraints on
geophysical structural and mechanical parameters. Existing studies seldom consider the spatial
heterogeneity of largescale deformation data, which easily leads to obvious spatial aggregation of
errors in the results of fusion. Here, we propose a novel multiresolution segmentation fusion (MRSF)
method that uses a multiresolution segmentation algorithm to automatically classify the spatial
heterogeneity of InSAR deformation data with similar deformation characteristics. We applied the
MRSF method to the fusion of GNSS and InSAR deformation data covering the central valley aquifer
system (CVAS) in southern California to verify its precision and robustness. Results show that the
MRSF method can accurately reflect spatiotemporal evolution characteristics of displacement data
and reliably estimate deformation for the times and locations of missing data. We then tested this
method for geophysical parameter estimation by constructing three different sets of data, including
dense GNSS sites, sparse GNSS sites, and sparse GNSS sites fused with InSAR data using MRSF,
to invert the slip distribution of the Cascadia subduction zone. Results show that the inverted slip
of the fused InSAR and GNSS data is comparable to that of the dense GNSS sites. Therefore, the
MRSF method can obtain deformation results with high precision and high spatiotemporal resolution
and effectively compensate for the lack of data caused by sparse GNSS sites during the geophysical
inversion process.

Keywords: GNSS and InSAR data fusion; multiresolution segmentation algorithm; spatial
heterogeneity; support vector regression; inversion of slip distribution

1. Introduction

Deformation data with high spatiotemporal resolution and precision are important for
geohazard monitoring [1,2] and geophysical source inversion [3]. The global navigation
satellite system (GNSS) has the advantages of high precision and high temporal resolution.
However, owing to the high cost of deployment and maintenance, the spatial resolution
of current GNSS sites in most regions of the world remains low. Even in California
(http://sopac-csrc.ucsd.edu/index.php/crtn/, accessed on 14 September 2021), where
GNSS sites are densely distributed, their spatial resolution is only 10–20 km [4]. On the
other hand, interferometric synthetic aperture radar (InSAR) has a high spatial resolution
(tens of meters) but relatively poor temporal resolution due to the infrequent satellite revisit
time, and contains various sources of noise that are not present in GNSS or have been stably
corrected with the years of development of GNSS technology [5].
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Fusing GNSS and InSAR data leverages the strength of each dataset and enables
deformation data with higher spatiotemporal resolution. Liu et al. [6] applied the spa-
tiotemporal random effects (STRE) model to the fusion of GNSS and InSAR deformation
data, but they did not consider the spatial heterogeneity of the deformation data, resulting
in regional spatial clustering errors. Shi et al. [7] added spatial heterogeneity constraints to
the STRE model, improving the accuracy of results of data fusion, but relied on external
prior information to obtain the extent of spatially heterogeneous regions. Yan et al. [8]
established a method to automatically determine the optimal location of the spatial bases,
which improved the reliability and applicability of the STRE model, but was less effective
for deformation data fusion with obvious spatial heterogeneity. In general, none of these
methods of fusion of GNSS and InSAR deformation data can automatically characterize
spatially heterogeneous information in them.

Existing studies have shown that spatiotemporal evolution characteristics of deforma-
tion in different regions are related to specific environmental and medium properties, which
often results in largescale deformation of signals exhibiting notable spatial heterogeneity.
Examples of this heterogeneity include uneven surface uplift and subsidence caused by
oil and gas exploitation [9], seasonal settlement and uplift from farmland groundwater
pumping and irrigation [10], and periodic irregular land reclamation caused by sediment
compaction [11]. Therefore, in the process of fusing GNSS and InSAR deformation data, it is
necessary to automatically identify heterogeneous objects according to spatiotemporal evo-
lution characteristics of deformation data and assist the fusion model in performing more
targeted processing to reduce the spatial aggregation of fusion errors, thereby improving
accuracy and applicability.

Here, we focus on addressing the consideration of spatial heterogeneity in the fusion
method and the application of its results to the inversion of geophysical parameters. In this
paper, we first introduce our method for the fusion of GNSS and InSAR deformation data
that automatically accounts for spatial heterogeneity. Next, we apply the method for the
fusion of GNSS and InSAR deformation data in the central valley aquifer system (CVAS)
with a large deformation magnitude, high spatial heterogeneity, and dense data coverage,
and evaluate the resulting accuracies through a comparison with independent GNSS and
InSAR data. Then, we apply the fusion method to the inversion of slip distribution in
the Cascadia subduction zone with a high risk of ultra-strong earthquakes and assess
experimental results by comparing them with previous estimates. Finally, we summarize
the key features and advantages of this fusion method.

2. Methods

The multiresolution segmentation fusion (MRSF) method divides the deformation
field into three parts: spatial mean, results of spatial modeling, and residuals of spatial
modeling. The MRSF method first unifies the framework of GNSS and InSAR deforma-
tion data, then uses the multiresolution segmentation (MRS) algorithm [12,13] to extract
the characteristic spatial distribution of deformation in InSAR data and form featured
blocks/patches through clustering adjacent sites with similar deformation characteristics
(Figure 1). Fourier curve fitting [14] was performed on the spatial mean of each block
in the temporal domain to obtain the spatial mean of each block at each observation mo-
ment because it has good performance on data with certain temporal repeating patterns.
Next, the demeaned deformation data were spatially modeled by combining the enhanced
inverse-distance weighting method [15] and the least squares method [16] to consider
the spatial location of the site and its deformation characteristics. Finally, support vector
regression (SVR) [17] was used to estimate the residuals of spatial modeling in both the
temporal and spatial domains and obtain deformation results with high precision and high
spatiotemporal resolution.
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Figure 1. Flow chart for the fusion of global navigation satellite system (GNSS) and interferometric
synthetic aperture radar (InSAR) deformation data.

2.1. Framework for the Unification of GNSS and InSAR Data

Because GNSS data provide information on deformations in the north, east, and
vertical directions relative to a fixed framework, and InSAR data provide information on a
one-dimensional deformation along the line-of-sight (LOS) direction relative to a reference
point in the area, it is necessary to unify their reference frames for subsequent data fusion.
In the MRSF method, we achieved reference frame unification using the GPS-enhanced
InSAR (GInSAR) method proposed by Neely et al. [18]. The GInSAR method first projects
GNSS displacement data to the LOS direction of InSAR data [19] according to Formula (1),
then fits surfaces to the differences between InSAR and GNSS displacements, restores the
fitted difference surface to each InSAR interferogram, and finally calculates the InSAR
displacement time series using the temporally connected small baseline subset method [18],
thereby enabling an interferometric time series of deformation projected into an absolute
reference frame (that of the GNSS).

ZLOS = Znsin(α)sin(θ)− Zecos(α)sin(θ) + Zucos(θ), (1)

where ZLOS is the deformation value of the GNSS site converted to the LOS direction; Zn,
Ze, and Zu are the deformation values in the north, east, and vertical directions, respectively,
α is the azimuth angle of the satellite heading vector (clockwise from north is positive), and
θ is the radar incidence angle at the target point.

2.2. Clustering of InSAR Data

The MRS algorithm was used to cluster InSAR deformation data into multiple sites
with similar deformation characteristics. The MRS algorithm determines whether two sites
or regions are adjacent by color similarity (corresponding to the magnitude of the signal)
and shape similarity. The shape similarity includes parameters that describe compactness
and smoothness.
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To meet the requirements of the MRS algorithm for input data and ensure that defor-
mation data cover the entire monitoring period, we (1) selected several periods of data at
equal intervals from all displacement sequences, (2) summed the selected data to obtain
the cumulative displacement result, (3) classified the displacement result into 32 displace-
ment classification maps using the Jenks natural discontinuity classification method [20],
(4) input the displacement classification map into the MRS algorithm, and (5) divided the
research area into multiple homogeneous objects of varying size with adjacent spatial
locations and similar deformation features. The process flow is shown in Figure 2.
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2.3. Fitting Spatial Mean

The spatial mean is a part of the MRSF method; therefore, we first calculated the
spatial mean of InSAR deformation data in each class block. Then, through Fourier curve
fitting [14], we obtained the spatial mean of the deformation values at all observation times
using the following formulas:

µ(t) =
1
N ∑N

i=1 zi, (2)

µ̂(t) = a0 + ∑n
m=1[am cos(mw0t) + bm sin(mw0t)], (3)

where µ(t) is the spatial mean, t is the observation time, N is the number of InSAR pixels,
zi is the InSAR deformation value. µ̂(t) is the fitting result of the spatial mean, a0 is the
constant term, n is the number of expansion stages, am, bm (m = 1, 2, . . . , 8) are amplitude
coefficient terms, and w0 is the frequency.

2.4. Spatial Modeling

After removing the spatial mean calculated, we used demeaned deformation data for
our spatial modeling analysis. The basic idea of spatial modeling is to take the demeaned
deformation of different sites as the embodiment of the deformation correlation between
sites and its continuous evolution over time [21], with the residual of spatial modeling
determined by model and observation errors, which was calculated as follows:

Z(x, t)− µ̂(t) = S(x)a(t) + V(x, t), (4)
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where Z(x, t) is the deformation observation value, x is the site location, µ̂(t) is the esti-
mated spatial mean, S(x) is the spatial basis used to describe the deformation correlation
between the different sites, a(t) is the time-varying state quantity corresponding to the
spatial basis, which is used to describe evolution over time, and V(x, t) is the residual of
the spatial modeling.

Considering that the deformation value of the site is related to its geographic location
and specific deformation characteristics, we divided the spatial basis into two parts for
construction. One part is related to the site location and is calculated using the improved
inverse-distance weighting method [15], and the other part is related to the deformation
characteristic and is calculated using the least squares method [16]. The components are
formulated as follows:

S(xi) = αλ(xi) + (1− α)β(xi), (5)

λ(xi) =
d−p1

0i ∑n
j=1 dp2

ij

∑n
i=1

[
d−p1

0i ∑n
j=1 dp2

ij

] , (6)

β(xi) =
(

zT
0 z0

)−1
zT

0 zi, (7)

where S(xi) is the spatial basis value corresponding to the InSAR pixel xi, λ(xi) is used
to describe the spatial correlation of xi in the entire class block, β(xi) is used to describe
the similarity of the deformation characteristic between xi and the reference site x0, α and
(1− α) are the corresponding weights of λ(xi) and β(xi), x0 is the reference site of the class
block (we use the geometric center of the block), d0i is the distance from x0 to xi, dij is the
distance from xi to xj, n is the number of pixels in the class block, p1 and p2 are the indices
corresponding to d0i and dij, and z0 and zi are the displacement observations for pixels x0
and xi, respectively.

The value of the spatial modeling residual V(x, t) is small and it can be approximated
as white noise. Without considering the residuals of spatial modeling, the estimation of
the time-varying state quantity â(t) can be solved using the least squares method. The
calculation formula is as follows:

â(t) =
[
S(x)′S(x)

]−1S(x)′[Z(x, t)− µ̂(t)], (8)

Subsequently, the time-varying state quantities at all observed moments can be ob-
tained by Fourier curve fitting (as in Formula (3)). To reduce reliance on prior information,
we employ the grid search method to determine the optimal estimates of α, p1, and p2.
The search criterion is the smallest value of the spatial modeling residual V(x, t). Once the
optimal estimates of α, p1, and p2 are obtained, the results of spatial modeling with a high
spatiotemporal resolution can be calculated using the following equation:

Ẑ(x, t) = µ̂(t) + S(x)â(t), (9)

2.5. Estimation of Residuals of Spatial Modeling

SVR is a supervised learning algorithm that is used for regression analysis. It has unique
advantages and good computational performance for regressions with high-dimensional
features [22]. Here, we used SVR [17] to estimate the residuals for spatial modeling in the
temporal and spatial domains, which is calculated as Formula (10).

v̂ = [v̂InSAR, v̂GNSS] = SVR([llInSAR, llGNSS, tInSAR, tGNSS], [vInSAR, vGNSS]), (10)

where llInSAR and llGNSS are the latitude and longitude coordinates of InSAR pixels and
GNSS sites, tInSAR and tGNSS are the observation times corresponding to InSAR and
GNSS deformation data, vInSAR and vGNSS are the differences between InSAR and GNSS
deformation observations and results of spatial modeling.
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2.6. Verification of Accuracy of Results of Fusion

Combining estimation results of residuals of spatial modeling with the spatial mean
and results of spatial modeling, high precision and high spatiotemporal resolution displace-
ment fusion can be obtained. The calculation formula is as follows:

Ẑ(x, t) = µ̂(t) + S(x)â(t) + v̂, (11)

To verify the accuracy of the results of fusion, GNSS and InSAR deformation ob-
servation data involved in the modeling were used for the verification of internal ac-
curacy, the leave-one-out cross-validation method [23] was used for the verification of
external accuracy.

3. Result

To verify the application of the MRSF method in GNSS and InSAR data fusion and
geophysical parameter inversion, we designed and completed two sets of experiments. The
first set of experiments is to fuse the GNSS and InSAR displacement time series data in the
CVAS region, focusing on verifying the reliability and accuracy of the MRSF method in
data fusion; the second set of experiments compares whether the results of data fusion are
used for slip distribution inversion, mainly to prove that the MRSF fusion algorithm can
complement the monitoring data well and obtain more accurate inversion results when the
GNSS data is sparse.

3.1. MRSF Experiment for CVAS
3.1.1. GNSS and InSAR Data

GNSS and InSAR displacement time series data for CVAS were provided by Neely,
and details of data processing can be found in Neely et al. [18]. InSAR data of the Sentinel-
1A/B missions cover approximately 250 km × 160 km and include 49 acquisitions from
8 November 2014 to 1 February 2017. InSAR displacement time series data are shown in
Figure S1. GNSS data include daily displacement time series products from 112 contin-
uously operating reference sites provided by the Plate Boundary Observatory [24], and
they can be downloaded from ftp://data-out.unavco.org/pub/products (UNAVCO is a
university-governed consortium facilitating research and education in geoscience using
geodesy). Spatial distributions of GNSS and InSAR data are shown in Figure 3.Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 20 
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In order to evaluate the accuracy of the GInSAR processing results, after the GNSS
displacement is transferred to the LOS direction of InSAR, the error RMS value between
GNSS and the GInSAR result is calculated and plotted in Figure 4.
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LOS direction and the GInSAR result.

The statistical results of the error RMS value in Figure 4 show that more than 75% of
the GNSS sites and GInSAR results have error RMS values within 10 mm, and only 3 GNSS
stations have error RMS values greater than 20 mm. This proves that the accuracy of the
InSAR displacement time-series data used in our experiment is reliable.

3.1.2. Experiment Fusion Results

We calculated cumulative displacement and performed data clustering processing as
described in Section 2.2 by selecting three periods of InSAR data (9 December 2015, 24 July
2016, and 1 February 2017). We obtained 3641 homogeneous objects, as shown in Figure 5a,
where the scale, shape, and compactness parameters are set to 50, 0.3, and 0.5, respectively.

From the classification results (Figure 5a), we found that the MRS algorithm performed
well by considering spatial heterogeneity in information on deformation. The performance
of the MRS algorithm is evidenced in the central and southwestern marginal regions,
where the complex spatial evolution characteristics of deformation are characterized by the
small spatial extent of the classified blocks, and the location of the block boundary lines
is consistent with changing deformation information in detail. In other regions, where
spatial evolution characteristics of deformation are relatively stable, the spatial range of the
classification block is large, and the spatial distribution is sparse.

To assess and validate the ability of MRS to capture the spatial heterogeneity of defor-
mation data, we also implemented the clustering process on the displacement classification
map generated in step 3 of Section 2.2 via quadtree decomposition [25]. After comparing a
number of different parameter settings and comprehensively considering the number of
homogeneous objects, the correspondence between the classification results and the spatial
distribution of the deformation data, we chose a block homogeneity threshold of 0.5 and
a minimum block size of 32, and the resulting 3084 homogeneous objects are shown in
Figure 5b. To better evaluate the influence of different parameters on the quadtree classifica-
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tion results, we selected eight different sets of parameters and plotted their corresponding
classification results in Figure S2. Obviously, both the minimum block size and the block
homogeneity threshold can have an impact on the classification results, but the effect of the
minimum block size is significantly larger than that of the block homogeneity threshold.
For deformation details, if the minimum block size is set too large, spatial heterogeneity
cannot be successfully identified; and if it is set too small, it is easy to be over-classified.
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Figure 5. Classification results corresponding to the multiresolution segmentation algorithm (a) and
quadtree decomposition method (b). The grey solid line represents the boundary between different
class blocks. Colors represent cumulative displacement values for three periods of interferometric
synthetic aperture radar data, warm colors (i.e., positive values) indicate surface displacement
towards the satellite, and cold colors (i.e., negative values) indicate motion away from the satellite.
Red triangles represent locations of the global navigation satellite system sites.

After classification using the MRS algorithm, we calculated the spatial mean of each
class block (results for six blocks are plotted in Figure S3). Following Section 2.4, we
conducted spatial modeling by increasing α from 0 to 1 in increments of 0.05, and with
p1 and p2 increasing from 0.1 to 20 in increments of 0.1. Results of spatial modeling from
48 periods of InSAR displacement and 112 GNSS sites and their corresponding residuals
are shown in Figures S4, S5 and S6a–c, respectively.

After spatial modeling, we use SVR to estimate the residuals of spatial modeling in
the spatiotemporal domain. The search range of the penalty factor and kernel function
parameters was increased from 2−8 to 28 by multiples of 2. Results of fusion and residuals
of the 48 periods of InSAR data and 112 GNSS sites are shown in Figures S7, S8 and S9a–c,
respectively.

3.1.3. Leave-One-Out Cross-Validation

We used the leave-one-out cross-validation method to verify the accuracy of the fusion
model by selecting a period of InSAR data or a GNSS site to exclude in the modeling, and
then compared the subsequent results of fusion with data that did not participate in the
modeling. We selected validation results and residuals for five periods InSAR data, as
shown in Figure 6, while the validation results and residuals for all 48 periods of InSAR
data and 112 GNSS sites are shown in Figures S10, S11 and S12a–c, respectively.
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Figure 6. Leave-one-out cross-validation results and residuals corresponding to five periods of
interferometric synthetic aperture radar (InSAR) data; each row represents one period of data. The
first column represents InSAR observation data, second column represents results of fusion, third
column represents residuals, and fourth column represents the histogram of residuals. Warm colors
(i.e., positive values) indicate surface displacement toward the satellite, and cold colors (i.e., negative
values) indicate motion away from the satellite. Circles represent locations of global navigation
satellite system sites, and filled colors represent the deformation values.

3.2. Inversion of Slip Distribution of the Cascadia Subduction Zone
3.2.1. Data for Inversion of Slip Distribution

To verify the practicability and reliability of the MRSF method in the estimation of
geophysical parameters, we applied it in the inversion process of slip distribution in the
Cascadia subduction zone. We leveraged GNSS data from a program (Network Inversion
Filter) developed by Batlow et al. (https://www.bartlowcrustaldef.com/software.html,
accessed on 5 June 2021). From this dataset, we selected 97 GNSS sites with data spanning
from 12 May 2011 to 8 August 2011 (90 days in total). Here, we test the improvement of
the MRSF method on the inversion of slip distribution in the case of sparse GNSS sites to
verify its accuracy and reliability for geodetic data fusion. Because we did not have InSAR
data for the study area during this time period, we used numerical simulation methods
to obtain InSAR data. Briefly, this was calculated by adding Gaussian white noise to the
product of the slip distribution inverted by 97 GNSS sites and the elastic Green’s function,
as described by Formula (12).

[dN , dE, dU ] = G ∗ S + ε, (12)

https://www.bartlowcrustaldef.com/software.html
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where, dN , dE, and dU represent the deformation values of InSAR pixels in the north, east,
and vertical directions, respectively. G is the value of the elastic Green’s function, S is the
slip distribution obtained by inversion of the deformation data of 97 GNSS sites, and ε is
the Gaussian white noise. After calculating dN , dE, and dU , we projected them to the LOS
direction of InSAR according to Formula (1). In the fusion experiment of CVAS, we found
that the difference between GNSS and InSAR data after the unification of the framework
(Figures 4 and S1) was small; therefore, we calculated the signal-to-noise ratio of InSAR data
based on the average signal-to-noise ratio of GNSS sites within the coverage of InSAR data.

To simulate InSAR data more realistically, the spatial coverage of InSAR data was
determined by the coverage of the Sentinel satellites (https://comet.nerc.ac.uk/comet-lics-
portal/, accessed on 7 December 2021, [26]), and the observation date was obtained by
referring to the observation date of the Sentinel satellites (Table S1). The spatial localization
of the fault depth contours was based on the work of McCrory et al. [26]. A specific spatial
distribution map of data is presented in Figure 7.
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Figure 7. Spatial distributions of topography, global navigation satellite system (GNSS) sites, interfer-
ometric synthetic aperture radar (InSAR) data range, and depth contours of the Cascadia subduction
zone. The red box in the upper right inset depicts the study area. Triangles represent GNSS site
locations; black triangles represent the 97 dense GNSS sites of the first experimental scheme in
Section 3.2.2 and red triangles represent the 16 sparse GNSS sites of the second and third exper-
imental schemes. Pink dashed line indicates the location of the depth contours from −20 km to
−65 km in steps of −5 km. Red, blue, and cyan solid lines represent the coverage of InSAR tracks 137
and 115 used in the experiment, with the right boundary of each frame determined by the −65 km
depth contour.
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3.2.2. Design of Experimental Scheme

Inversion of slip distribution uses the network inversion filter (NIF) method [27,28].
The NIF divides the entire inversion of the slip distribution process into multiple individual
observation moments. The inversion of slip distribution corresponding to each individual
moment is only related to observation data at the current moment, thus avoiding the inver-
sion of all displacement observations at a particular time. This is particularly important in
the context of the increasing volume of geodetic observation data, particularly for InSAR
data, where a single track and epoch routinely exceeds millions of pixels [29].

During inversion, we added a non-negative constraint on the slip rate. The steps
involved in the inversion of slip distribution using NIF are briefly outlined as follows:

(1) Construct triangular dislocation meshes according to the defined extent of the research
area and depth contours [30].

(2) Link slip with GNSS and InSAR displacement observations by elastic Green’s func-
tion [31], and obtain the observation equation and variance–covariance matrix of all
displacement observations.

(3) Use the evolution law of slip magnitude and slip rate with time to construct the state
transition equation.

(4) Determine the variance–covariance matrix of the process noise.
(5) Combine with Kalman forward filtering and backward smoothing [32] with all dis-

placement observations used for constraining the inversion of slip distribution.
(6) Through Kalman forward filtering and backward smoothing, obtain the slip rate and

slip magnitude corresponding to the observed moment on each dislocation grid.

For this experiment, we tested three experimental schemes, each with an inversion
time span of 90 days and 1978 triangular dislocation grids (Figure S13). The first scheme
used deformation data from 97 densely distributed GNSS sites for the inversion of slip
distribution (dense GNSS). The second scheme used data of 16 sparsely distributed GNSS
sites to perform the inversion of slip distribution, simulating the situation of GNSS sparse
site distribution in the process of inversion of geophysical parameters (sparse GNSS). The
third scheme fused 16 sparse GNSS sites and three simulated InSAR displacement data
using MRSF and then uses the fused high spatiotemporal resolution deformation data for
inversion of slip distribution (fusion InSAR). Owing to the high data volume as result of
fusion, we reduced the computer storage pressure and computational time consumption
by uniformly resampling our grid [33] by selecting one pixel from every 100 pixels.

As the 97 GNSS sites in the first scheme are evenly and densely distributed, and the
simulated InSAR data are also generated from the results of inversion of these 97 GNSS
sites, we take the results of the first scheme as a reference value, compare the results of other
schemes with it, and consider that the results closer to the first scheme are more reliable.

3.2.3. Results of Inversion

For comparison purposes, the inversions of slip rate were averaged every 15 days, and
the corresponding results for the three experimental schemes are shown in Figure 8. Fur-
thermore, we selected three sets of dates at 15-day intervals and plotted the corresponding
results of the inversion of slip rate (Figure S14a–c).
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the first day. Root-mean-square error values were calculated relative to the difference in the first
experimental scheme.

From the results of the inversion of the slip rate of the dense GNSS (the first row
of Figures 8 and S14a–c), we show that the spatial distribution pattern of the slip rate
gradually increases with time. In the first 15 days, the slip rate was zero for most areas.
Subsequently, the spatial distribution of the slip rate tended to move northward and spread
to the whole area. Until the last 15 days, the average slip rate was widely distributed in
the whole research area and it was mostly >0.5 mm/day, and the northern slip rate had
obvious spatial clustering, with the maximum value even exceeding 2 mm/day.

To compute the total slip, we estimated the difference in the slip on the last day of
inversion from the slip on the first day. The estimates of the total slip obtained for the
three experimental schemes are shown in Figure 9. Although a non-negative constraint is
imposed on the slip rate, the slip values need to be adjusted to fit the displacement data
during the inversion process, which results in the slip having some negative values, a
phenomenon that also occurred in previous studies (Batlow et al. [34]).
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4. Discussion

According to the experimental objectives and results of the two sets of experiments in
Section 3, we discuss and analyze the experimental results, respectively.

4.1. MRSF Experiment

A comparison of the classification results of MRS and quadtree (Figure 5) shows that
both methods can divide regions with complex deformation characteristics into small
blocks and regions with single deformation characteristics into large blocks. Unlike the
MRS results, the quadtree is prone to both misclassification and overclassification because
of the limitations of the minimum block size, especially in the central part, where the
spatial evolution characteristics of the deformation data are more complex. In addition,
block boundaries of the MRS algorithm can be exactly matched with deformation data,
whereas block boundaries of quadtree cannot correspond one-to-one with deformation
data. These results indicate that the MRS algorithm can obtain classification results that
are more consistent with the information on deformation; thus, it is more effective for
considering the spatial heterogeneity of deformation data and performing more refined
spatial modeling of complex deformation regions.

InSAR results of spatial modeling (Figure S4) and residual distribution map (Figure S5)
show that the results of spatial modeling reflect the overall deformation trend. However,
there are still some omissions of deformation details, mainly in the central regions, where
spatiotemporal evolution characteristics of deformation are more complicated due to
agricultural irrigation activities [35]. Except for the central region, the results of spatial
modeling of the other regions are in good agreement with observation data, and errors
are mostly within 25 mm (Figure S5). Consideration of spatial heterogeneity, geographic
location of the site, and specific deformation features during the spatial modeling process
resulted in minor errors. Figure S5 also shows that residuals of spatial modeling and
root-mean-square error (RMSE) values gradually increased over time because the spatial
basis on which the model was constructed is a time-invariant quantity; however, in reality,
the correlation of deformation between each site changes over time, leading the gradual
increase of residuals over time.
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Deformation trends of results of GNSS spatial modeling (Figure S6a–c) are consistent
with GNSS observations, with RMSE values below 10 mm for most sites. Overall, the
GNSS displacement time series of spatial modeling is too smooth and it cannot reflect the
shorter-period deformation details. For sites with complex deformation time series, results
of spatial modeling are prone to large errors. For example, the results of spatial modeling
of sites P299, P300, P565, P809, and P810 significantly deviated from observation data and
had RMSE values of more than 30 mm.

Results of the fusion of InSAR data (Figure S7) and the residual distribution map
(Figure S8) show that SVR can accurately estimate the residuals of spatial modeling in both
temporal and spatial domains. Results of fused InSAR displacement are highly consistent
with observation data. Residuals of the fusion model showed no obvious error clustering
in the spatial distribution, and most of the errors were within 10 mm. Results of the
fusion model also effectively compensate for the missing deformation details in the spatial
modeling for the central and marginal regions with complex spatiotemporal deformation
evolution characteristics, thereby significantly improving accuracy and reliability. The
residual distribution map (Figure S8) shows that the difference between the fused model
and observed data is almost negligible. The RMSE values of the 48 periods of InSAR data
are all below 0.35 mm, and there is no trend of increasing error with time, indicating that
the fusion model has good stability in the temporal domain.

Results of fusion for GNSS sites (Figure S9a–c) show that (1) the fusion model can
accurately capture deformation details missing in the results of spatial modeling, (2) the
displacement results obtained by the fusion model are in good agreement with GNSS
observations, and (3) the RMSE values of most sites were within 1 mm. For GNSS sites
with complex temporal evolution patterns, the results of fusion also accurately reflect the
evolution characteristics of deformation over time, which indicates the reliability of the
fusion method. In addition, the fusion model interpolates data with relative reliability. For
sites with extreme data gaps, such as CCST and VCST, the fusion model obtains reasonable
deformation data to supplement missing data.

InSAR leave-one-out validation results (Figures 6 and S10) show that, even if InSAR
data are not involved in the modeling, the fusion method can still obtain deformation
results that closely match InSAR observational data. The fusion model accurately reflects
the deformation trend of InSAR data in the temporal domain and also reflects most of the
deformation details in the spatial domain. Although the deformation results of the fusion
model have numerical underestimation or overestimation in some regions, these cases are
relatively infrequent.

Residuals of InSAR leave-one-out validation results (Figures 6 and S11) show that the
spatial distribution of errors of the fusion model does not exhibit obvious spatial clustering
and that most error values are below 10 mm. The numerical distribution of the error of the
fusion model (fourth column of Figure 6) is close to the standard normal distribution, but
the variance of different InSAR data at specific periods are quite different, suggesting that
the error in the fusion model is random in the spatial and temporal domains. The error
RMS value of the last InSAR data is the largest, indicating that the model error may also
be related to the geophysical process, because the main deformation in this area is related
to the groundwater extraction from farmland irrigation, and the cumulative deformation
evolution becomes more and more complicated with time so that the fusion model cannot
fully capture it. Although the validation results of the last InSAR data (1 February 2017)
exhibit the highest difference from InSAR observation data and contain several locations of
overestimation and underestimation, the RMSE value still remains below 3 mm because a
relatively large residual is due to the lack of complementary information on InSAR deforma-
tion data from other subsequent periods. Similarly, validation results of 2 December 2014
and 26 December 2014 have higher errors owing to the lack of previous observation data.

Results of the GNSS leave-one-out validation (Figure S12a–c) show that, even if a
GNSS site is excluded from the modeling, our method can obtain a displacement time series
that agrees with GNSS observation data. We found that, except for some high-frequency
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information on deformation, the overall deformation trend and specific deformation details
of the model results were highly consistent with the GNSS time series in both the spatial
and temporal domains. High-frequency information (high variability) on deformation
may reflect true geophysical/hydrological processes and thus be of greater scientific or
application interest. However, in this experiment, this high-frequency information mainly
showed up and down fluctuations in numerical values and did not show obvious trends and
deformation laws. Therefore, we believe that this part of the high-frequency information
that has not been fully captured by the model mainly comes from the observational noise
of GNSS data, rather than the true geophysical/hydrological processes. Because of the lack
of data from the current GNSS sites for correction in the leave-one-out validation, model
results rely on the results of spatial modeling and information on the deformation of other
GNSS sites and InSAR data, which causes them to appear somewhat smooth compared to
GNSS observations.

In general, the accuracy of results of the GNSS leave-one-out validation for the fusion
model was high, demonstrating the ability of this method to reflect the deformation
characteristics of GNSS sites. Except for P561 (observation noise causes high-frequency
fluctuations in the time domain), the RMSE values of GNSS sites were below 5 mm.
Interpolation results of the leave-one-out validation generally conform to the overall change
trend and specific deformation features of GNSS sites, thereby providing reliable reference
information on missing data.

4.2. Inversion of Slip Distribution

The slip rates obtained by three different experimental schemes (Figures 8 and S14a–c)
show that the spatial distribution and value of the slip rate obtained by fusion InSAR are
closer to the results of dense GNSS than sparse GNSS. In particular, for the slip rate in
the last 15 days, the results of fusion InSAR can accurately capture the aggregation of slip
rate values around 48◦ latitude, and the RMSE value was improved by approximately 35%
compared to sparse GNSS. In the first 15 days, the slip rates of sparse GNSS were closer to
those of dense GNSS than those of fusion InSAR. This is because most of the slip rates in
the first 15 days were close to zero, and the sparse GNSS scheme involves less data in the
inversion process due to the sparse distribution of GNSS sites, and thus, the results of the
inversion were relatively close to zero. Because the simulated InSAR data contained white
noise, the fusion InSAR results tended to have smaller slip rates in the western part of the
research area, which eventually led to large discrepancies with the dense GNSS results.

Results of inversion of the total slip of the dense GNSS scheme (the first column of
Figure 9) show that the majority of the total slip values are positive and more than 0.5 cm,
with a maximum value of almost 2.5 cm near latitude 47◦ and a depth of 40 km. The spatial
distribution of the total slip is mainly concentrated at moderate to deep depths (longitude
−124 to −123, depth 40 km) with three obvious numerical spatial clusters (red dashed
rectangles in Figure 9). For shallower and deeper regions, the slip values were generally
smaller (close to zero).

A comparison of the total slip obtained by sparse GNSS (the second column of Figure 9)
and fusion InSAR (the third column of Figure 9) with the results of dense GNSS (the first
column of Figure 9) shows that the results of fusion InSAR are closer to dense GNSS in
the spatial distribution pattern and magnitude than that of the sparse GNSS. Additionally,
fusion InSAR better reflects detailed information on the spatial distribution and numerical
changes of total slip from north to south. This is particularly evident for the three apparent
numerical aggregates in Figure 9 (red dashed rectangles) with a total slip amount of more
than 1.5 cm. Results of fusion InSAR can achieve a substantially accurate spatial distribution
description and detailed information, but the sparse GNSS scheme apparently missed this
part of the information. Relative to the dense GNSS, the fusion InSAR scheme had an RMSE
value that was 30% less than that of the sparse GNSS scheme.

The above experimental results of the inversion of slip distribution show that the
estimates from fusion InSAR are significantly closer to dense GNSS in terms of both spatial
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distribution pattern and magnitude than that of sparse GNSS. These results demonstrate
that incorporating fused high spatiotemporal resolution deformation data into the inversion
process can significantly improve the results of the inversion of slip distribution. This
confirms that our proposed MRSF method can be effectively used in the inversion process
of geophysical parameters by providing a richer data source for the inversion.

5. Conclusions

We propose a novel method (MRSF) for the fusion of GNSS and InSAR deformation
data that actively considers the spatial heterogeneity of deformation data. The MRSF
method uses the MRS algorithm to divide the research area into different blocks for mod-
eling and thus better considers the spatial heterogeneity of deformation data. For spatial
modeling, the locations of deformation data and the similarity of deformation features were
considered, which is more in line with the physical behavior of natural systems. Finally,
residuals of spatial modeling were estimated in the temporal and spatial domains by SVR,
thereby improving the accuracy and reliability of the results of fusion.

MRSF uses a grid search to determine the optimal parameters for spatial modeling
and SVR, which greatly reduces the dependence on data processing experience and prior
information for optimal parameter determination and significantly improves the applica-
bility and scalability of the fusion method. The MRSF method was applied and validated
using GNSS and InSAR deformation data for CVAS. These results show that the MRSF
method can obtain estimates of deformation with high precision and high spatiotemporal
resolution for regions with complex displacement histories.

The MRSF method was then applied to the inversion of slip distribution in the Casca-
dia subduction zone. Results show that by using high precision and high spatiotemporal
resolution results that were obtained from the fusion of sparse GNSS sites and simulated
InSAR deformation data, inversions of spatial distribution patterns and magnitudes agree
well with results from dense GNSS inversions. This shows that when GNSS sites are
sparsely distributed, fusing GNSS and InSAR data can improve the stability and reliability
of results of the inversion of slip distribution. Furthermore, because the MRSF method can
directly provide deformation results with high precision and high spatiotemporal resolu-
tion, thus enriching the effective data sources for the inversion of geophysical parameters,
this technique can be easily and effectively combined with existing inversion methods of
geophysical parameters.

We avoided potential processing and noise artifacts because InSAR data used for the
inversion of the slip distribution in the Cascadia subduction zone were obtained by numer-
ical simulation. This study demonstrates a proof-of-concept of the MRSF method in the
inversion of slip distribution. Future work will include the use of real InSAR displacement
observation data in the inversion of slip distribution experiments to better assess this fusion
approach and further promote the practical application of the MRSF method.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14143293/s1, Figure S1: InSAR displacement time series data
in CVAS after reference framework unified. Figure S2: Classification results corresponding to the
quadtree decomposition method with different sets of parameters. Figure S3: The spatial mean of the
deformation values corresponding to the 6 segmented blocks and the Fourier curve fitting results.
Figure S4: The spatial modeling results corresponding to the 48 periods InSAR displacement time
series data relative to 8 November 2014 in CVAS. Figure S5: InSAR displacement residuals of spatial
modeling results in CVAS. Figure S6a: The spatial modeling results and original displacements in
the LOS direction of 37 GNSS sites in CVAS. Figure S6b: The spatial modeling results and original
displacements in the LOS direction of other 37 GNSS sites in CVAS. Figure S6c: The spatial modeling
results and original displacements in the LOS direction of other 38 GNSS sites in CVAS. Figure S7:
The fusion results corresponding to the 48 periods InSAR displacement time series data relative
to 8 November 2014 in CVAS. Figure S8: InSAR displacement residuals of fusion results in CVAS.
Figure S9a: The fusion results and original displacements in the LOS direction of 37 GNSS sites in
CVAS. Figure S9b: The fusion results and original displacements in the LOS direction of other 37
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GNSS sites in CVAS. Figure S9c: The fusion results and original displacements in the LOS direction of
other 38 GNSS sites in CVAS. Figure S10: The leave-one-out cross-validation results corresponding to
the 48 periods InSAR displacement time series data relative to 8 November 2014 in CVAS. Figure S11:
InSAR displacement residuals of leave-one-out cross-validation results in CVAS. Figure S12a: The
leave-one-out cross-validation results and original displacements in the LOS direction of 37 GNSS sites
in CVAS. Figure S12b: The leave-one-out cross-validation results and original displacements in the
LOS direction of other 37 GNSS sites in CVAS. Figure S12c: The leave-one-out cross-validation results
and original displacements in the LOS direction of other 38 GNSS sites in CVAS. Table S1: Date values
corresponding to simulated InSAR data. Figure S13: The spatial distribution map of the triangular
dislocation grid of the Cascadia subduction zone. Figure S14a: The spatial distribution of the slip rate
(day 5 to day 80 in 15-day intervals) corresponding to the three experimental schemes. Figure S14b:
The spatial distribution of the slip rate (day 10 to day 85 in 15-day intervals) corresponding to the
three experimental schemes. Figure S14c: The spatial distribution of the slip rate (day 15 to day 90 in
15-day intervals) corresponding to the three experimental schemes.

Author Contributions: Data curation, H.G., W.R.N. and H.L.; Funding acquisition, H.Y., W.X. and
W.D.; Investigation, H.Y., H.G., W.R.N. and H.L.; Methodology, H.Y., W.X. and W.D.; Writing—
original draft, H.Y. and H.G.; Writing—review and editing, W.X., W.D. and W.R.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (No. 42174023),
the National Natural Science Foundation of China (No. 42174053), the Natural Science Foundation of
Hunan Province, China (Grant No. 2021JJ30805), the Fundamental Research Funds for the Central
Universities of Central South University (No. 2020zzts175) and the Postgraduate Scientific Research
Innovation Project of Hunan Province (No. CX20200231).

Data Availability Statement: Sentinel-1 data is accessible via the European Space Agency’s Coperni-
cus Open Access Hub (scihub.copernicus.eu). The GNSS data is obtained from the Nevada Geodesy
Laboratory (http://geodesy.unr.edu).

Acknowledgments: We would like to thank two anonymous reviewers for their constructive com-
ments that helped improve the manuscript. We would like to thank ESA for providing open access to
Sentinel-1 data and the GAGE Analysis Center with UNAVCO archived data for providing GNSS
data. We would like to thank Liu Ning and Shi Qiang for their valuable comments during the experi-
ment. We would also like to thank Bartlow for providing GNSS data for the Cascadia subduction
zone and the NIF program. The maps and plots in the paper were made using the Generic Mapping
Tools and MATLAB.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, B.; Feng, G.; Li, Z.; Wang, Q.; Wang, C.; Xie, R. Coastal Subsidence Monitoring Associated with Land Reclamation Using the

Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sens. 2016, 8, 652. [CrossRef]
2. Xu, W.; Wu, S.; Materna, K.; Nadeau, R.; Floyd, M.; Funning, G.; Chaussard, E.; Johnson, C.W.; Murray, J.R.; Ding, X.; et al.

Interseismic Ground Deformation and Fault Slip Rates in the Greater San Francisco Bay Area from Two Decades of Space Geodetic
Data. J. Geophys. Res. Solid Earth 2018, 123, 8095–8109. [CrossRef]

3. Aloisi, M.; Bonaccorso, A.; Cannavò, F.; Currenti, G.; Gambino, S. The 24 December 2018 Eruptive Intrusion at Etna Volcano as
Revealed by Multidisciplinary Continuous Deformation Networks (CGPS, Borehole Strainmeters and Tiltmeters). J. Geophys. Res.
Solid Earth 2020, 125, e2019JB019117. [CrossRef]

4. Xu, X.; Sandwell, D.T.; Klein, E.; Bock, Y. Integrated Sentinel-1 InSAR and GNSS Time-Series Along the San Andreas Fault System.
J. Geophys. Res. Solid Earth 2021, 126, e2021JB022579. [CrossRef]

5. Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-Series Algorithms, Applications, and Challenges. Geod. Geodyn. 2022, 13,
114–126. [CrossRef]

6. Liu, N.; Dai, W.; Santerre, R.; Hu, J.; Shi, Q.; Yang, C. High Spatio-Temporal Resolution Deformation Time Series with the Fusion
of InSAR and GNSS Data Using Spatio-Temporal Random Effect Model. IEEE Trans. Geosci. Remote Sens. 2018, 57, 364–380.
[CrossRef]

7. Shi, Q.; Dai, W.; Santerre, R.; Li, Z.; Liu, N. Spatially Heterogeneous Land Surface Deformation Data Fusion Method Based on an
Enhanced Spatio-Temporal Random Effect Model. Remote Sens. 2019, 11, 1084. [CrossRef]

8. Yan, H.; Dai, W.; Xie, L.; Xu, W. Fusion of GNSS and InSAR Time Series Using the Improved STRE Model: Applications to the San
Francisco Bay Area and Southern California. J. Geod. 2022, 96, 47. [CrossRef]

http://geodesy.unr.edu
http://doi.org/10.3390/rs8080652
http://doi.org/10.1029/2018JB016004
http://doi.org/10.1029/2019JB019117
http://doi.org/10.1029/2021JB022579
http://doi.org/10.1016/j.geog.2021.09.007
http://doi.org/10.1109/TGRS.2018.2854736
http://doi.org/10.3390/rs11091084
http://doi.org/10.1007/s00190-022-01636-7


Remote Sens. 2022, 14, 3293 18 of 18

9. Deng, F.; Dixon, T.H.; Xie, S. Surface Deformation and Induced Seismicity Due to Fluid Injection and Oil and Gas Extraction in
Western Texas. J. Geophys. Res. Solid Earth. 2020, 125, e2019JB018962. [CrossRef]

10. Neely, W.R.; Borsa, A.A.; Burney, J.A.; Levy, M.C.; Silverii, F.; Sneed, M. Characterization of Groundwater Recharge and Flow
in California’s San Joaquin Valley from InSAR-Observed Surface Deformation. Water Resour. Res. 2021, 57, e2020WR028451.
[CrossRef]

11. Ma, P.; Wang, W.; Zhang, B.; Wang, J.; Shi, G.; Huang, G.; Chen, F.; Jiang, L.; Lin, H. Remotely Sensing Large- and Small-Scale
Ground Subsidence: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Remote Sens. Environ. 2019,
232, 111282. [CrossRef]

12. Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-Resolution, Object-Oriented Fuzzy Analysis of Remote
Sensing Data for GIS-Ready Information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [CrossRef]

13. Witharana, C.; Civco, D.L. Optimizing Multi-Resolution Segmentation Scale Using Empirical Methods: Exploring the Sensitivity
of the Supervised Discrepancy Measure Euclidean Distance 2 (ED2). ISPRS J. Photogramm. Remote Sens. 2014, 87, 108–121.
[CrossRef]

14. Oberhettinger, F. Tables of Fourier Transforms and Fourier Transforms of Distributions; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2012.

15. Li, Z. An Enhanced Dual IDW Method for High-Quality Geospatial Interpolation. Sci. Rep. 2021, 11, 9903. [CrossRef]
16. Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168.

[CrossRef]
17. Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27.

[CrossRef]
18. Neely, W.R.; Borsa, A.A.; Silverii, F. GInSAR: A CGPS Correction for Enhanced InSAR Time Series. IEEE Trans. Geosci. Remote

Sens. 2019, 58, 136–146. [CrossRef]
19. Fialko, Y.; Simons, M.; Agnew, D. The Complete (3-D) Surface Displacement Field in the Epicentral Area of the 1999 Mw7. 1

Hector Mine Earthquake, California, from Space Geodetic Observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [CrossRef]
20. Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190.
21. Cressie, N.; Johannesson, G. Fixed Rank Kriging for Very Large Spatial Data Sets. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2008, 70,

209–226. [CrossRef]
22. Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
23. Kearns, M.; Ron, D. Algorithmic Stability and Sanity-Check Bounds for Leave-One-out Cross-Validation. Neural Comput. 1999, 11,

1427–1453. [CrossRef] [PubMed]
24. Herring, T.A.; Melbourne, T.I.; Murray, M.H.; Floyd, M.A.; Szeliga, W.M.; King, R.W.; Phillips, D.A.; Puskas, C.M.; Santillan, M.;

Wang, L. Plate Boundary Observatory and Related Networks: GPS Data Analysis Methods and Geodetic Products. Rev. Geophys.
2016, 54, 759–808. [CrossRef]

25. Srinivasa, N.A. Adaptive Mesh Refinement for a Finite Difference Scheme Using a Quadtree Decomposition Approach. Ph.D.
Thesis, Texas A&M University, College Station, TX, USA, 2010.

26. McCrory, P.A.; Blair, J.L.; Waldhauser, F.; Oppenheimer, D.H. Juan de Fuca Slab Geometry and Its Relation to Wadati-Benioff Zone
Seismicity. J. Geophys. Res. Solid Earth 2012, 117, B09306. [CrossRef]

27. Bartlow, N.M.; Wallace, L.M.; Beavan, R.J.; Bannister, S.; Segall, P. Time-Dependent Modeling of Slow Slip Events and Associated
Seismicity and Tremor at the Hikurangi Subduction Zone, New Zealand. J. Geophys. Res. Solid Earth 2014, 119, 734–753. [CrossRef]

28. Bekaert, D.; Segall, P.; Wright, T.J.; Hooper, A.J. A Network Inversion Filter Combining GNSS and InSAR for Tectonic Slip
Modeling. J. Geophys. Res. Solid Earth 2016, 121, 2069–2086. [CrossRef]

29. Xu, W. Finite-Fault Slip Model of the 2016 Mw 7.5 Chiloé Earthquake, Southern Chile, Estimated from Sentinel-1 Data. Geophys.
Res. Lett. 2017, 44, 4774–4780. [CrossRef]

30. Fukushima, Y.; Cayol, V.; Durand, P. Finding Realistic Dike Models from Interferometric Synthetic Aperture Radar Data: The
February 2000 Eruption at Piton de La Fournaise. J. Geophys. Res. Solid Earth 2005, 110, B03206. [CrossRef]

31. Okada, Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154.
[CrossRef]

32. Segall, P.; Matthews, M. Time Dependent Inversion of Geodetic Data. J. Geophys. Res. Solid Earth 1997, 102, 22391–22409.
[CrossRef]

33. Pritchard, M.; Simons, M.; Rosen, P.; Hensley, S.; Webb, F. Co-Seismic Slip from the 1995 July 30 M W= 8.1 Antofagasta, Chile,
Earthquake as Constrained by InSAR and GPS Observations. Geophys. J. Int. 2002, 150, 362–376. [CrossRef]

34. Bartlow, N.M.; Miyazaki, S.; Bradley, A.M.; Segall, P. Space-Time Correlation of Slip and Tremor during the 2009 Cascadia Slow
Slip Event. Geophys. Res. Lett. 2011, 38, L18309. [CrossRef]

35. Carlson, G.; Shirzaei, M.; Werth, S.; Zhai, G.; Ojha, C. Seasonal and Long-Term Groundwater Unloading in the Central Valley
Modifies Crustal Stress. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018490. [CrossRef] [PubMed]

http://doi.org/10.1029/2019JB018962
http://doi.org/10.1029/2020WR028451
http://doi.org/10.1016/j.rse.2019.111282
http://doi.org/10.1016/j.isprsjprs.2003.10.002
http://doi.org/10.1016/j.isprsjprs.2013.11.006
http://doi.org/10.1038/s41598-021-89172-w
http://doi.org/10.1090/qam/10666
http://doi.org/10.1145/1961189.1961199
http://doi.org/10.1109/TGRS.2019.2934118
http://doi.org/10.1029/2001GL013174
http://doi.org/10.1111/j.1467-9868.2007.00633.x
http://doi.org/10.1023/B:STCO.0000035301.49549.88
http://doi.org/10.1162/089976699300016304
http://www.ncbi.nlm.nih.gov/pubmed/10423502
http://doi.org/10.1002/2016RG000529
http://doi.org/10.1029/2012JB009407
http://doi.org/10.1002/2013JB010609
http://doi.org/10.1002/2015JB012638
http://doi.org/10.1002/2017GL073560
http://doi.org/10.1029/2004JB003268
http://doi.org/10.1785/BSSA0750041135
http://doi.org/10.1029/97JB01795
http://doi.org/10.1046/j.1365-246X.2002.01661.x
http://doi.org/10.1029/2011GL048714
http://doi.org/10.1029/2019JB018490
http://www.ncbi.nlm.nih.gov/pubmed/33163318

	Introduction 
	Methods 
	Framework for the Unification of GNSS and InSAR Data 
	Clustering of InSAR Data 
	Fitting Spatial Mean 
	Spatial Modeling 
	Estimation of Residuals of Spatial Modeling 
	Verification of Accuracy of Results of Fusion 

	Result 
	MRSF Experiment for CVAS 
	GNSS and InSAR Data 
	Experiment Fusion Results 
	Leave-One-Out Cross-Validation 

	Inversion of Slip Distribution of the Cascadia Subduction Zone 
	Data for Inversion of Slip Distribution 
	Design of Experimental Scheme 
	Results of Inversion 


	Discussion 
	MRSF Experiment 
	Inversion of Slip Distribution 

	Conclusions 
	References

