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Abstract: As one of the most common features, 3D line segments provide visual information in scene
surfaces and play an important role in many applications. However, due to the huge, unstructured,
and non-uniform characteristics of building point clouds, 3D line segment extraction is a complicated
task. This paper presents a novel method for extraction of 3D line segment features from an unorga-
nized building point cloud. Given the input point cloud, three steps were performed to extract 3D
line segment features. Firstly, we performed data pre-processing, including subsampling, filtering
and projection. Secondly, a projection-based method was proposed to divide the input point cloud
into vertical and horizontal planes. Finally, for each 3D plane, all points belonging to it were projected
onto the fitting plane, and the α-shape algorithm was exploited to extract the boundary points of
each plane. The 3D line segment structures were extracted from the boundary points, followed by a
3D line segment merging procedure. Corresponding experiments demonstrate that the proposed
method works well in both high-quality TLS and low-quality RGB-D point clouds. Moreover, the
robustness in the presence of a high degree of noise is also demonstrated. A comparison with state-
of-the-art techniques demonstrates that our method is considerably faster and scales significantly
better than previous ones. To further verify the effectiveness of the line segments extracted by the
proposed method, we also present a line-based registration framework, which employs the extracted
2D-projected line segments for coarse registration of building point clouds.

Keywords: plane segmentation; contour point extraction; 3D line segments; unorganized point
clouds; 2D line feature; point cloud registration

1. Introduction

In recent years, benefiting from the advance in sensor technology, light detection and
ranging (LiDAR) technology has been rapidly developed. The increasing prevalence of
3D laser scanning equipment has resulted in a dramatic explosion in the availability of 3D
point cloud data, and point clouds containing tens of millions of samples are now com-
monplace. However, due to the unstructured, irregular, and non-uniform characteristics
of raw point cloud data, there is an ever-growing demand for concise and meaningful
abstractions of point cloud data. As one of the most important features for human per-
ception, 3D line segment structures are widely used and play an important role in many
areas, such as building outline extraction [1], building model reconstruction [2,3], road
extraction [4], registration [5], localization [6], calibration [7], and more. Over the past few
decades, detecting line segments from 2D images has been well-studied [8–12], while the
works on 3D line segment extraction are still insufficient. Moreover, unlike 2D images
whose pixels are closely related to their neighboring pixels, unorganized point clouds lack
connectivity information. It is difficult to detect 3D line segments in unstructured, huge,
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and inhomogeneous point clouds, and many previous approaches failed when faced with
fast and accurate 3D line segment extraction from large-scale building point clouds.

A primary reason is that the definition of “line segment” is difficult to formalize with
various rules because scenes in the real world are very diverse, and a perceptible line
segment is actually relevant to complicated factors, such as sudden changes in curvature
or color, sharp edge, plane intersection, etc. As pointed out in [13], most 3D line segment
extraction methods consist of two main steps: (1) convert the input point cloud into images
first, and then apply the line segment detector to extract 2D line segments on the images;
(2) backproject these 2D line segments to the original coordinate system to obtain the final
3D line segments. However, these methods have high requirements on image quality and
are very sensitive to noise. In this paper, we neither perform line segment extraction directly
on the original point cloud nor consider strategies based on projection and back-projection.
Instead, considering that line segments are closely related to planes, we propose a novel
method for extraction of 3D line segment features from building point clouds based on
planar features. The key idea of our method consists of three phases.

First, given the input point cloud, data pre-processing including subsampling, filtering,
and projection is performed. Second, a projection-based method is proposed to divide
the input point cloud into vertical and horizontal planes, which mainly includes three
steps: collinear point detection, clustering, and interior point extraction. Finally, for each
3D plane, a robust plane fitting method is adopted to estimate its corresponding equation.
Subsequently, the improved α-shape algorithm is exploited to extract boundary points of
each plane. The 3D line segment structures are extracted from the boundary points.

1.1. Related Work

Three-dimensional line segment extraction is a long-standing, yet active topic. In the
past decades, numerous methods have been developed by researchers from different fields,
the most important of which can be broadly classified into four categories: point feature-
based, multi-view image-based, plane feature-based, and deep learning-based methods.

Point feature-based methods: The point feature-based methods usually detect bound-
ary or contour points first, and then use fitting methods such as least squares to extract line
segments. Various kinds of features such as the Gauss Map [14], the curvature variation [15],
the normal difference [16], and the features based on eigenvalue decomposition [17] have
been proposed for boundary or contour point recognition. In [14], given an unorganized
point cloud, Gaussian graph clustering was first computed to eliminate points that are
unlikely to belong to edges, and in the second stage, a more precise iterative selection of
the remaining feature points was performed to improve reliability and robustness in the
presence of obtuse and acute angles. In [15], sharp edge features were detected by analyz-
ing the eigenvalues of the covariance matrix defined by each point’s k-nearest neighbors,
then the qualitative and quantitative evaluations were evaluated using several dihedral
angles and well-known examples of unorganized point clouds. In [16], a novel multi-scale
operator named the difference of normal (DoN) for unorganized 3D point clouds was
introduced. The normal of each point was calculated in different scales, and only those
with higher normal difference were selected as boundary points. Hackel et al. [17] pre-
dicted the contour score for each individual point with a binary classifier by using a set of
features extracted from the point’s neighborhood. The contour scores serve as a basis to
construct an overcomplete graph of candidate contours. Jarvis [18] improved the convex
hull formation algorithm to allow some concavities in the extracted shape. Zhang et al. [19]
proposed the 3D guided multi-conditional GAN (3D-GMcGAN) to extract contour points
of outdoor scene data consistent with visual perception. In their solution, first, a parametric
space-based framework is proposed via a novel similarity measurement of two parametric
models. Second, a guided learning framework is designed to assist finding the target con-
tour distribution via an initial guidance. Chen and Yu [20] presented a novel method for the
generation and regularization of feature lines, which consists of two main steps: extraction
of the outline points according to the property of vector distribution and cluster, feature
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points are sorted according to the vector deflection angle and distance, and they are fitted
using an improved curve fitting method. The biggest drawback of these methods based on
point features lies on the feature point itself, which is sensitive to noise interference.

Multi-view image-based methods: Another important way to perform 3D structure
detection is multi-view stereo. Multi-view stereo obtains multiple images of the target
object from different perspectives, and then uses mathematical reasoning and other means
to reconstruct the scene. Taylor et al. [21] reconstructed the 3D line segments of a target
object from multiple images captured by a moving camera under perspective projection.
Recovery is formulated by minimizing the total squared image distance between measured
segments and the projection of the reconstructed infinite lines with respect to structural and
motion parameters. Martinec et al. [22] recovered 3D line segment structure in multi-view
images by decomposing a matrix containing line correspondences. This scheme does not
use the point correspondence so as to achieve a better reconstruction effect. In [23], 3D
line segments that represented the underlying geometrical characteristic of 3D objects in
the area to be detected were reconstructed by evaluating the conditions determined by
connectivity constraints and depth information. In the approach proposed by Lin et al. [24],
3D line segments were extracted by combining shaded images and point clouds, which
were capable of accurately extracting plane intersection line segments from large-scale raw
scan points. In early research, 3D scanning equipment was expensive and difficult to obtain;
thus, 3D models were often obtained by this manner. The multi-view image-based methods
are more suitable for data collected from a single perspective. However, it is powerless
to process the data collected by multiple stations. For example, the scene of the indoor
building point cloud collected by the backpack-type 3D laser scanner is relatively complex.
If it is multi-view projected, the line segment information in the images will cover and
overlap each other, resulting in the failure of these algorithms.

Plane feature-based methods: The third class of techniques used to identify 3D line
segments in point clouds is based on plane features. The plane structure is often accom-
panied by the 3D line segment structure. Therefore, it is a feasible method to extract the
plane structure first, and then perform the line segment extraction on this basis. In [25],
unlike traditional methods which usually extract contour points first and then link them to
fit for 3D line segments, 3D line segments were detected based on point cloud segmenta-
tion, 3D-2D projection and 2D-3D re-projection. Lin et al. [1] presented a new processing
flow to reconstruct line segments from a large-scale point cloud scenario. The key was
to segment the input point clouds into a collection of facets efficiently. Particularly, the
concept “number of false alarms” was introduced into 3D point cloud context to filter
the false positive line segment detections. Sampath et al. [26] presented a framework for
the reconstruction of polyhedral building roofs collected from airborne laser point cloud
scanning equipment. Three-dimensional line segments at the intersection of the roofs are
first extracted, then these structures were used for the reconstruction of polyhedral building
roofs. In [7], 3D line segments were extracted via plane intersection. The proposed method
recovered line structures in the scenarios to precisely determine the rigid transform. The
common drawback of these methods is that it is not easy to determine the endpoints of the
extracted line segments. Moreover, the plane-based methods are more suitable for large
planes and less sensitive for small planes.

Deep learning-based methods: In recent years, with the continuous breakthrough of
basic science and the upgrade of computer software and hardware, various deep learning
methods have emerged and are applied to different fields, which has greatly changed the
traditional way of life and production. Deep learning has demonstrated extraordinary
performance and achieved notable success in 2D image processing [27–29]. However, due
to the high redundancy, uneven density distribution, nonlinear error, and large amount of
data of point clouds, it is still difficult to perform convolution operations on unstructured
point cloud data directly. Hackel et al. [17] proposed a learning-based contour point
extraction method for building a point cloud, where each point is first predicted with a
classifier. Then, the optimal set of contour points is selected by solving high-order MRFs.
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PointNet [30] opened a deep learning framework that performs directly on unstructured
point clouds. PointNet++ [31] extended PointNet for local region computation by applying
PointNet hierarchically in local regions, and many state-of-the-art methods have been
developed since then [32]. Inspired by recent point cloud learning networks, Yu et al. [33]
first proposed the method of contour point extraction based on deep learning theory. The
proposed framework was specially designed to manipulate points grouped in local patch
sets, and trained to learn consolidated points. Zhang et al. [19] proposed the 3D guided
multi-conditional GAN (3D-GMcGAN) to extract contour points of outdoor scene data
consistent with visual perception. Subjected to limited samples, the method based on deep
learning for linear structure extraction can only extract the contour lines consistent with
the marked samples. However, real-world scenes are very complex, and limited manually
labeled samples are not enough to identify diverse contour or edge points.

As discussed above, the drawback of the point feature-based methods is that the
extracted feature points are sensitive to noise, which easily leads to omission or misidentifi-
cation. The method based on multi-view images is easily affected by the image quality, and
is more suitable for point cloud data in a simple scene collected from a single view angle.
The disadvantage of the plane-based methods is that it is more suitable for processing
larger planes, while is less effective for small planes. Deep learning-based methods are
highly dependent on labeled samples. Since this paper is mainly for 3D line segment
information extraction of artificial buildings, and these artificial buildings contain many
large facades and horizontal planes, it is reasonable to adopt the plane-based method.
However, plane segmentation is not a simple task, as the point clouds are unstructured
and often massive. Numerous previous techniques are computationally expensive and
do not scale well with the size of the datasets [34]. In order to overcome some defects
of traditional plane segmentation algorithms, such as low efficiency, over-segmentation,
under-segmentation, uncertainty, etc., a new plane segmentation framework for building
point cloud is proposed. Subsequently, 3D line segments are extracted based on these
planes, followed by a 3D line segment merging procedure.

1.2. Contribution

The main contributions of our work are summarized as follows:

(1) A 3D line segment extraction method for building point clouds is proposed, which
is conceptually simple and easy to implement. The proposed method only uses the
original point cloud, and does not require the images or reconstructed models;

(2) The multiple constraints in the algorithm filter out a lot of irrelevant debris, which
means that the proposed method can restore detailed information more accurately,
and greatly reduces the misidentification of 3D line segments;

(3) The proposed method transforms the problem of structure line detection in 3D space
into 2D space, and most operations are mainly carried out in 2D space, hence the
algorithm proposed in this paper is very efficient;

(4) The 3D line segment extraction method can be flexibly combined with other plane seg-
mentation methods. The method can simultaneously detect 2D and 3D line segments
without changing the model structure;

(5) The proposed method works well in both high-quality TLS and low-quality RGB-D
point clouds, and is robust to noise.

The rest of this paper is organized as follows: detailed algorithms of the proposed
method are presented in Section 2. In Section 3, the experiments are described, experimental
results are demonstrated, performance comparison is performed, and discussions are
provided. Finally, conclusions and recommendations are provided in Section 4.

2. Materials and Methods

To overcome some of the above-listed deficits, a new 3D line segment extraction
method is proposed, which is conceptually simple and easy to implement. The proposed
method consists of three phases, including data pre-processing, plane segmentation and 3D
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line segment extraction (see Figure 1). Considering that man-fabricated buildings contain a
large number of facades and horizontal planes, the projections of these planes in specific
directions are densely distributed linearly. Therefore, once we obtain the exact positions of
the projected line segments, the spatial geometric equations of the corresponding planes
are also determined, and the plane interior points can be easily extracted using these
equations. However, for the large-scale point clouds, which are acquired by the current
variety of LiDAR systems, they also bring a great challenge in data processing. To improve
operational efficiency, appropriate data cropping and subsampling are necessary. In the
first phase, provided the input point cloud, we perform data pre-processing including
subsampling, filtering, and projection. In the second phase, a projection-based method is
proposed to divide the input point cloud into vertical and horizontal planes, which mainly
includes three steps: collinear point detection, clustering, and interior point extraction.
Finally, for each 3D plane, a robust plane fitting method based on Principal Component
Analysis (PCA) is adopted to estimate its corresponding equation. Subsequently, the
improved α-shape algorithm is exploited to extract boundary points of each plane. The
3D line segment structures are extracted from the boundary points, followed by a 3D line
segment merging procedure.
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2.1. Data Pre-Processing

Considering that the building point clouds contain a large number of plane structures,
especially the vertical and horizontal planes, the paper proposes a projection-based plane
segmentation method. Based on the fact that the projection of the facade on the X-Y plane
and the projection of the horizontal plane on the X-Z plane are linearly distributed, we
first performed the following data pre-processing steps before 3D structure line extraction
(see Figure 2).
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Figure 2. A demonstration of the raw data pre-processing flow. Point cloud is colored in the
Z-axis direction.

Subsampling: Building point clouds are usually very dense and massive, and operat-
ing directly on the raw data is not only time-consuming but may also lead to computational
failures. Therefore, proper subsampling is necessary because it does not affect the linear
distribution of plane projections in the building, and the computational efficiency is greatly
improved due to the reduction in the amount of data. Porig is the input point cloud, a
subsampling threshold ε1 is set as the min distance between two points, and then Porig is
uniformly subsampled to ensure that the distance between any two points is not less than
ε1. The subsampled point cloud is represented as Psub. As shown in Figure 3, although the
number of points in the original point cloud was drastically reduced from 27,484,853 to
44,541, the part of the facade projected to the ground is still densely linearly distributed
and the average point distance is 0.018 m.
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Filtering: As shown in Figure 3, the horizontal plane projected to the X-Y plane
presents a scattered distribution, which is undoubtedly not conducive to the subsequent
line segment extraction. Therefore, it is necessary to remove the horizontal plane before
the elevation extraction. Here, we propose a statistical-based plane removal method. As
shown in Figure 4, we propose a statistical-based plane removal method. As shown in
Figure 4, taking a real indoor scene as an example, the sampled indoor point cloud contains
four main horizontal planes. According to a certain step size (e.g., 0.05 m), the distribution
histogram of Psub along the Z direction is calculated. It can be seen that the histogram
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contains four main peaks corresponding to floor, bed, and secondary ceiling, in the Z
direction (see Figure 5). To take advantage of this remarkable feature, the main horizontal
plane can be roughly removed by eliminating points within a certain range of the peaks.
The filtered point cloud is denoted as Pfilt.
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Projection: Next, Pfilt is projected onto the X-Y plane via the following equation:

ax + by + cz + d = 0 (1)

where a = b = d = 0, and c = 1. The output point cloud after pre-processing is denoted as Pproj.

2.2. Plane Segmentation

Collinear point detection: The shadows of walls and other vertical planes in Pproj are
distributed in dense linear patterns. Next, line segments need to be extracted from Pproj.
Although Pproj is a 2D point cloud data (Z coordinate equal to 0), it is still regarded as a
3D point cloud during the line segment extraction process. Once the line segments are
accurately detected, the corresponding vertical plane positions are also determined. In
practice, the Random Sample Consensus (RANSAC) algorithm [35] is particularly effective
for line detection in the following two aspects: (1) It is easily extensible and straightforward
to implement. (2) It can robustly deal with point clouds containing a lot of noise. Although
Pproj is a 2D dataset (the z coordinate of each point is 0), in the line segment detection
algorithm, it is considered as a 3D point cloud data.
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As shown in Figure 6, RANSAC performs line detection iteratively by randomly
choosing two points A (xa, ya, za) and B (xb, yb, zb) (since at least two points are required to
determine a line). The line L defined by A (xa, ya, za) and B (xb, yb, zb) can be expressed as:

x− xa

xb − xa
=

y− ya

yb − ya
=

z− za

zb − za
= t (2)
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Suppose that there is a plane ψc passing through point P (xp, yp, zp) and taking the

direction
→

AB as its normal vector. C (xc, yc, zc) is the intersection of ψc and L. Then each
coordinate value of point C (xc, yc, zc) can be calculated as follows:

xc = (xb − xa)× t + xa
yc = (yb − ya)× t + ya
zc = (zb − za)× t + za

(3)

Based on the fact that CP⊥AB, t can be expressed as:

t =

(
xp − xa

)
(xb − xa) +

(
yp − ya

)
(yb − ya) +

(
zp − za

)
(zb − za)

(xb − xa)
2 + (yb − ya)

2 + (zb − za)
2 (4)

The distance dpc between P (xp, yp, zp) and C (xc, yc, zc) is calculated as:

dpc =

√(
xp − xc

)2
+
(
yp − yc

)2
+
(
zp − zc

)2 (5)

A distance threshold ε2 is set as the maximum offset of a line when performing the
RANSAC algorithm, and ε2 is usually associated with the average point distance daver of
Pproj. For each point qi in Pproj, a neighborhood search is performed to find its neighboring
points (denoted as qi1, qi2, . . . , qik). Daver is calculated as:

daver =
1
N

N
∑

i=1
di

aver

di
aver =

1
k

k
∑

j=1
‖qi − qij‖

(6)

where N is the point number of Pproj. For efficiency, k is usually set to 2 based on previous experiences.
Then the number of points lie on the line defined by A (xa, ya, za) and B (xb, yb, zb) is

counted. The maximum number of iterations for detecting a line is set to ε3. After a given
number of trials, a set of collinear points Pcol with a maximal score is extracted. However,
as shown in Figure 7a, the RANSAC algorithm cannot be used directly in our application.
The first reason is that some spurious lines were generated due to the random nature of
RANSAC. Second, RANSAC can only distinguish those collinear points. When facing with
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points that are collinear but not continuous, it becomes powerless. Third, it is difficult to
ascertain the appropriate convergence conditions.
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Clustering: To overcome some of the deficits listed above, an adjusted Euclidean
clustering method is adopted to split Pcol into separated segments (if necessary). A distance
threshold ε4 is defined as the farthest distance to determine whether two adjacent points
lie on the same line segments. Suppose that there are two subsets PI and PJ in Pcol, and
PI ∩ PJ = Ø. The two subsets are considered to belong to different line segments via the
following condition:

min
pi∈PI ,pj∈PJ

‖pi − pj‖ > ε4 (7)

The detailed clustering process is as follows:

(1) The kd-tree structure is used to manage Pcol. An empty cluster list E and a pending
queue Q are established. Then each point in Pcol is added into Q;

(2) For each point Qi in Q, a neighborhood search is performed on it and the searched
points are stored in Qi

k. For each point in Qi
k, the distance dik between it and Qi is

calculated. If dik ≤ ε4, the corresponding point will be stored in E along with Qi;
(3) The distances between all the clusters in E are calculated according to Equation (6),

and the clusters that are less than ε4 apart from each other are merged. The merging
process iterates until all the distances between clusters are greater than ε4;

(4) If the clustering results are not empty, the results are stored in Pseg. For each subset
Pseg

i in Pseg, its length Lseg
i and point number Nseg

i are calculated. A threshold ε5 is
set as the minimum number of points per meter. A threshold ε6 is set as the shortest
distance of a qualified line segment. If Nseg

i/Lseg
i ≥ ε5 and Lseg

i ≥ ε6, Pseg
i is stored as a

qualified line segment. Then all qualified line segments in Pseg are removed from Pproj;
(5) The remaining points are invoked as input data, and the next cycle is continued. The

iteration ceases when the qualified clustering results are null for five consecutive times.
On the other hand, to make the program converge as quickly as possible, when the
remaining points are less than a specified percentage (e.g., 5%) of the input data Pproj,
the iteration is also forced to end. The extracted qualified line segments are stored in
Pqual (see Figure 7b).
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Interior point extraction: For each qualified line segment Pqual
i in Pqual, the endpoint

coordinates are obtained as E (xs, ys, 0) and F (xe, ye, 0). The spatial geometric equation of
the corresponding elevation ψv can be expressed as:

xi −
xe − xs

ye − ys
× yi +

xe × ys − xs × ye

ye − ys
= 0 (8)

The distance div between a spatial point and the façade ψv defined by Equation (8) is
calculated as:

div =
|(ye − ys)× xi − (xe − xs)× yi + xe × ys − xs × ye|√

(ye − ys)
2 + (xe − xs)

2
(9)

For each point in Porig, the distance div from it to ψv is calculated according to
Equation (8). If div ≤ ε2, the corresponding point is stored as a coplanar point. To ob-
tain more precise plane segmentation results, another two planes, ψs and ψe, are designed

which both use direction
→
EF as their normal vector and pass through the endpoint co-

ordinates E (xs, ys, 0) and F (xe, ye, 0), respectively. The two equations of ψs and ψe are
defined as: {

(xe − xs)(xi − xs) + (ye − ys)(yi − ys) = 0
(xe − xs)(xi − xe) + (ye − ys)(yi − ye) = 0

(10)

For each point in the coplanar points Pcop, the distance values from dis and die to ψs and
ψe are calculated, respectively. If dis + die > dse, the corresponding point is removed from the
coplanar points. Note that dse denotes the distance between ψs and ψe. The coplanar points
after preliminary filtering are denoted as Pfilt. To avoid accidentally extracting points on
the ground and ceiling, calculating the minimum value Zmin and the maximum value Zmax
of Porig in the Z-axis direction is necessary, and points whose z coordinates are greater than
Zmax – ε2 or less than Zmin + ε2 are excluded from Pfilt. Pvert is the final filtered coplanar
points, and Pvert is output as a vertical plane. All qualified line segments are used to extract
their corresponding vertical planes (see Figure 8a). For efficiency, all points in the vertical
planes are removed from Porig. Prem is the remaining points (see Figure 8b). As shown in
Figure 8b, the remaining points are mainly composed of some horizontal planes such as
floor, ceiling, etc. Similar to the steps above, after pre-processing, Prem is used to extract the
horizontal plane Phor (see Figure 8c). Note that Prem is projected onto the X-Z plane. Finally,
the extracted planes are merged (see Figure 8d).
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Figure 8. A demonstration of the plane segmentation process. (a) Facade segmentation result. (b) The
remaining points. (c) Horizontal plane segmentation result. (d) The final result of plane segmentation.

2.3. Three-Dimensional Line Segment Extraction

After plane segmentation, the α-shape algorithm is exploited to extract boundary
points of each plane. In general, it is a method of abstracting the edges of discrete point
sets. If that there is a finite set of discrete points S, the principle can be imagined as a
circle with a radius of ε7 rolling outside the point set S. The circle passes through any two
points in S, if there are no other points in this circle, the two points are considered to be
boundary points [36]. The boundary points are extracted by iteratively detecting such
circles. However, as shown in Figure 9a, the surface of the input data contains a lot of
noise, such as a wall with a certain thickness. No matter how the parameters are adjusted,
the α-shape algorithm cannot extract the boundary points of the point cloud data. The
purpose is to reliably extract 3D line segments for indoor point clouds, even under adverse
conditions such as heavy noise; therefore, before boundary point extraction, it is necessary
to process the data to make it suitable for the α-shape algorithm. A robust plane fitting
method based on Principal Component Analysis (PCA) is adopted.
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Figure 9. Comparison of the original planar point cloud and the projected point cloud. (a) The
original planar point cloud. (b) The projected planar point cloud.

Plane position determination: Pplane is one of the above extraction planes. The spatial
plane equation of points in Pplane is:

Ax + By + Cz + D = 0 (11)

where A, B, and C are normal vectors of the plane and satisfy A2 + B2 + C2 = 1.
The distance di from a point pi on Pplane to the plane defined by Equation (11) can be

expressed as:
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di = |Axi + Byi + Czi + D| (12)

where xi, yi, and zi are coordinate values of point pi.
To obtain the best fitting plane, the objective function F0 should meet the following conditions:

F0 = min
N

∑
i=1
|Axi + Byi + Czi + D|2 (13)

Using the Lagrange multiplier method to solve the minimum value of the objective
function F0, the following functions are first composed:

F =
N

∑
i=1
|Axi + Byi + Czi + D|2 − λ

∣∣∣A2 + B2 + C2 + 1
∣∣∣ (14)

where λ is the undetermined value.
Taking the partial derivative of Equation (14) with respect to D and making the

derivative result 0, the following relationship can be obtained:

∂F
∂D

= −2
N

∑
i=1

(Axi + Byi + Czi + D) = 0 (15)

Then the following relationship can be further obtained:

D = −(Ax + By + Cz) (16)

where x = 1
N

N
∑

i=1
Axi, y = 1

N

N
∑

i=1
Ayi, z = 1

N

N
∑

i=1
Azi.

Equation (12) can be rewritten as follows:

di = |A(xi − x) + B(yi − y) + C(zi − z)| (17)

Using Equation (14) to calculate the partial derivatives of A, B, and C, respectively, the
following relationship can be obtained:

N
∑

i=1
∆xi∆xi

N
∑

i=1
∆xi∆yi

N
∑

i=1
∆xi∆zi

N
∑

i=1
∆xi∆yi

N
∑

i=1
∆yi∆yi

N
∑

i=1
∆yi∆zi

N
∑

i=1
∆xi∆zi

N
∑

i=1
∆yi∆zi

N
∑

i=1
∆zi∆zi


A

B
C

 = λ

A
B
C

 (18)

where ∆xi = xi − x, ∆yi = yi − y, ∆zi = zi − z.
The covariance matrix M3×3 is constructed as follows:

M3×3 =



N
∑

i=1
∆xi∆xi

N
∑

i=1
∆xi∆yi

N
∑

i=1
∆xi∆zi

N
∑

i=1
∆xi∆yi

N
∑

i=1
∆yi∆yi

N
∑

i=1
∆yi∆zi

N
∑

i=1
∆xi∆zi

N
∑

i=1
∆yi∆zi

N
∑

i=1
∆zi∆zi

 (19)
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The covariance matrix M3×3 is always symmetric positive semi-definite [37]. Based on
this characteristic,

→
e1,
→
e2, and

→
e3 are the three eigenvectors of M3×3, respectively. Λ1 ≥ λ2 ≥ λ3

are the three eigenvalues of M3×3. M3×3 can be decomposed as follow:

M3×3 =
[→
e1

→
e2

→
e3

] λ1 0 0
0 λ2 0
0 0 λ3



→
e1
→
e2
→
e3

 (20)

In practice,
→
e3 = (α, β, γ) is often used as the normal of Pplane

i. However, the eigenvalue
method directly uses all points in Pplane for plane fitting, in which the fitting parameters
obtained are not optimal. To obtain more accurate fitting parameters, first, for each point
in Pplane

i the distance djp to the plane defined by
→
e3 and p is calculated, and the standard

deviation σ is computed as: 
σ =

√
1
k

k
∑

j=1
(djp − d)

2

d = 1
k

k
∑

j=1
djp

(21)

If djp > 2 σ, the corresponding points are removed from Pplane, and the remaining

points are used to recalculate the value of
→
e3 and p. For efficiency, the number of iterations

is set to ε8 empirically. After ε8 iterations, the exact values of plane normal vectors A, B,
and C are obtained, and then the value of D is obtained by using Equation (16).

As the accurate fitting parameters for each plane are obtained, the equation is provided by:

xr
yr
zr

 =
1

A2 + B2 + C2

B2 + C2 −AB −AC −AD
−AB A2 + C2 −BC −BD
−AC −BC A2 + B2 −CD




xn
yn
zn
1

 (22)

Contour point extraction: As shown in Figure 9b, after projection, a plane point cloud
with random noise becomes very flat. Next, the α-shape algorithm is used to extract
boundary points Pedge of each plane (see Figure 10b). Since the average point distance of
each plane is not always the same or even very different, ε7 is associated with the average
point distance of S to achieve a good edge extraction effect.
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Figure 10. A demonstration of extracting 3D line segment from planar point cloud. (a) Planar point
cloud. (b) Extracted contour points. (c) Extracted 3D line segments.

After projecting the plane onto itself, the α-shape algorithm is used to extract boundary
points Pedge of each plane (see Figure 10b). Since the average point distance of each plane is
not always the same or even very different, ε7 is associated with the average point distance
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of S to achieve a good edge extraction effect. A distance threshold ε9 is set as the maximum
offset of a line when performing RANSAC. The parameters remain unchanged except that
ε2 is replaced by ε9.

Line segment extraction: Then the line segment detection method described above
is used to extract 3D line segments in Pedge (see Figure 10c). As shown in Figure 11a, the
extracted 3D line segments may contain line segments that are close to each other. To make
the extraction results more concise, the 3D line segment merging procedure is proposed.
First, the extracted 3D line segments are sorted in descending order according to their
lengths. For each sorted segment, the angle θij between it and another line segment is

calculated.
→
Vi and

→
Vj are the normal vectors of the two 3D line segments to be compared

(the normal vector of each line segment is estimated by RANSAC in advance), and θij is
calculated as:

θij = acos

→
Vi ×

→
Vj

‖
→
Vi‖‖

→
Vj‖

(23)
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Figure 11. Comparison of 3D line segments before and after merging. (a) Before merging.
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If θij < 5◦ or θij > 175◦, the two segments are considered to be approximately parallel.
Note that 5◦ is an empirical value for judging parallel lines. Once the parallelism of
two 3D line segments is checked, the corresponding pair will be marked and will not be
compared repeatedly.

Second, for each parallel pair, the orthographic distances from the two endpoints of
the longer line segment to the other one is calculated. If both distance values are less than
0.05 m, the two segments are considered to be approximately collinear. Note that 0.05 m is
an empirical value for judging collinear lines.

Finally, the endpoints of the two 3D line segments are checked to ascertain whether
there is overlapping part. The collinear segments with overlapping are considered to be
merged. If a line segment is shorter than the other, only the longer one is retained. The rest
is output as the final 3D line segment extraction result (see Figure 11b).

3. Experiments and Analysis

Considering that the plane segmentation involved in this paper are mainly horizontal
planes and elevations, in order to evaluate the performance of the proposed method we
first test it on four indoor scenes. Outdoor scenes and other buildings with sloped faces will
be discussed in subsequent subsections. As shown in Figure 12, scene 1 is a stair entrance,
and scene 2 is a corridor, both of which were obtained at the School of Surveying and
Mapping, Wuhan University, using the terrestrial laser scanner Faro Focus 150. The two
scenes are relatively representative, including indoor structures in most occasions, such
as floors, walls, doors, windows, ceilings, stairs, handrails, corners, etc., as well as some
sundries such as flower pots, trash cans, etc. Scene 3 is collected from the laboratory on the
first floor of Wuhan Haida Digital Cloud Co., Ltd. (Wuhan, China). The instrument used is
the HS500i terrestrial 3D laser scanner developed by the company. It should be pointed out
that the scanning accuracy of this scanner is poor. The surface of the collected point cloud
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data has a lot of random noise, and the quality is not as good as the first two scenes. This
scene can be used to verify the performance of the proposed algorithm in 3D line segment
extraction with noise interference. Scene 4 is selected from a recreation room in Stanford.
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Large 3D Indoor Spatial Dataset (S3DIS): The Large 3D Indoor Spatial Dataset (S3DIS)
is created by scanning271 rooms in six areas with a Matterport camera to generate re-
constructed 3D texture meshes and RGB-D images. All the algorithms in this paper are
implemented using C++ and Point Cloud Library 1.12.1, executed on a PC with Intel Core
i5-830H 2.3GHz CPU and 8GB RAM, and the operating system is Windows 10.

3.1. Parameters Setting

As we can see from above sections, there are generally two categories of parameters
in our algorithm: number-related and distance-related. Specifically, nine parameters are
involved in this paper. However, most of them are highly correlated or do not require
major adjustments. Below, we provide guidelines regarding how to select these thresholds.

The subsampling threshold ε1 represents the minimum threshold between two points,
that is, after a point cloud undergoes subsampling, the distance between any two points
within it is not less than ε1. Generally, ε1 cannot be determined by a fixed value; rather, it
depends on the scale of the original point cloud data and the noise level. For point cloud
with a relatively large height span range (e.g., greater than 5 m), such as scene 1, ε1 is set to
0.1 m; while for point clouds with a relatively small height span range (e.g., less than 5 m)
such as scene 2, scene 3, and scene 4, ε1 is set to 0.05 m. ε2 denotes the distance threshold
to determine whether a point lies on a straight line, and ε2 is usually associated with the
average point distance daver of Pproj. Here, we estimate ε2 through statistical analysis, i.e., ε2
is set to five times the average point distance daver of Pproj. This value works well on a broad
spectrum of datasets. ε3 is the number of iterations when performing RANSAC, which is
usually set to 100. ε4 is defined as the farthest distance to determine whether two adjacent
points lie on the same line segment. For the sake of convenience, we simply set it to be
four times ε2. ε5 is set as the minimum number of points per meter, and ε5 = 30 works for
most scenes. ε6 is set as the shortest distance of a qualified line segment. ε6 = 0.2 m is an
appropriate value depending on numerical experimentation. ε7 denotes the radius value
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when performing edge point extraction, and ε7 is set to 0.5 times ε4. As to the remaining
parameters, ε8 is set to 5, and ε9 is set to 10 times the average point spacing of Pedge. It is
worth mentioning that fine-tuning these parameters for different types of point clouds can
lead to better results.

3.2. Three-Dimensional Line Segment Extraction Effect Evaluation

Considering that the plane segmentation involved in this paper are mainly horizontal
planes and elevations, in order to evaluate the performance of the proposed method we first
test the building point clouds of four indoor scenes. Outdoor scenes and other buildings
with sloped faces are be discussed in subsequent subsections. As shown in Figure 12,
scene 1 is a stair entrance, and scene 2 is a corridor, both of which were obtained at the
School of Surveying and Mapping, Wuhan University, using the terrestrial laser scanner
Faro Focus 150. The two scenes are relatively representative, including indoor structures in
most occasions, such as floors, walls, doors, windows, ceilings, stairs, handrails, corners,
etc., as well as some sundries such as flower pots, trash cans, etc. Scene 3 is collected from
the laboratory on the first floor of Wuhan Haida Digital Cloud Co., Ltd. The instrument
used is the HS500i terrestrial 3D laser scanner developed by the company. It should be
noted that the scanning accuracy of this scanner is poor. The surface of the collected point
cloud data has a lot of random noise, and the quality is not as good as the first two scenes.
This scene can be used to verify the performance of the proposed algorithm in 3D line
segment extraction with noise interference. Scene 4 is selected from a recreation room in the
Stanford Large 3D Indoor Spatial Dataset (S3DIS). The dataset is created by scanning271
rooms in six areas with a Matterport camera to generate reconstructed 3D texture meshes
and RGB-D images.

Figure 13 shows the 3D line segment structures extracted by the proposed method.
In order to display more detailed information, each scene is displayed from two different
angles. It can be seen that both large frames (such as floors, ceilings and walls, etc.) and
details (such as doors, windows, and stairs, etc.) are recovered well, and the connections
between line segments are also well-matched. The multiple constraints in the algorithm
filter out a lot of irrelevant debris, so that a clear and concise extraction result can be
obtained. The extracted 3D line segments are consistent with the actual contours of the
experimental point cloud. As shown in Figure 13g,h, since the original input data are
relatively sparse, the distances between points in the extracted line segments are relatively
large. If necessary, it can be interpolated based on cubic B-spline curves. In order to
preserve the authenticity of the original data as much as possible, this paper does not fit
or connect the extracted line segments, thus resulting in the appearance of some “curve
segments”. Table 1 shows the calculation results of the method in this paper on each dataset.
The results show that the method successfully extracts the main 3D line segments within
an acceptable time, and the data volume of the four original point clouds is compressed to
0.00753, 0.00304, 0.00518, and 0.01027 times the original, respectively. Although the original
point cloud is greatly compressed, the basic frame and detailed information of the scenes
is well-preserved, which is undoubtedly beneficial for subsequent applications such as
registration, localization, object recognition, etc.
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Table 1. Calculation results for four indoor scenes.

Name Point Number Method Number of
Extracted Planes

Number of
Extracted Lines

Number of
Extracted Points Running Time (s)

Staircase 7,960,776 Proposed 42 203 59,925 418.37
Lu et al. [25] 488 997 1,204,472 874.19

Corridor 5,497,221 Proposed 20 155 16,696 185.89
Lu et al. [25] 191 656 711,345 539.40

Laboratory 2,154,851 Proposed 23 168 11,176 156.45
Lu et al. [25] 282 503 346,814 298.22

Lounge 1,022,584 Proposed 16 149 10,503 57.07
Lu et al. [25] 85 200 194,370 101.78

In order to further verify the accuracy of the 3D line segment extraction of the method
in this paper, the accuracy of partially representative walls, doors, windows, and quadran-
gular prism structures of the four scenes is evaluated, respectively. The accuracy evaluation
index is adopted here, that is, the accuracy is equal to the extracted area divided by the
measured area. As shown in Table 2, after comparing the results obtained by the proposed
algorithm with the measured data, it can be found that the extraction accuracy for the side
lengths of structures such as doors, windows, and large walls is basically controlled within
5 cm. The overall accuracy of the results is basically controlled above 96%, which proves
that the proposed algorithm is reliable in precision control.

Table 2. Dimensional calculation results of partially major structures in four indoor scenes.

Name

Reference Size Extracted Size Results

Width × Height
Area (m2)

Width × Height
Area (m2)

Difference
Accuracy (%)

(m ×m) (m ×m) (m2)

Staircase

Wall_1 5.056 × 2.759 13.9495 5.055 × 2.752 13.9114 0.0381 99.73
Wall_2 0.285 × 2.666 0.7598 0.282 × 2.658 0.7496 0.0102 98.66

Window_1 1.106 × 1.280 1.4157 1.085 × 1.253 1.3595 0.0562 96.03
Window_2 1.180 × 0.905 1.0679 1.177 × 0.884 1.0405 0.0274 97.43

Door 0.752 × 1.980 1.4890 0.767 × 1.993 1.5286 0.0306 97.34

Corridor
Wall 10.600 × 2.976 31.5456 10.597 × 2.957 31.3353 0.2103 99.33
Door 0.801 × 1.997 1.5996 0.786 × 1.992 1.5657 0.0339 97.88

Window 0.964 × 0.976 0.9408 0.995 × 0.962 0.9572 0.0164 98.20

Laboratory

Wall_1 4.396 × 2.836 12.4671 4.411 × 2.800 12.3508 0.1163 99.07
Wall_2 6.941 × 2.843 19.7332 6.934 × 2.816 19.5261 0.2071 98.95

Quadrangular 0.586 × 2.850 1.5112 0.523 × 2.816 1.4728 0.0384 97.46
Window_1 1.698 × 1.504 2.5538 1.714 × 1.478 2.5333 0.0205 99.20
Window_2 1.620 × 0.766 1.2409 1.595 × 0.748 1.1931 0.0478 96.22

Door 1.593 × 2.157 3.426 1.583 × 2.117 3.3512 0.075 97.82

Lounge

Wall 5.762 × 3.075 17.7182 5.770 × 3.026 17.4600 0.2582 98.54
Window_1 2.736 × 2.053 5.6170 2.748 × 2.028 5.5729 0.0441 99.21
Window_2 2.708 × 2.086 5.6489 2.799 × 2.114 5.9171 0.2682 95.25

Door 0.869 × 2.168 1.8840 0.897 × 2.121 1.9025 0.0185 99.02

In order to further verify the performance of the method proposed in this paper, it is
compared with the recent work of Lu et al. [25]. The comparison results are shown in Table 1,
and Figures 13 and 14. As can be seen in Figures 13 and 14, our detection results are at least
as good as the method of Lu et al. [25], both of which are able to extract the main frame
of a building. Since the first three scenes are all collected by terrestrial 3D laser scanners,
the point cloud density distribution is not uniform, while the method by Lu et al. [25] uses
region growing and region merging to segment the point clouds into 3D planes. These
planes are then projected into corresponding 2D images, and the line segments are extracted
from the images and backprojected to the planes. Image-based methods are sensitive to
noise and cannot adapt well to uneven distribution of point cloud density. As can be seen
from Figure 14, the method of Lu et al. [25] extracts some pseudo-line segments that do not
exist, and the extracted 3D line segments are relatively cluttered with large gaps between
adjacent line segments. In contrast, the method proposed in this paper can better restore
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3D detail information and avoid many misidentification phenomena. As shown in Table 1,
the method proposed in this paper is more efficient than the method of Lu et al. [25]. This
is because the projection-based plane segmentation strategy mainly processes the point
cloud in 2D space, which can quickly and accurately obtain the positions of the elevation
and the horizontal planes, so as to realize the rapid segmentation of the planes. In contrast,
the method of Lu et al. [25] requires time-consuming operations such as normal vector
estimation, region growth, region merging, etc. The efficiency is not as high as that of the
algorithm in this paper. Furthermore, the method by Lu et al. [25] extracts more planes and
lines than our method because it uses an over-segmentation strategy to over-segment the
point cloud into many facets.
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To demonstrate the effect of contour point extraction, the proposed method is com-
pared with Bazazian et al. [15], Ioannou et al. [16] and methods based on Statistical Outlier
Removal (SOR) filtering in PCL [38], respectively. As shown in Figure 15a,e,i,m, the contour
points extracted by the proposed method are clear and complete, consistent with the basic
frame of the building. As shown in Figure 15b,f,j,n, Bazazian et al. [15] detected sharpness
by analyzing the eigenvalues of the covariance matrix defined by the k-nearest neighbors
of each point edge features. This method has better detection effect for areas with large
curvature changes such as plane intersections, but cannot detect the edges of individual
planes (see Figure 15b,f). This type of eigenvalue-based method is particularly sensitive to
noise. As mentioned above, the point cloud quality of scene 3 is not as good as the other
three, and the surface is filled with a lot of random noise, so many points on the plane are
detected by mistake (see Figure 15g). As shown in Figure 15c,g,k,o, Ioannou et al. [16] cal-
culated the normal vector of each point at different scales, and those points whose normal
vector differences are greater than the set threshold are regarded as contour points. Similar
to the method based on eigenvalues, this method is highly recognizable for sharp edge
points, and also cannot detect edge points of a single plane (see Figure 15c,g). However,
the robustness of the method proposed by Ioannou et al. [16] is better than that based on
eigenvalues. As shown in Figure 15k, although the surface of the point cloud contains a
lot of random noise and the density distribution is uneven, the main contour points are
still accurately extracted. In short, the method based on normal differentiation can extract
the rough outline of the target object, but the extraction effect is not as fine as the method
in this paper. As shown in Figure 15d,h,l,p, the method based on SOR filtering has great
limitations, the requirements for the quality of point cloud data are high, and the threshold
parameters are not easy to accurately estimate. Table 3 shows the calculation results of the
four methods for the four scenarios. It can be seen that the method in this paper has high
efficiency and high data compression ratio, and is suitable for fast and fine contour point
extraction in large-scale high-density building scenes.
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(a,e,i,m) are the contour points extracted based on the proposed method; (b,f,j,n) are the contour
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Table 3. Contour point extraction results of four indoor scenes by different methods.

Name Point
Number Method Number of

Contour Points Running Time (s)

Staircase 7,960,776

Proposed 100,330 333.80
Bazazian et al. [15] 117,257 474.66
Ioannou et al. [16] 37,151 4173.42

SOR filter 54,103 1593.49

Corridor 5,497,221

Proposed 32,043 153.82
Bazazian et al. [15] 65,417 325.47
Ioannou et al. [16] 24,347 2854.33

SOR filter 56,311 1096.31

Laboratory 2,154,851

Proposed 16,962 144.15
Bazazian et al. [15] 320,971 207.22
Ioannou et al. [16] 63,370 1143.68

SOR filter 192,615 402.50

Lounge 1,022,584

Proposed 18,933 44.82
Bazazian et al. [15] 57,979 59.75
Ioannou et al. [16] 14,058 300.01

SOR filter 883,627 205.94

In order to test the performance of this method in outdoor scenes, we selected Bird-
fountain and Bildstein from the large-scale point cloud dataset Semantic3D for experiments.
Before the test, the original point clouds were appropriately cropped to filter out irrelevant
content. It should be noted that the Semantic3D dataset uses terrestrial laser scanners
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to scan scenes such as churches, streets, railway tracks, squares, villages, football fields,
and castles, and semantically label over 4 billion points. As shown in Figure 16a,b, the
scene Birdfountain is taken from a street, including the street façade, sloping roofs, ground,
trees, and a large number of outliers. The scene Bildstein is a Church building with nu-
merous closely spaced facades, sloping roofs, and some arcuate structures. The plane
segmentation algorithm provided in this paper is only suitable for elevation and horizontal
planes. The advantages are high efficiency, good robustness, and quick processing of
large-scale and high-density scene point clouds. Therefore, the proposed method is used to
extract the elevation and horizontal planes, and then the improved RANSAC algorithm
proposed by Chum et al. [35] is used to detect the inclined plane and some smaller planes
within the remaining point cloud (see Figure 16c,d). Then the contour points are identified
(see Figure 16e,f) and the 3D line segments are extracted (see Figure 16g,h). Table 4 shows
the calculation results of the two outdoor scene data. It can be seen that the method in
this paper can efficiently perform plane segmentation, contour point extraction and 3D
line segment extraction. While retaining the main structure of the building, the data are
greatly compressed.
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Figure 16. Effects of two outdoor scenes on plane segmentation, contour point extraction and 3D line
segment extraction. The first column corresponds to Birdfountain and the second column corresponds
to Bildstein. (a,b) are the input outdoor scenes. (c,d) are the plane segmentation results. (e,f) are the
extracted contour points. (g,h) are the extracted 3D line segments.

Table 4. Computational results for two outdoor scenes.

Name Point Number Number of
Extracted Planes

Number of
Extracted Line

Segments

Number of
Extracted

Contour Points

Point Number of
Extracted Lines Running Time (s)

Birdfountain 14,579,089 212 667 94,271 46,498 543.88
Bildstein 2,329,405 67 489 43,019 25,953 195.56

In order to test the performance of the method proposed in this paper under different noise
levels, as shown in Figure 17, a model named 101-prism in the public dataset Digital Shape
Repository was selected for testing. The size of the model is 20.00 m× 19.02 m× 15.00 m,
475,250 points were uniformly sampled from this model, and 0.01 m, 0.03 m, and 0.05 m of
Gaussian noise were added, respectively. It can be seen from the extraction effect that the
method in this paper has good robustness and can accurately extract the 3D line segment
structure under heavy noise.
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3.3. Application

The 3D line segment extraction method proposed in this paper can be applied to
the coarse registration of point clouds. Although terrestrial laser scanners can obtain fine
3D information on the surface of objects, the point cloud data collected from a single
perspective is not enough to cover the entire scene. Therefore, it is necessary to register
the point clouds collected from multiple perspectives to the same coordinate system. The
process includes two steps: coarse registration and fine registration. Fine registration
usually adopts the iterative nearest point (ICP) algorithm [39] or its variants [40,41]. At
present, there are a large number of coarse point cloud registration methods [42–44], these
methods calculate transformation parameters by extracting different geometric features
(point, line, plane, and specific object). In general, point-based approaches are more general
because they are applicable to a variety of scenarios. The methods based on lines or planes
are more robust to noise and point density variation. For scenes with man-fabricated
objects, extracting line/surface features for point cloud registration is a good choice due
to the large number of line and surface features in the scenes. However, most existing
line-based or plane-based methods use 3D lines/3D planes for point cloud registration,
which means that these methods process point cloud data in 3D space. Considering that it
is time-consuming to extract 3D lines/3D planes, 2D-projected line segments are used here
for coarse registration of point clouds.

Assume that the point cloud to be registered is Ps and the target point cloud is Pt,
the purpose of registration is to convert Ps to the coordinate system where Pt is located.
Considering the leveling operation is carried out when Ps and Pt are collected by terrestrial
laser scanner, the coordinate transformation mainly involves rotation and translation in
X-Y plane and translation along Z axis. The intersection of planes often exists in the point
cloud of buildings, and the projections of these planes on the X-Y plane are distributed
as intersecting line segments. This paper fully describes the algorithm of how to extract
2D-projected line segments, and does not repeat them here.

After the projection line segments of Ps and Pt on the X-Y plane are extracted, the
corresponding line segment pairs are identified (there may be more than one pairs). Al-
though these line segment pairs have different points and may not intersect (affected by
occlusion and parameter settings), their relative relationship remains unchanged, and the
parameter settings among different stations are consistent, so there is no point cloud scaling
phenomenon. Based on these characteristics, 2D-projected line segments can be used for
registration on the X-Y plane.

Suppose the point of intersection of two intersecting lines is pinters (c1, c2), and a
virtual point on the line with a length r from the intersection is p (x, y), then the following
relationship can be obtained: {

y = a1x + b1

(x− c1)
2 + (y− c2)

2 = r2 (24)

where a1 and b1 are the parameters in the rectangular coordinate system.
Substituting the first term in Equation (24) into the second term, the value of x can be

obtained as:

x =
−B±

√
B2 − 4AC

2A
(25)

where 
A = 1 + a2

1
B = 2(a1b1 − a1c2 − c1)

C = (b1 − c2)
2 + c2

1 − r2

It can be seen that there are two values of x and two corresponding values of y. In fact,
we only need the point on the side of the point cloud segment. To solve this problem, the
centroid pcent of two intersecting line segments is first calculated, and then the distance d1
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and d2 between these two virtual points and pcent are calculated. The virtual point with the
closest distance is the desired one.

As shown in Figure 18, one intersection point can be used to calculate two additional
virtual points, and the rotation and translation parameters of the X-Y plane can be estab-
lished from these three pairs of homonymic points. There may be multiple line segment
pairs, that is, there may be multiple pairs of homonymy points (more than three pairs). In
order to solve the coordinate transformation in the presence of multiple pairs of homonymy
points, pi

t and pi
s are the homonymy point sets of Pt and Ps, respectively, the rotation matrix

is R, and the translation vector is T. The following relationship can be obtained:

pt
i = Rps

i + T (26)
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The centroids of pi
t and pi

s is pcent
t and pcens

s respectively, then we have:{
pt′

i = pt
i − pt

cent
ps′

i = ps
i − ps

cent
(27)

Considering the influence of error, the method of reducing error function is adopted
to solve the transformation parameters. The total error equation during coordinate trans-
formation can be expressed as:

∆ =
n

∑
i=1
‖pt

i − (ps
i R + T)‖2 (28)

where n is the number of homonymic point pairs.
The total error equation after centralization can be expressed as:

∆ =
n

∑
i=1
‖pt′

i − Rps′
i ‖2 (29)
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when the value of ∆ is minimum, the desired rotation matrix R and shift vector T can be
obtained, and appropriate transformation of ∆ is performed:

∆ =
n

∑
i=1

(
ps′

i
T ps′

i + pt′
i

T pt′
i − 2ps′

i
T Rpt′

i

)
(30)

Therefore, finding the minimum of ∆ is equivalent to finding the maximum value of
∆’, and ∆’ is:

∆′ =
n

∑
i=1

ps′
i

T Rpt′
i = Trace

(
R

n

∑
i=1

ps′
i

T pt′
i

)
= Trace(RH) (31)

where

H =
n

∑
i=1

ps′
i

T pt′
i

By performing singular value decomposition on H, the following relationship can
be obtained: [

U ∑ V
]
= SVD(H) (32)

Then the rotation matrix R can be expressed as:

R = VUT (33)

After calculating the value of rotation matrix R, the translation vector T can be obtained
from Equation (26):

T = pt
i − Rps

i (34)

The transformation matrix A between the two coordinate systems is:

A =

[
R T
0 1

]
(35)

Next, the translation of Ps and Pt along the Z-axis direction ∆Z is calculated. A simple
way is to calculate the average elevation h1 and h2 of the flat ground of Ps and Pt. The
translation can be regarded as the difference between h1 and h2.

As shown in Figure 19, the Faro Focuss 150 laser scanner was used to collect point
clouds from two different perspectives in the library square of the Faculty of Information
Science, Wuhan University. The scanner was set up on a flat cement floor in front of the
library, and the point number of the two sites were 15,906,154 and 15,782,158, respectively.
As shown in Figure 20, Area1 and Area2 are selected corresponding to the two sites, of
which the red part is Area1 and the blue part is Area2. The purpose of registration is to
unify Area2 to Area1 coordinate system. Area1 and Area2 are subsampled and projected to
the X-Y plane, the subsampling parameter is set to 0.03 m, the 2D projected point cloud line
segment is extracted (Figure 21), and five pairs of intersection points are found. Two pairs
of homonymous points can be added to each pair of intersection points, so that the pairs of
homonymous points are 15 in total, where r is set to 1 m. The coordinate transformation
matrix calculated from the 15 pairs of homonymous points is as follows:

[
R T

]
=

 0.894 0.448 6.351
−0.448 0.894 8.962

0 0 1

 (36)

where Equation (36) transforms the coordinates of Ps so that it is aligned with Pt on the X-Y
plane. As shown in Figures 22 and 23a, after coordinate transformation, point clouds are
well-aligned on the X-Y plane.
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Figure 23. The registered point cloud on the X-Y plane. (a) Top view. (b) Front view.

However, as shown in Figure 23b, the two registered point clouds still have elevation
deviation in the Z direction. It is known that the average ground elevation near the scanner
of Pt and Ps is −175.084 m and −180.901 m, respectively. The final registration result can
be obtained by shifting Ps upward by 5.817 m (see Figure 24).
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Table 5 shows the coordinate deviations of 15 homonymous points after registration.
The maximum deviation in the X direction is less than 3 mm, the maximum deviation in
the Y direction is less than 2.5 mm, and the maximum displacement deviation is less than
3.5 mm.
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Table 5. The coordinate deviations of 15 homonymous points after registration.

Number of
Pairs

Point
Number

Reference Value Calculated Value
dx (mm) dy (mm) Displacement

(mm)X(m) Y(m) X(m) Y(m)

Pair1
1 2.5331 32.1316 2.5338 32.131 0.7 −0.6 0.9
2 1.7526 32.7567 1.7533 32.7561 0.7 −0.6 0.9
3 3.16106 32.9099 3.1621 32.9093 1.0 −0.6 1.2

Pair2
4 3.0838 32.8141 3.0844 32.8129 0.6 −1.2 1.3
5 2.4558 32.0359 2.4562 32.0349 0.4 −1 1.1
6 3.8589 32.1824 3.86 32.1817 1.1 −0.7 1.3

Pair3
7 3.6216 27.6053 3.6192 27.6071 −2.4 1.8 3.0
8 2.8399 28.2289 2.8371 28.2301 −2.8 1.2 3.1
9 4.2379 28.3928 4.2377 28.3926 −0.2 −0.2 0.3

Pair4
10 18.0089 16.0006 18.0072 16.0029 −1.7 2.3 2.9
11 18.796 15.3838 18.794 15.3856 −2 1.8 2.7
12 18.6282 16.7857 18.6266 16.7879 −1.6 2.2 2.72

Pair5
13 22.5925 15.9288 22.5951 15.927 2.6 −1.8 3.2
14 23.3677 15.2971 23.37 15.2951 2.3 −2 3.1
15 23.231 16.6985 23.2323 16.6978 1.3 −0.7 1.5

4. Conclusions

In this paper, we presented an efficient 3D line segment extraction method for building
point clouds. The raw point clouds are first segmented into vertical and horizontal planes
via a projection-based plane segmentation method. Since most operations are performed
in 2D space and no normal estimation is required, the proposed plane segmentation
method is very efficient compared with traditional segmentation algorithms such as Region
Growing and RANSAC. Then these extracted planes are projected onto their corresponding
precisely fitted planes. The boundary points of the flat planes are abstracted by an adaptive
α-shape algorithm. Finally, the proposed 3D line segment detection method based on
RANSAC and Euclidean clustering is employed to abstract 3D line segments. Compared
with other line detection technologies such as Hough transform and CannyLines, the
proposed method can accurately extract both 2D and 3D line segments without model
adjustment. The experiments were performed on the raw point clouds of complex real-
world scenes acquired by terrestrial laser scanner devices and structured-light sensors. An
image-based 3D line segment detection algorithm is compared with the proposed method.
The comparison results show that the proposed method can restore the details better and
recover the structural line segments more concisely. The comparative experiments on
boundary point extraction show that the method is superior to the point-based method.
The performance of extracting 3D line structures from synthetic point clouds with different
levels of Gaussian noise shows that the proposed method is robust to the presence of
noise. Moreover, the proposed framework produces minimal outliers and pseudo-lines, as
suggested by comparisons with the state-of-the art approaches. In addition, the proposed
method can be further optimized by a parallel processing technique. We believe that
our 3D line segment extraction method can be applied to many fields. As an example,
we employ the extracted 2D-projected line segments on solving the building point cloud
registration problem. The proposed line-based registration method is reliable and efficient,
especially suitable for the man-fabricated structures, which contains a large number of line
and plane features.
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