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Abstract: Ionospheric total electron content (TEC) is important data for ionospheric morphology, and
also an important parameter for ionospheric correction in Global Navigation Satellite System (GNSS)
precise positioning, navigation, and radio science. In this study, we present a data assimilation model
for regional ionosphere based on a local ensemble Kalman filter (LEnKF) with the International
Reference Ionosphere 2016 (IRI-2016) model as the background, to assimilate ionospheric TEC
observations from GNSS. To demonstrate the results, the TEC estimates from the Crustal Movement
Observation Network of China (CMONOC), which is about 260 stations in China, are applied as
observation. The assessments are performed against the TEC estimates from BeiDou Navigation
Satellite System (BDS) geostationary earth orbit (GEO) and against the final products from the Center
for Orbit Determination in Europe (CODE). The assimilation results are in good agreement with
BDS GEO TEC and the CODE TEC on a quiet or disturbed day. The correlation coefficient after
assimilation is increased by about 17% compared with that before assimilation, and the RMSE after
assimilation is decreased by about 42% compared with that before assimilation. Furthermore, the
assimilated method is also evaluated in the single-frequency precise point positioning (PPP). The
experimental results indicate that the PPP/Assimilated method can improve the GNSS positioning
accuracy more effectively in comparison to the PPP/CODE. These results reveal that the LEnKF
method can be considered as a useful tool for ionospheric assimilation.

Keywords: ionosphere; ensemble Kalman filter; TEC; IRI; GNSS; CODE

1. Introduction

Ionospheric reflection, refraction, scattering, and absorption of radio signals are an
important source of errors in velocity measurement, timing, navigation, and positioning of
Global Navigation Satellite System (GNSS). Total electron content (TEC) is an important
parameter for the ionosphere. An accurate ionospheric TEC model plays a significant role in
improving the accuracy of GNSS precise positioning and navigation, and understanding the
structure and variation of the ionosphere. To learn about ionospheric weather and improve
the accuracy of GNSS navigation and positioning, numerous empirical, physics-based
theoretical and mathematical models of the ionosphere have been developed. Ionospheric
data assimilation is the process of combining observations with a model of the ionosphere
which can effectively express the ionospheric morphology and improve the accuracy of the
ionospheric TEC models to understand space weather and correct the ionospheric error in
GNSS navigation and positioning. It is of great importance to provide accurate and reliable
ionospheric TEC products as practically as possible [1].
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In recent years, data assimilation models have been developed for global or regional
ionospheric TEC models to predict ionospheric space weather [2–11]. Some powerful
techniques to assimilate data into ionospheric models are variational algorithm, a Kalman
filter, and an ensemble Kalman filter. Bust et al. [12] used a three-dimensional variational
algorithm to assimilate GNSS TEC into an empirical ionospheric model, which incorporates
available data, the associated data error covariances, a reasonable background specification,
and the expected background error covariance into a coherent specification on a global
grid. Aa et al. [13] developed a regional 3D ionospheric electron density model over China
and adjacent areas with a three-dimensional variational method. Mengist et al. [14] applied
a four-dimensional variational algorithm with a fidelity that improves with inclusion of
multiple data types to a regional ionospheric nowcast system during quiet and storm days.
Wang et al. [15] used a three-dimensional variational algorithm to derive global ionosphere
maps (GIM) using GNSS measurements. Compared with the variational algorithm, the
advantage of the Kalman filter is that it can dynamically propagate the background error
covariance forward [16]. Schunk et al. [17] developed a physics-based data assimilation
model—the global assimilation of ionospheric measurements (GAIM)—which would use
a physics-based ionosphere-plasmasphere model and a Kalman filter as a basis for as-
similating a diverse set of measurements. Aa et al. [1] used a Kalman filter method to
implement the data assimilation with GNSS data, and demonstrates the effectiveness of this
method in providing accurate regional distribution of the ionospheric TEC. Lin et al. [18]
presented a new ionospheric data assimilation procedure—the Gauss-Markov Kalman
filter—to assimilate ground- and space-based TEC. Pasumarthi and Devanaboyina [19]
used the Kalman filter method to generate hourly assimilated Indian regional TEC maps
by the process of data assimilation. Qiao et al. [20] used the Gauss-Markov Kalman filter
to develop a TEC model in China and adjacent regions. Compared with the Kalman filter
algorithm, the advantage of the ensemble Kalman filter (EnKF) is that the error statistics
are calculated from an ensemble of the forward model forecasts which run in parallel [21].
Yue et al. [21] used an EnKF technique to assimilate a one-dimensional midlatitude iono-
spheric theoretical model and found this technique had a better performance than the
three-dimensional variational technique. Chartier et al. [22] assimilated TEC observa-
tions into a couped thermosphere-ionosphere model using an EnKF during storms, which
showed the potential for the EnKF method to improve midlatitude storm-time TEC fore-
casting efforts. Chen et al. [23] used an EnKF method to assimilate ground-based GPS
TEC observations into a theoretical numerical model of the thermosphere and ionosphere.
He et al. [6] evaluated the quasi-realistic ionosphere forecasting capability by an EnKF
ionosphere and thermosphere data assimilation algorithm. He et al. [24] also developed an
EnKF ionosphere and thermosphere data assimilation model based on different observation
systems over China and found that this model can greatly improve the quality of iono-
sphere specification. Although there are many good ionospheric assimilation models, it is
of great significance to continue to study ionospheric assimilation methods and practical
applications. At present, many data assimilation models have been developed for global
or regional ionospheric TEC models to predict ionospheric space weather. However, few
studies have used GNSS positioning to evaluate the accuracy of ionospheric assimilation
models. Although some outstanding ionospheric data assimilation products have been
developed in China, there are limited studies of data assimilation and application in China
seeking to generate a regional TEC product with high precision. As an empirical model,
the International Reference Ionosphere (IRI) model, which is an international project, plays
an important role in the Earth’s ionospheric studies and applications [25,26]. The latest
version of the IRI model is IRI-2016 [27].

In this study, we propose a local ensemble Kalman filter (LEnKF) to assimilate GNSS
ionospheric TEC observations into the IRI-2016 model. The TEC estimates from the Crustal
Movement Observation Network of China (CMONOC), which is about 260 stations in
China, are applied as observation. The assessments are performed against the TEC estimates
from BeiDou Navigation Satellite System (BDS) geostationary earth orbit (GEO) and against
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the final products from the Center for Orbit Determination in Europe (CODE). In addition,
we use the single-frequency precise point positioning (PPP) to evaluate the accuracy of
ionospheric assimilation models for the first time.

2. Methodology

EnKF uses sample statistics to calculate the background error covariance, which is
prone to negative problems such as filter divergence, underestimation of the prediction error
covariance, and spurious correlation. As a result of these problems, EnKF may produce a
suboptimal analysis result. In order to overcome the negative effects of undersampling,
covariance localization should be adopted. The local ensemble Kalman filter (LEnKF) data
assimilation method has been described in detail and mathematically derived in [28]. In this
section, we only provide a brief derivation of this method to understand the implementation
of the scheme on the ionospheric data assimilation.

2.1. Ensemble Kalman Filter

We all know that the ensemble Kalman filtering algorithm is developed from the
Kalman filtering algorithm, and the major difference between them is that the background
error covariance matrix of the ensemble Kalman filtering is statistically derived from a finite
number (usually 10 to several hundred) of samples obtained from a fully nonlinear forecast.
These ensemble forecasts start with a set of initial conditions, a short period of forecasting
followed by an analysis process, and then continue the cycle of forward forecasting. Thus,
the ensemble Kalman filter is an approximation and extension of the Kalman filter [29]. It
can be written as

Xa = X f + K(Yobs − HX f ) (1)

K = P f HT(HP f HT + R)
−1

(2)

P f =
(

X f − X f
)(

X f − X f
)T

/(N − 1) (3)

R =
(
Yobs −Yobs

)(
Yobs −Yobs

)T/(N − 1) (4)

where Xa is the analysis value, X f is the ensemble TEC of the background given by the
IRI model, Yobs is the TEC of GNSS observations, K is the Kalman gain matrix. P f is the
background error covariance, H is the observation operator, R is the observation error

covariance, X f denotes the ensemble mean TEC of the background model, Yobs denotes
the ensemble mean TEC of GNSS observations, N is ensemble number. H is to make the
observation field and the background have the same dimension. It is usually a matrix with
different number of rows and columns at different times. In this paper, the number of rows
is equal to the number of observed grid points, and the number of columns is equal to the
number of grid points in the background field.

The background field in the next step can be updated in time by a Gauss-Markov
method, which assumes that the correction of the analyzed values to the background values
decays exponentially with time and can be expressed as:

X f
t+1 = Xb

t+1 +
(

Xa
t − Xb

t

)
e−∆t/τ (5)

where X f
t+1 is the next moment forecast value, ∆t is the time step, and τ denotes the

ionospheric time dependent scale. The relevant scale factor can be written as τ = 1/4 ∗
cos(π/12 ∗ (t− 14)) + 3/4 [20].

The ensemble-based background error covariance P f is derived from the statistics of
the ensemble samples, which are initialized by randomly perturbing the F10.7 parameter
input of IRI-2016 model. By calculating the standard deviation of F10.7, the error set
that satisfies the Gaussian distribution mean of 0 is obtained, which is used as the initial
condition to drive the IRI-2016 model.
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2.2. Local Method

To eliminate the pseudo correlation, which is far from the observation, covariance
localization is used, which implements the Schur product operation between the prediction
error covariance matrix and the localization function to solve the spurious correlation
problem by truncating the error correlation beyond a pre-specified distance in the prediction
error covariance matrix. In addition, the Schur product operation can improve the rank of
the prediction error covariance matrix.

It is generally believed that the ionospheric spatial correlation is Gaussian distributed,
but there is no good conclusion on the distance dependence. The ionospheric distance
dependence can be regarded as anisotropic. In this paper, the ionospheric distance depen-
dence is regarded as the product of longitude, latitude and altitude directions [30]. The
ionospheric correlation scales vary significantly in different directions, with significant
variations in latitude, altitude, season, local time, and solar activity. The original P f is
updated by the Schur product of the distance-based correlation coefficient matrix ρ and the
background error covariance P f [31].

P f → ρ ◦ P f (6)

For the purpose of this paper, the correction factor can be expressed as:

ρij = e−α(ϕ2
ij/L2

x)e−α(θ2
ij/L2

y) (7)

where ρij is the correlation coefficient between point i and point j, α is the distance cor-
relation coefficient, ϕij and θij are the distances between two points in the longitude and
latitude directions, respectively. Lx and Ly denote the correlation distances in the longitude
and latitude directions, respectively. The correlation distance in the latitude direction is
10◦, and the correlation distance in the longitude direction changes linearly from about 40◦

at mid-latitudes to about 20◦ in the equatorial region [30]. In this paper, the correlation
coefficient e−α defined at the correlation distance is 0.75, α = 0.29.

3. Data and Processing
3.1. Data

The GNSS observation data from about 260 stations of the CMONOC [32] and the
BDS GEO from the multi-GNSS experiment (MGEX) stations are used to investigate the
ionospheric assimilation model over China and surrounding areas. Based on the obser-
vation data from CMONOC and MGEX stations, we calculate the vertical total electron
content (VTEC) on all ionospheric pierce points (IPPs) by the uncombined PPP method [33],
which is based on the ionosphere’s single-layer model [34]. The assimilation region extends
from 70◦E to 140◦E in longitude, 15◦N to 55◦N in latitude. The spatial resolution is 1◦ × 1◦

in the longitudinal and latitudinal directions. As shown in Figure 1, the red circles and
green pentagrams denote the locations of CMONOC and MGEX stations over China and
surrounding areas, respectively.

The IRI model is a joint undertaking by the Committee on Space Research (COSPAR)
and the International Union of Radio Science (URSI) with the goal of developing and
improving an international standard for the parameters in Earth’s ionosphere [35]. IRI is a
widely used and recognized international reference ionospheric model. It is an empirical
model based on a large number of ground and satellite observations of ionospheric pa-
rameters. The IRI model describes average conditions quite well and has shown excellent
results in comparison with other models. In this paper, we use the latest version IRI-2016
as the background model.

CODE GIMs are generated on a daily basis at CODE using data from about 300 GNSS
sites of the International GNSS Service (IGS) and other institutions. The VTEC is modeled
in a solar-geomagnetic reference frame using a spherical harmonics expansion up to degree
and order 15. Piece-wise linear functions are used for representation in the time domain.
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The time interval of their vertices is 1 h, which produces 1 hourly snapshots of the global
ionosphere. Each TEC map has a spatial resolution of 2.5◦ × 5◦ in the geographic latitude
and longitude.

The ionospheric data assimilation experiment is carried out by selecting the GNSS data
of CMONOC and MGEX stations from 5 September 2017 to 11 September 2017. Figure 2
shows the variations of the geomagnetic indexes disturbance sudden time (Dst) and Kp
during 5–11 September 2017. The first storm starts at 20:00 UT on September 7 with a
sudden decline of Dst index. The Dst index reaches the minimum value of −124 nT at
01:00 UT on 8 September 2017. The Kp index reaches the minimum value of 8 at 00:00 UT
to 03:00 UT and 13:00 UT to 15:00 UT on 8 September 2017.
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3.2. Accuracy Assessment

To evaluate the accuracy of the assimilation results, the root mean square error (RMSE)
is used as the standard of accuracy assessment. Note that the RMSE is defined as

RMSE =

√√√√ 1
N

N

∑
n=1

(TECass
n − TECrea

n )2 (8)

where N is the total number, TECrea
n is the TEC value obtained by CODE or BDS GEO

in the nth point, TECrea
n is the TEC value obtained by data assimilation in the nth point.

CODE TEC is obtained from CODE GIM product.
We also use the kinematic single-frequency PPP to evaluate the accuracy of the iono-

spheric assimilation model. Three modes of kinematic PPP are performed and analyzed,
which are the ionosphere-free combination model (PPP/IF), the single-frequency L1 ob-
servation based on CODE GIM constraint (PPP/CODE), and the single-frequency L1
observation based on the ionospheric assimilated model (PPP/Assimilated), respectively.
The reference coordinates are obtained from the final solution by the static dual-frequency
PPP [36].

4. Results and Analysis
4.1. Under Quiet Ionospheric Conditions

Figure 3 shows examples of comparison plot for 05:00 UT on a quiet day, 249, 2017
(6 September 2017). Figure 3a is IPP TEC which is derived from GNSS observations.
Figure 3b is IRI-2016 TEC which is derived from the IRI-2016 model. Figure 3c is as-
similated TEC which is derived from the assimilated method of the local ensemble Kalman
filter. Figure 3d is GIM TEC which is derived from CODE. It can be seen that the IRI-2016
TEC values are significantly overestimated in comparison to CODE TEC between 130◦E
to 140◦E and 15◦N to 35◦N, and are significantly underestimated in comparison to CODE
TEC between 70◦E to 140◦E and 35◦N to 55◦N. These suggest that the assimilated TEC
has better agreements with CODE TEC than with the IRI-2016 TEC. To a certain extent, it
indicates the improvement of the assimilation model when the GNSS-observed TEC data is
assimilated into the IRI-2016 model.

Figure 4 shows distributions of absolute differences and TEC correlations on 6 Septem-
ber 2017. Figure 4a presents absolute differences between the assimilated TEC and
the CODE TEC. Figure 4b presents absolute differences between the IRI-2016 TEC and
the CODE TEC. Figure 4c presents assimilated TEC distribution versus the CODE TEC.
Figure 4d presents IRI-2016 TEC distribution versus the CODE TEC. Figure 4a,b present
the residual histogram distributions for the data assimilation TEC and IRI-2016 TEC, re-
spectively. It can be seen that the residual distribution before data assimilation is obviously
deviated from the center and has a large deviation from CODE TEC. The residuals mean and
the RMSE between the IRI-2016 TEC and the CODE TEC are −3.33 TECU and 5.20 TECU,
respectively. The residual distribution after data assimilation is closer to an unbiased
Gaussian distribution. The residuals mean and the RMSE between the assimilated TEC
and the CODE TEC decrease to −1.60 TECU and 2.95 TECU, respectively. As can be seen
from Figure 4d, correlation coefficients of 0.97 and 0.95 are obtained for assimilated TEC
and IRI-2016 TEC, respectively. The assimilation results are in good agreement with the
CODE TEC.
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To analyze the performance of TEC, we use three modes of kinematic PPP which are
PPP/IF, PPP/CODE, PPP/Assimilated. Figure 5 shows the RMSE of the 3D coordinate
of three modes with each epoch at different stations for day 249, 2017 (6 September 2017).
The RMSE of the 3D is computed by taking the RMSE of the 3D coordinate (North, East,
Up component) solutions. PPP/IF is PPP of the ionospheric-free observation which is
used by dual-frequency combination method. PPP/Assimilated is PPP of the single-
frequency observation based on the ionospheric assimilated TEC. PPP/IF can be used as
reference accuracy. If the positioning accuracy of the single-frequency PPP with ionospheric
constraints is slightly lower than or equal to that of PPP/IF, it can be proven that the
ionospheric TEC is more accurate. It can be seen that the PPP/Assimilated and PPP/CODE
solution present a good performance as well as PPP/IF for all stations. The results indicate
that ionospheric constraint of PPP/Assimilated can effectively perform single-frequency
PPP positioning. In Figure 5d, the performances of all PPP methods are generally worse
due to the more active ionospheric activity and the higher values of TEC at low latitudes.
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4.2. Under Disturbed Ionospheric Conditions

Figure 6 shows examples of comparison plot for 05:00 UT on a disturbed day, 251,
2017 (8 September 2017). Figure 6a is IPP TEC, which is derived from GNSS observations.
Figure 6b is IRI-2016 TEC, which is derived from the IRI-2016 model. Figure 6c is the
assimilated TEC, which is derived from assimilated method of the local ensemble Kalman
filter. Figure 6d is GIM TEC, which is derived from CODE. It can be seen that the IRI-
2016 TEC values are significantly underestimated in comparison to CODE TEC between
70◦E to 140◦E and 15◦N to 35◦N. As can be seen in Figure 6b–d, the assimilated TEC has
better agreements with CODE TEC than with the IRI-2016 TEC. To a certain extent, it also
indicates the improvement of the assimilation model when the GNSS-observed TEC data is
assimilated into the IRI-2016 model on the disturbed day.
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Figure 7 shows distributions of absolute differences and TEC correlations on 8 Septem-
ber 2017. Figure 7a presents absolute differences between the assimilated TEC and
the CODE TEC. Figure 7b presents absolute differences between the IRI-2016 TEC and
the CODE TEC. Figure 7c presents assimilated TEC distribution versus the CODE TEC.
Figure 7d presents IRI-2016 TEC distribution versus the CODE TEC. Figure 7a,b also
present the residual histogram distributions for the data assimilation TEC and IRI-2016
TEC, respectively. It also can be seen that the residual distribution before data assimilation
is obviously deviated from the center and has a large deviation from CODE TEC on the
disturbed day. The residuals mean and the RMSE between the IRI-2016 TEC and the
CODE TEC are −5.56 TECU and 7.53 TECU, respectively. The residual distribution after
data assimilation is also closer to an unbiased Gaussian distribution. The residuals mean
and the RMSE between the assimilated TEC and the CODE TEC decrease to −2.27 TECU
and 3.37 TECU, respectively. In Figure 7c,d, correlation coefficients of 0.98 and 0.90 are
obtained for assimilated TEC and IRI-2016 TEC, respectively. The assimilation results are
also in good agreement with the CODE TEC on the disturbed day. The above research
indicates that data assimilation can effectively fuse the observed data based on GNSS into
the background model and obtain more reasonable and accurate results of ionospheric TEC.

Figure 8 shows the RMSE of the 3D of three modes with each epoch at different stations
on the disturbed day. It can be seen that the PPP/Assimilated and PPP/CODE solutions also
present a good performance as well as PPP/IF for all stations. The results also indicate that
ionospheric constraint of PPP/Assimilated can effectively perform single-frequency PPP
positioning under disturbed ionospheric conditions. Similar to Figure 5d, the performances
of all PPP methods are generally worse in Figure 8d. In addition, this larger error occurs
about 01 UT, and 13 UT to 16 UT, when ionospheric irregularity affects GNSS observations
more effectively. Jiang et al. (2020) have demonstrated that ionospheric irregularities
have occurred in low-latitude Southeast Asia during about 13 UT on 8 September 2017.
In Figure 2, these two geomagnetic storms mainly occur at about 01 UT and 14 UT on
8 September 2017. The shock wave of the coronal mass ejection (CME) and the CME’s
material arrival at the earth is regarded as the main causes to induce these two geomagnetic
storms [37]. The effect of ionospheric irregularities on GNSS phase observations can
lead to amplitude and phase scintillation, which degrades the PPP solution. Therefore,
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scintillations due to ionospheric irregularities may be the main reason for the poor results
of PPP/IF, PPP/CODE, and PPP/Assimilated at this time. It is interesting to find that even
removing the first-order ionospheric delay in PPP/IF is not sufficient to mitigate the effects
of scintillation on GNSS signals.
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5. Discussion

To verify the reliability of the assimilated method, Figure 9 shows comparisons of
the TEC obtained from the GNSS observation (black) from the IRI-2016 model (blue), and
from the assimilated method of the improved ensemble Kalman filter (red) at different
stations during a 7-day period from 5 September 2017 to 11 September 2017. It is worth
noting that these four GNSS stations are not involved in ionospheric assimilation modeling.
The purpose is to use these four GNSS stations for verification of external coincidence
accuracy, as the IPP near these four stations during the assimilation process will improve the
modeling quality of this area. The BDS GEO satellite has a fixed IPP and can continuously
observe the variation of long-term ionospheric TEC at a certain point. In this paper, we
use BDS GEO satellite to analyze the accuracy of the ionospheric assimilation experiment.
In Figure 9, the assimilated TEC has better agreements with observed TEC of BDS GEO
than with the IRI-2016 TEC for all GNSS stations during the 7-day period. In general,
the values of ionospheric TEC increase with decreasing latitude. It is consistent with the
variation of ionospheric TEC. The excellent agreement between the assimilated model and
the BDE GEO observations becomes even more impressive when the observed TEC values
are compared with the IRI-2016 TEC values.
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The specific information is shown in Figure 10. Figure 10 shows assimilated and
IRI-2016 TEC distributions versus the GNSS-observed TEC of different GNSS stations for
a 7-day period from 5 September 2017 to 11 September 2017. In Figure 10a, the correla-
tion coefficient and the RMSE between the IRI-2016 TEC and the observed TEC of the
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GAMG station is 0.68 and 8.98 TECU, respectively. After data assimilation, the correlation
coefficient increases to 0.92, and the RMSE decreases to 5.50 TECU. In Figure 10b, the
correlation coefficient and the RMSE between the IRI-2016 TEC and the observed TEC of
the JFNG station is 0.82 and 8.33 TECU, respectively. After data assimilation, the correlation
coefficient increases to 0.95, and the RMSE decreases to 4.59 TECU. In Figure 10c, the corre-
lation coefficient and the RMSE between the IRI-2016 TEC and the observed TEC of the
LHAZ station is 0.84 and 10.64 TECU, respectively. After data assimilation, the correlation
coefficient increases to 0.97, and the RMSE decreases to 5.31 TECU. In Figure 10d, the
correlation coefficient and the RMSE between the IRI-2016 TEC and the observed TEC
of the CMUM station is 0.93 and 12.65 TECU, respectively. After data assimilation, the
correlation coefficient increases to 0.97, and the RMSE decreases to 8.21 TECU. The corre-
lation coefficient after assimilation is increased by about 17% compared with that before
assimilation, and the RMSE after assimilation is decreased by about 42% compared with
that before assimilation. They demonstrate a generally good agreement between the BDS
GEO TEC and the assimilated TEC. The ionospheric data assimilation can be effectively
performed by the model.
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Figure 10. Assimilated and IRI-2016 TEC distributions versus the GNSS-observed TEC of different
stations for a 7-day period from 5 September 2017 to 11 September 2017. (a) GAMG; (b) JFNG;
(c) LHAZ; (d) CMUM.

For further evaluation of the accuracy of the assimilated results, Figure 11 shows
the RMSE of 3D with each day at different stations for days 248 to 254, 2017. In general,
Figure 11 presents the gradual increase in the RMSE of the 3D coordinate for all selected
stations as the latitude decreases. For stations GAMG and CMUM, the positioning accuracy
of PPP/Assimilated method is generally lower than that of PPP/CODE method. As shown
by the distribution of GNSS stations in Figure 1, we believe that this result may be due to the
fact that there are few stations around station GAMG and station CMUM participating in
ionospheric data assimilation, resulting in low accuracy in this area. Thus, the positioning
accuracy PPP/Assimilated method is reduced. However, the positioning accuracy of
PPP/Assimilated method is generally higher than that of PPP/CODE method for stations
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JFNG and LHAZ. It is interesting to find that there are more GNSS stations around station
JFNG and station LHAZ participating in ionospheric assimilation modeling. It presents
that the ionospheric model after assimilation in this area is more accurate. Figure 11
indicates that the accuracy of 3D coordinates is improved when using the assimilated
TEC in the areas where there are more stations participating in assimilation. Otherwise,
assimilated TEC demonstrates a reduced accuracy. The good results of the PPP/IF method
indicate that almost all of these errors are efficiently mitigated. However, the RMSE
of the PPP/IF method is 0.93 m, and the performance of three PPP methods is worse
on disturbed day 251, 2017 in Figure 11d. As analyzed in Figure 8 above, scintillations
due to ionospheric irregularities may be the main reason for the poor results of PPP/IF,
PPP/CODE, and PPP/Assimilated on the disturbed day. As mentioned in Jiang et al. [38],
significant ionospheric scintillation occurs in low-latitude Southeast Asia on the disturbed
day. Generally, the experimental results indicate that the PPP/Assimilated method can
improve the GNSS positioning accuracy more effectively in comparison to the PPP/CODE.
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6. Conclusions

A new assimilated algorithm is successfully implemented and evaluated over China
and surrounding areas. The performance of the LEnKF method is evaluated using the
CODE and BDS GEO for the estimation TEC. Additionally, an application that assesses the
performance of the assimilated algorithm is used to correct the kinematic single-frequency
PPP. The results of statistical analysis show that correlation coefficient after assimilation is
increased by about 17% compared with that before assimilation.
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The RMSE after assimilation is decreased by about 42% compared with that before
assimilation. Furthermore, the ionospheric constraint of PPP/Assimilated can effectively
improve the accuracy of single-frequency PPP. On the disturbed day, we find that even
removing the first-order ionospheric delay in PPP/IF is not sufficient to mitigate the effects
of scintillation on GNSS signals. Scintillations due to ionospheric irregularities may be the
main reason for the poor results of PPP/IF, PPP/CODE, and PPP/Assimilated methods.
Therefore, the LEnKF method can be considered as a useful tool of data assimilation
for applications of space environment monitoring and navigation positioning. In the
future, we will further study the multi-scale regional ionospheric assimilation model.
Meanwhile, it will be further evaluated whether the multi-scale ionospheric assimilation
model can improve the accuracy of single-frequency PPP, especially under conditions of
ionospheric anomalies.
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