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Abstract: The success of many computer vision and pattern recognition applications depends on
matching local features on two or more images. Because the initial correspondence set—i.e., the
set of the initial feature pairs—is often contaminated by mismatches, removing mismatches is a
necessary task prior to image matching. In this paper, we first propose a fast geometry histogram-
based (GH-based) mismatch removal strategy to construct a reduced correspondence set Creduced,GH

from the initial correspondence set Cini. Next, we propose an effective cooperative random sample
consensus (COOSAC) method for remote sensing image matching. COOSAC consists of a RANSAC,
called RANSACini working on Cini, and a tiny RANSAC, called RANSACtiny,GH working on a
randomly selected subset of Creduced,GH . In RANSACtiny,GH , an iterative area constraint-based
sampling strategy is proposed to estimate the model solution of Ctiny,GH until the specified confidence
level is reached, and then RANSACini utilizes the estimated model solution of Ctiny,GH to calculate the
inlier rate of Cini. COOSAC repeats the above cooperation between RANSACtiny,GH and RANSACini

until the specified confidence level is reached, reporting the resultant model solution of Cini. For
convenience, our image matching method is called the GH-COOSAC method. Based on several
testing datasets, thorough experimental results demonstrate that the proposed GH-COOSAC method
achieves lower computational cost and higher matching accuracy benefits when compared with the
state-of-the-art image matching methods.

Keywords: confidence level; computational cost; hypothesize-and-verify; inlier rate; matching
accuracy; model solution

1. Introduction

Remote sensing images have been applied in many applications, such as disaster
assessment, construction site monitoring, building change detection, military applications,
and so on. To extend the areas that remote sensing images can cover, image matching
has received extensive attention. In the image matching field, establishing reliable feature
correspondences for two or more images is a challenging issue, and it has many applications
in stitching, registration, retrieval, object recognition, and 3D reconstruction. Prior to image
matching, using the difference-of-Gaussian (DOG) technique, contrast checking strategy,
and Hessian matrix-based testing rule, Lowe’s scale-invariant feature transform (SIFT) [1]
is used to extract the feature point sets of the source image Is and that of the target image It,
respectively. Furthermore, the initial correspondence set Cini between the two feature point
sets, i.e., the set of the initial feature pairs, is constructed such that for each correspondence
ci in Cini, 1<= i <= |Cini|, the 128-dimensional feature vector of the left feature point of ci is
more similar to that of the right feature point of ci than the other right feature points in Cini.
The initial correspondence set Cini is usually contaminated by mismatches, i.e., outliers.
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In what follows, given an initial correspondence set Cini, we introduce the related works
for removing mismatches and image matching.

1.1. Related Works

Given Cini, Fischer and Bolles [2] proposed a pioneer image matching work, called
the random sample consensus (RANSAC) method, to determine the homography trans-
formation between two feature point sets in Cini. Usually, the determined homography
transformation is also called the model solution of Cini. The detailed definition of the model
solution of Cini will be given in Section 3.1. The RANSAC method first randomly selects
four correspondences, i.e., four feature-pairs, from Cini to estimate the model solution as a
hypothesis, and then using the estimated model solution, it counts the number of fitting
correspondences and verifies the inlier rate of Cini, denoted by IRini,current, where the inlier
rate of Cini is defined to be the number of fitting correspondences over the size of Cini. Next,
RANSAC repeats the above hypothesize-and-verify (HAV) process, and then it uses the
newly estimated model solution to calculate the new inlier rate of Cini, denoted by IRini,new.
If IRini,current < IRini,new, the previous inlier rate IRini,current is replaced by the new inlier
rate IRini,new; otherwise, we repeat the above HAV process until the specified confidence
level is reached. Here, the confidence level of RANSAC is defined to be a probability value
p = 1− (1− (IRini,current)4)k, where k denotes the number of iterative HAV processes
required in RANSAC. The resultant model solution of Cini thus serves as the established
correspondence between two feature point sets in Cini. Although RANSAC is robust, it
usually requires huge computational cost under low inlier rate cases.

Capel [3] proposed a bail-out test approach to accelerate RANSAC. In his approach,
first, a correspondence subset Csub is constructed by randomly selecting a subset of Cini.
Using one model solution of Csub, if the inlier rate of Csub is significantly less than the
current inlier rate of Cini, the subset Csub and the estimated model solution are discarded;
otherwise, the inlier rate of Csub is larger than the current inlier rate of Cini and the estimated
model solution of Csub is used to calculate the inlier rate of Cini. As a result, the bail-out
test approach could reduce the average computational cost involved in the verification of
each hypothesis, improving the computational cost performance of RANSAC. However,
this approach might incorrectly reject good hypotheses; on the other hand, it might suffer
from the accuracy degradation.

Instead of treating all correspondences equally in RANSAC, Chum and Matas [4]
proposed a progressive sample consensus method to assign different sampling priorities
of all correspondences in Cini by using the ratio test strategy. Hence, their method is
robust against a large number of correspondences with low inlier rate. The lower the
correspondence’s priority is, the later the correspondence participates the HAV process.
For example, at the beginning of their method, the four correspondences with top four
priorities are first selected as the hypothesis to calculate the inlier rate of Cini. In the
same argument, the four correspondences with slightly lower priorities are selected as the
hypothesis in the next iteration. Under low inlier rate cases, their method achieved good
robustness. However, due to the priority-based selection rule, the four correspondences
with low priorities are often discarded after reaching the termination condition, leading to
the matching accuracy degradation.

Matas and Chum [5] proposed a randomized RANSAC method to accelerate RANSAC.
In their method, a small subset Csmall is first constructed from Cini. Once all correspon-
dences in Csmall are all inliers, the estimated model solution of Csmall is used to calculate the
inlier rate of the remaining correspondences in Cini − Csmall where the operator “-” denotes
the set difference operator. Their method achieved better computation performance relative
to RANSAC and the bail-out test approach [3]. However, there is room for improvement
on the matching accuracy performance.

Due to the simplicity and robustness of RANSAC, the above-mentioned related
works [3–5] are inspired by RANSAC. In [6], Raguram et al. provided a comprehensive
overview of the RANSAC-like methods and introduced a universal RANSAC framework
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to extend the HAV process of RANSAC by considering more practical and computational
issues, such as prefiltering unreliable correspondences, performing sampling check, etc.
Consequently, it brings out more aspects in the image matching issue.

Ma et al. [7] proposed an effective vector field consensus (VFC) method to establish
a reduced correspondence set Creduced from Cini. In VFC, the reduced correspondence
set is determined based on the coherence of the underlying motion fields rather than the
geometric constraints. The inlier rate of Cini is expressed as the rate of the size of Creduced,
denoted by |Creduced|, over |Cini|, accelerating the matching performance and preserving
the accuracy performance. Using the classical density-based spatial clustering method
of applications with noise [8], Jiang et al. proposed a robust feature matching (RFM)
method [9] to detect groups of matches with similar motion. In RFM, the correspondence
subset with inconsistent motion features is discarded. Setting the inlier rate of Cini to
the rate of |Creduced| over |Cini|, RFM can also accelerate the matching performance and
preserve the accuracy performance.

Ma et al. [10] proposed a locality preserving (LP) matching method to prune corre-
spondences in Cini if they violate the spatial neighborhood relationship. Using Ma et al.’s
method [10] as a preprocessing step to create a reduced correspondence set Creduced,
Wang et al. [11] randomly sampled four correspondences from Creduced, and then calculated
the estimated model solution of Creduced. Further, using the estimated model solution,
the HAV process is performed on Creduced to obtain the inlier rate of Creduced. They repeated
the above model solution estimation process for Creduced until the specified confidence
level is reached. Finally, the resultant model solution of Creduced is used to calculate the
inlier rate of Cini, achieving execution time and accuracy improvements. For convenience,
Wang et al.’s method is called the LP-RANSAC method.

Inspired by the image segmentation and registration methods in [12–14], Liu et al. [15]
proposed a motion consistency- and correspondence growing-based method to reduce the
correspondence set by using a coarse-to-fine strategy. Wang and Chen [16] proposed a
guided local outlier factor (GLOF) method to filter out abnormal correspondences. In GLOF,
a tentative correspondence set is first constructed by matching multi-features. Next, mis-
matches are identified and removed by using the anomaly detection technique and a
user-defined threshold, creating a robust reduced correspondence set Creduced. Expressing
the inlier rate of Cini as the rate of |Creduced| over |Cini|, GLOF can enhance the matching
accuracy performance.

1.2. Contributions

In this paper, for remote sensing matching, we propose a new cooperative RANSAC
(COOSAC) method using a geometry histogram-based (GH-based) constructed reduced
correspondence set. For convenience, the proposed method is called the GH-COOSAC
method, as depicted in Figure 1, and its contributions are clarified below.

1. Differing from the previous correspondence set reduction methods, we propose a
fast GH-based mismatch removal strategy to construct a reduced correspondence set
Creduced,GH from Cini such that for all correspondences in Creduced,GH , the orientation-
and length-consistency can be preserved.

2. Differing from the related image matching works introduced in Section 1.1, we pro-
pose a GH-COOSAC method which consists of a RANSAC, called RANSACini work-
ing on Cini, and a tiny RANSAC, called RANSACtiny,GH working on a tiny correspon-
dence set Ctiny,GH that is randomly constructed from a small subset of Creduced,GH .
In addition, an iterative area constraint-based sampling strategy is deployed into
RANSACtiny to estimate the model solution of Ctiny,GH until the specified confidence
level is reached. Then, RANSACini utilizes the estimated model solution H to calcu-
late the inlier rate of Cini. We repeat the above cooperative HAV processes between
RANSACtiny,GH and RANSACini until the specified confidence level is reached, re-
porting the best model solution of Cini. The advantages of the proposed method are
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low computational cost, in particular, under the inlier rate interval [0.5, 0.9], and high
matching accuracy benefits when compared with the other methods [2,7,9,11,16].

3. Based on several testing datasets with different inlier rates, thorough experimental
results justify that the proposed GH-COOSAC method achieves low computational
cost and high matching accuracy benefits relative to RANSAC [2] and the four state-
of-the-art methods, namely VFC [7], RFM [9], LP-RANSAC [11], and GLOF [16].

Figure 1. The sketched flow diagram of the proposed GH-COOSAC method.

The remainder of this paper is organized as follows. In Section 2, the proposed GH-
based mismatch removal strategy is presented to construct a reduced correspondence set
Creduced,GH . In Section 3, the proposed GH-COOSAC method is presented. In Section 4,
thorough experiments are carried out to demonstrate low computational cost and high
matching accuracy benefits of the proposed method. In Section 5, some concluding remarks
are addressed.

2. The Proposed Geometry Histogram-Based (GH-Based) Mismatch Removal Strategy
to Construct a Reduced Correspondence Set

Based on the initial correspondence set Cini, this section first presents the proposed
fast GH-based mismatch removal strategy to construct a reduced correspondence set
Creduced,GH . Next, the computational complexity of the proposed GH-based strategy is
analyzed. Here, each image-pair is assumed to have mainly positional transformation with
negligible rotational differences.

2.1. Reconstructing the Reduced Correspondence Set Creduced,GH

Considering every correspondence ci (= [(xi, yi), (x′i , y′i)]) in Cini, 1 ≤ i ≤ |Cini|,
the angle of ci is expressed as

Angle(ci) = tan−1 y′i − yi

x′i − xi
(1)

respectively, where 0 ≤ Angle(ci) ≤ 180◦. Here, the term “angle” and the term “orientation”
denote the same thing. In addition, the length of ci is expressed as

Length(ci) =
√
(x′i − xi)2 + (y′i − yi)2 (2)

Based on the orientations of all correspondences in Cini which are obtained from
one image-pair in the dataset “Airport” (https://www.sensefly.com/education/datasets/
?dataset=1419, accessed on 6 April 2022), Figure 2a illustrates the quantized orientation

https://www.sensefly.com/education/datasets/?dataset=1419
https://www.sensefly.com/education/datasets/?dataset=1419
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histogram of Cini, namely H(θ), where the x-axis denotes the quantized orientation θ, where
the size of one bin occupies five degrees, and the y-axis denotes the frequency. In H(θ), we
select the correspondence subset in the highest peak and its left and right k1 neighboring
peaks as a tentative reduced correspondence set Cθ,k1(⊂ Cini). Figure 2b demonstrates
the reduced quantized orientation histogram H(θ, k1) for k1 = 1. Consequently, we have
filtered out the orientation-inconsistency correspondences in Cini, but retain the relatively
orientation-consistent correspondences in Cini.

Figure 2. The construction of a reduced correspondence set Creduced,GH for one image-pair in the
“Airport” dataset. (a) The quantized orientation histogram of Cini. (b) The quantized orientation
histogram of the tentative reduced correspondence set Cθ,1. (c) The quantized length histogram of
(b). (d) The histogram of the reduced correspondence set Creduced,GH .

Based on the lengths of all correspondences in Figure 2b, Figure 2c illustrates the
corresponding quantized length histogram of Figure 2b, where the length of one bin in
the histogram occupies 20 pixels. Further, we select the correspondence subset in the
highest peak and its left and right neighboring peaks of Figure 2c, namely Cθ,k1;L,k2 where
“L” denotes the quantized length, as the reduced correspondence set Creduced,GH . Figure 2d
demonstrates the histogram of the reduced correspondence set Creduced,GH for k2 = 1. As a
result, we collect all correspondences from Figure 2d as the reduced correspondence set
Creduced,GH in which all correspondences are relatively orientation- and length-consistent.

Figure 3a depicts the testing image-pair used in Figure 2. In Figure 3b, the initial
correspondence set Cini of the testing image-pair is shown by those 2643 lines. Based on
the quantized orientation histogram in Figure 2b, Figure 3c illustrates the 1390 lines of the
reduced correspondence set Cθ,k1 for k1 =1. Figure 3d illustrates the reduced correspon-
dence set Creduced,GH with |Creduced,GH | = 392 by using the proposed GH-based mismatch
removal strategy.
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Figure 3. The construction of one reduced correspondence set by using the proposed GH-based
mismatch removal strategy. (a) The input image-pair. (b) The initial correspondence set Cini shown
by those 2643 lines. (c) The reduced correspondence set Cθ,k1 shown by those 1390 lines. (d) The
reduced correspondence set Creduced,GH shown by those 392 lines.

2.2. Computational Complexity Analysis

From the description of the proposed GH-based mismatch removal strategy to con-
struct the reduced correspondence set Creduced,GH , by Equation (1), it takes O(1) time to
calculate the orientation of every ci ∈ Cini. Therefore, it takes O(|Cini|) time to construct
the orientation histogram of the initial correspondence set Cini.

By Equation (2), the length of every ci ∈ Cθ,1 can be calculated in O(1) time. Therefore,
for all correspondences in Cθ,1, their lengths can be calculated in O(|Cθ,1|) time. Further-
more, it takes O(|Cθ,1;length,1|) time to construct the reduced correspondence set Creduced,GH .
Because |Cθ,1;length,1| << |Cθ,1| << |Cini|, totally, it takes O(|Cini|) time to construct the
reduced correspondence set Creduced,GH from Cini.

Proposition 1. Given an initial correspondence set Cini, the reduced correspondence set Creduced,GH

can be constructed in O(|Cini|) time, i.e., linear-time, where |Creduced,GH | << |Cini|, by using the
proposed GH-based Mismatch Removal Strategy.

3. The Proposed GH-COOSAC Method for Image Matching

Given an initial correspondence set Cini, using the GH-based mismatch removal
Strategy mentioned in Section 2, suppose the reduced correspondence set Creduced,GH has
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been constructed. In this section, the proposed GH-COOSAC method for image matching is
presented. Initially, a tiny correspondence set Ctiny,GH is constructed by randomly selecting
a subset of the reduced correspondence set Creduced,GH , where |Ctiny,GH | << |Creduced,GH |
and in our experiment, we set |Ctiny,GH | = 0.2 ∗ |Creduced,GH |.

To provide a more readable introduction, we sketch the logic behind the main steps
of the proposed GH-COOSAC method. In the GH-COOSAC method, COOSAC con-
sists of a RANSAC, called RANSACini which works on Cini, and a tiny RANSAC, called
RANSACtiny,GH which works on Ctiny,GH . In RANSACtiny,GH , an iterative area constraint-
based sampling strategy is proposed to estimate the model solution of Ctiny,GH until
the specified confidence level, say 99.5%, is reached. Let the estimated model solution
of Ctiny,GH be denoted by H. Then, RANSACini utilizes the estimated model solution
H to calculate the inlier rate of Cini. COOSAC repeats the above cooperation between
RANSACtiny,GH and RANSACini until the specified confidence level of RANSACini, say
99.5%, is reached. Finally, the resultant model solution of Cini is reported.

3.1. The HAV Process in RANSACtiny,GH

As depicted in the hypothesis stage of RANSACtiny,GH in Figure 4, the proposed
area constraint-based sampling strategy first randomly selects four correspondences from
Ctiny,GH , and then it examines whether the area of every two selected correspondences is
larger than the specified threshold Tarea. Empirically, Tarea is set to 1000 pixels. In Figure 5,
the area surrounded by two selected correspondences is depicted. If the calculated area
of every two selected correspondences is larger than Tarea, RANSACtiny,GH proceeds to
solve the model solution of Ctiny,GH by using the four selected correspondences; otherwise,
the selected four correspondences are dropped, and we select another four correspondences
from Ctiny,GH again.

Figure 4. The detailed flowchart of the proposed GH-COOSAC method.

Suppose the four selected correspondences are denoted by c1=((x1, y1), (x′1, y′1)),
c2 = ((x2, y2), (x′2, y′2)), c3 = ((x3, y3), (x′3, y′3)), and c4 = ((x4, y4), (x′4, y′4)). Among the
four selected correspondences, selecting any two correspondences as one combination,
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there are six combinations in total. For each combination, denoted by (ci, cj) for i 6= j,
the area of the quadrilateral surrounded by ci and cj can be calculated by

Area(ci, cj) =

∣∣∣∣ x1 ∗ y2 + x2 ∗ y′2 + x′2 ∗ y′1 + x′1 ∗ y1 − y1 ∗ x2 − y2 ∗ x′2 − y′2 ∗ x′1 − y′1 ∗ x1

2

∣∣∣∣ (3)

Figure 5. The depiction of the area surrounded by two selected correspondences used in the area
constraint-based sampling strategy. (a) Four selected correspondences, c1, c2, c3, and c4, marked by
four yellow lines. (b) The area (in red) surrounded by the two correspondences, c2 and c3, being less
than the specified threshold Tarea. (c) The area (in red) surrounded by the two correspondences, c1

and c4, being larger than the specified threshold Tarea.

In the six combinations, if there exists one combination (ci, cj) whose area is less than
the specified threshold Tarea, it indicates that the four selected correspondences, c1, c2, c3,
and c4, are invalid and should be discarded. Figure 5 illustrates one invalid case because the
area surrounded by c2 and c3 is less than the threshold, so the four selected correspondences
are discarded. Otherwise, if the area of every combination is larger than or equal to Tarea,
the four selected correspondences are valid and can be used to estimate the model solution
of Ctiny,GH .

Then, we put the coordinates of the four valid correspondences, c1, c2, c3, and c4,
into the following homography equation: x′i

y′i
1

 =

 h00 h01 h02
h10 h11 h12
h20 h21 1

 xi
yi
1

 (4)

where ((xi, yi), (x′i , y′i)) = ci for 1 <= i <= 4. By using the SVD (singular value decompo-
sition) method [17] to solve Equation (4), the eight homography parameters, h00, h01, h02,
h10, h11, h12, h20, and h21, can be solved, and the solution is used as the estimated model
solution of Ctiny,GH .

As depicted in the verification stage of Figure 4, we utilize the estimated model solution
of Ctiny,GH to calculate the inlier rate of Ctiny,GH , denoted by IRtiny,GH,new. Let IRtiny,GH,current
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denote the highest inlier rate of Ctiny,GH so far. If IRtiny,GH,current < IRtiny,GH,new,
IRtiny,GH,current is replaced by IRtiny,GH,new; otherwise, the value of IRtiny,GH,current is retained.

The above HAV process of RANSACtiny,GH is repeated until the confidence level of
RANSACtiny,GH , denoted by Protiny,GH , is larger than the specified confidence level. Here,
Protiny,GH is defined by

Protiny,GH = 1− (1− (IRtiny,GH,current)4)k (5)

where the parameter k denotes the number of iterations required by RANSACtiny,GH .
For example, suppose IRtiny,GH,current = 0.6 and the iteration number spent is k = 32,
the value of Protiny,GH can achieve at least 99% (= 1− (1− (0.6)4)32). In our implementa-
tion, as demonstrated in Section 4, the specified confidence level TProtiny,GH is set to 99.5%.

3.2. The Verification Process in RANSACini

Suppose in the first round, the number of the HAV iterations used in RANSACtiny,GH

is k1 and the confidence level, Protiny,GH , reaches the specified threshold TProtiny,GH . In the
proposed COOSAC mechanism, once RANSACini receives the estimated model solution
of RANSACtiny,GH , namely H, it views H as the hypothesis of Cini directly. Then, in the
verification stage of RANSACini, RANSACini utilizes the hypothesis H to calculate the
first inlier rate of the initial correspondence set Cini, denoted by IRini,current. The confidence
level of RANSACini can be expressed as

Proini = 1− (1− (IRini,current)4)k1 (6)

However, after performing k1 HAV iterations on Ctiny,GH , the resultant model solu-
tion of RANSACtiny,GH , might be trapped into a local optimization. In order to jump
out of the trap, in the second round, we create a new tiny correspondence set from
the reduced correspondence set Creduced,GH again. By the same argument, the HAV pro-
cess of RANSACtiny,GH is repeated k2 times until its confidence level reaches the spec-
ified confidence level. Then, the newly resultant model solution of RANSACtiny,GH

is utilized by RANSACini to calculate the new inlier rate of Cini, denoted by IRini,new.
If IRini,current < IRini,new, the value of IRini,current is replaced by that of IRini,new; otherwise,
the value of IRini,current is retained. After completing the second round, the confidence level
of RANSACini can be expressed as

Proini = 1− (1− (IRini,current)4)k1+k2 (7)

Following the same argument, suppose the cooperative HAV process between
RANSACtiny,GH and RANSACini is repeated m rounds. That is, RANSACtiny,GH is con-
structed m times and totally, k1, k2, ..., and km iterations are required to obtain the m esti-
mated model solutions of the randomly constructed m tiny correspondence sets. RANSACini

utilizes the received m estimated model solutions to obtain m inlier rates of Cini, and finally,
it selects the model solution with the highest inlier rate, namely IRini,current, as the resultant
model solution. Consequently, the final confidence level of RANSACini can be expressed as

Proini = 1− (1− (IRini,current)4)k1+k2+...+km (8)

At this time, the value of Proini in Equation (8) achieves the specified confidence level,
e.g., 99.5%.

3.3. Computational Complexity Analysis and Benefit

From the above discussion, in the proposed GH-COOSAC method, we know that over-
all, RANSACini receives m different model solutions from RANSACtiny,GH , and RANSACini

takes O(m ∗ |Cini|) time to complete all verification processes on Cini. In addition,
RANSACtiny,GH takes O(m ∗ |Ctiny,GH |) time to construct m tiny correspondence sets from
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the reduced correspondence set Creduced,GH , and it takes O((k1 + k2 + ... + km) ∗ |Ctiny,GH |)
time to obtain these m model solutions to be used by RANSACini. Totally, the proposed
GH-COOSAC method takes O(m ∗ |Cini|) + O(m ∗ |Ctiny,GH |) + O((k1 + k2 + ... + km) ∗
|Ctiny,GH |) time to complete the whole image matching task. Because |Ctiny,GH | << |Cini|,
O(m ∗ |Cini|) +O(m ∗ |Ctiny,GH |) can be simplified to O(m ∗ |Cini|). Consequently, we have
the following result.

Proposition 2. The proposed GH-COOSAC method takes O(m ∗ |Cini|) + O((k1 + k2 + ... +
km) ∗ |Ctiny,GH |) time to complete the image matching task.

Under the confidence level, i.e., 99.5%, Proposition 2 indicates that the proposed
GH-COOSAC method takes O(m ∗ |Cini|) + O((k1 + k2 + ... + km) ∗ |Ctiny,GH |) time for
the image matching task. Because the inlier rate of Cini is less than the inlier rate of of
Ctiny,GH , the traditional RANSAC method RANSACini need take at least O((k1 + k2 +
... + km) ∗ |Cini|) time to reach the same confidence level, 99.5%, for the image matching
task. Because practically, the two conditions, namely (m << k1 + k2 + ... + km) and
(|Ctiny,GH | << |Cini|), hold, it yields

O(m ∗ |Cini|) + O((k1 + k2 + ... + km) ∗ |Ctiny,GH |) < O((k1 + k2 + ... + km) ∗ |Cini|) (9)

Equation (9) implies the following result.

Proposition 3. Under the same confidence level, the computational cost of the proposed GH-
COOSAC method is lower than the RANSAC method.

In the next section, thorough experimental data will be used to justify the low compu-
tational cost and high matching accuracy benefits of the proposed GH-COOSAC method
relative to RANSAC [2]. In Section 4.3, a discussion will be provided to explain why under
the inlier rate interval [0.5, 0.9], the computational cost of the proposed method is lower
than the state-of-the-art methods in [7,9,11,16].

4. Experimental Results

Three public remote sensing correspondence datasets, namely “Airport”, “Small
Village”, and “University Campus” which are downloaded from the website: https://
www.sensefly.com/education/datasets/ (accessed on 6 April 2022), used to evaluate the
execution time and accuracy performance of the proposed GH-COOSAC method, RANSAC,
and the four state-of-the-art methods, namely VFC [7], RFM [9], LP-RANSAC [11], and
GLOF [16]. To measure the average accuracy performance of each considered image
matching method, three accuracy metrics, namely precision, recall, and F1-score, are used.

For fairness, all comparative methods and the proposed method have been imple-
mented on a computer with an Intel Core i7-4790 CPU 3.6 GHz and 24 GB RAM. The op-
erating system is the Microsoft Windows 10 64-bit operating system. The program de-
velopment environment is Visual Studio 2019. The execution time (in seconds) required
in each considered method is measured by running the execution code of that method.
The C++ source code of RANSAC [2] can be accessed from OpenCV; the C++ source
code of VFC [7] can be accessed from the website https://github.com/jiayi-ma/VFC (ac-
cessed on 6 April 2022). The Matlab source codes of the RFM method [9] (see website
https://github.com/StaRainJ/RFM-SCAN) (accessed on 6 April 2022) and the GLOF
method [16] (see website https://github.com/gwang-cv/GLOF (accessed on 6 April
2022))are transformed to the C++ source codes. In the LP-RANSAC method [11], the Python
source code of the LP method [10] accessed from the website https://github.com/jiayi-
ma/LPM_Python (accessed on 6 April 2022) has been transformed to the C++ source
code. The C++ source code of our GH-COOSAC method can be accessed from the website
https://github.com/YCccTseng/GH-COOSAC (accessed on 6 April 2022). In the next
subsection, the configuration of the proposed method is described.

https://www.sensefly.com/education/datasets/
https://www.sensefly.com/education/datasets/
https://github.com/jiayi-ma/VFC
https://github.com/StaRainJ/RFM-SCAN
https://github.com/gwang-cv/GLOF
https://github.com/jiayi-ma/LPM_Python
https://github.com/jiayi-ma/LPM_Python
https://github.com/YCccTseng/GH-COOSAC
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4.1. The Parameter Setting of the Proposed GH-COOSAC Method

For each dataset, five testing image-pairs are selected to compare the performance
for the considered methods. Overall, fifteen testing image-pairs as well as their initial
correspondence sets are used and they can be accessed from the website: https://github.
com/YCccTseng/GH-COOSAC (accessed on 6 April 2022). Each initial correspondence
set Cini, in the next paragraph, we explain how to create the nine different correspondence
sets, each set containing a ground truth inlier sets, for the nine inlier rates, 0.1, 0.2, 0.3, ...,
and 0.9, respectively. For example, for the inlier rate 0.1, the rate of the created ground
truth inlier set over the created correspondence set equals 0.1.

In one initial correspondence set Cini, we first randomly sample four correspondences
108 times, and then 108 inlier sets are produced by using the traditional RANSAC method.
In the 108 inlier sets, we select the inlier set with the maximal inlier rate, say Rinlier, as the
initial ground truth inlier set. Based on the specified inlier rate rinlier ∈ {0.1, 0.2, ..., 0.9},
if rinlier > Rinlier, we discard the outliers from the initial ground truth inlier set gradually
until the specified inlier rate is reached; otherwise, if rinlier < Rinlier, we discard the inliers
from the initial ground truth inlier set gradually until the specified inlier rate is reached,
producing the ground truth inlier set with the specified inlier rate.

In our implementation, the size of the tiny correspondence set Ctiny,GH follows the
constraint: |Ctiny,GH | = 0.2 ∗ |Creduced,GH |. The specified confidence level is set to 99.5%
to both RANSACtiny,GH and RANSACini. As described in Section 3.2, according to the
specified confidence level, the value of m and the values of k1, k2, ..., and km are automat-
ically determined by the proposed GH-COOSAC method. For simplicity, the proposed
GH-COOSAC method is also called “Ours”.

4.2. Statistical Accuracy Comparison

To compare the accuracy performance among the considered methods, the above-
mentioned three metrics are used. Let true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) be defined by the number of correspondences that are correctly
verified as inliers, that are correctly verified as outliers, that are erroneously verified as
inliers, and that are erroneously verified as outliers, respectively. The three accuracy metrics,
namely precision, recall, and F1-score are defined by

precision =
TP

TP + FP

recall =
TP

TP + FN

F1− score =
2
1

1
precision +

1
recall

(10)

In Equation (10), the value of “precision” indicates the rate of the number of correspon-
dences that are correctly verified as inliers over the sum of the number of correspondences
that are correctly verified as inliers and the number of correspondences that are erroneously
verified as inliers. The value of “recall” indicates the rate of the number of correspondences
that are correctly verified as inliers over the sum of the number of correspondences that are
correctly verified as inliers and the number of correspondences that are erroneously verified
as outliers. F1-score indicates the precision-recall tradeoff, and the value of “F1-score” can
be viewed as an overall matching accuracy performance.

Based on the “Airport” dataset, Figure 6a–c illustrate the precision, recall, and F1-score
performance comparison of the six considered methods, respectively. From Figure 6a, we
observe that the proposed GH-COOSAC method, RANSAC, and LP-RANSAC have clearly
better precision performance relative to RFM, VFC, and GLOF. From Figure 6b,c, under low
inlier rate cases, the proposed method has good recall and F1-score performance, but under
middle inlier cases, the proposed method just achieves fair recall and F1-score performance.

https://github.com/YCccTseng/GH-COOSAC
https://github.com/YCccTseng/GH-COOSAC
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Figure 6b,c indicate that under high inlier cases, VFC, RFM, and GLOF have clearly better
recall and F1-score performance.

Figure 6. Matching accuracy performance comparison of the considered six methods for the “Airport”
dataset. (a) For precision. (b) For recall. (c) For F1-score.

As mentioned in Equation (10), the metric “F1-score” is used to measure the precision-
recall tradeoff of each considered image matching method. To provide the average quanti-
tative F1-score performance of each method, three inlier rate intervals, namely [0.1, 0.5],
[0.5, 0.9], and [0.1, 0.9], are considered. Based on the “Airport” dataset, Table 1 illustrates
the average F1-score performance comparison for the three inlier rate intervals. From
Table 1, we observe that in the interval [0.1, 0.5], the proposed method has the best F1-score
performance, namely 0.964 in boldface. In the interval [0.5, 0.9], VFC has the best F1-score
performance, namely 0.987 in boldface, but RFM and GLOF are quite competitive with VFC.
In the complete interval [0.1, 0.9], the proposed method has the best F1-score performance,
namely 0.949 in boldface.

Table 1. Average F1-score comparison for the “Airport” dataset.

Inlier Rate Interval RANSAC [2] VFC [7] RFM [9] LP-RANSAC [11] GLOF [16] Ours

[0.1, 0.5] 0.939 0.871 0.888 0.918 0.840 0.964
[0.5, 0.9] 0.919 0.987 0.979 0.917 0.975 0.936
[0.1, 0.9] 0.930 0.925 0.931 0.917 0.903 0.949

Based on the “Small Village” and “University Campus” datasets, Figures 7a–c and 8a–c
demonstrate the precision, recall, and F1-score performance comparison of the six con-
sidered methods, respectively. Tables 2 and 3 tabulate the average quantitative F1-score
performance of each method for the three inlier rate intervals, namely [0.1, 0.5], [0.5, 0.9],
and [0.1, 0.9] for the “Small Village” dataset and the “University Campus” dataset, respec-
tively. It comes to the same conclusion that in the interval [0.1, 0.5], the proposed method
has the best F1-score performance in boldface. In the interval [0.5, 0.9], VFC has the best
F1-score performance in boldface, but RFM and GLOF are quite competitive with VFC.
In the complete interval [0.1, 0.9], the proposed method has the best F1-score performance
in boldface.
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Figure 7. Matching accuracy performance comparison of the considered six methods for the “Small
Village” dataset. (a) For precision. (b) For recall. (c) For F1-score.

Figure 8. Matching accuracy performance comparison of the considered six methods for the “Univer-
sity Campus” dataset. (a) For precision. (b) For recall. (c) For F1-score.

Table 2. Average F1-score comparison for the “Small Village” dataset.

Inlier Rate Interval RANSAC [2] VFC [7] RFM [9] LP-RANSAC [11] GLOF [16] Ours

[0.1, 0.5] 0.940 0.885 0.898 0.920 0.769 0.962
[0.5, 0.9] 0.943 0.987 0.983 0.913 0.977 0.933
[0.1, 0.9] 0.940 0.932 0.939 0.916 0.865 0.947

Table 3. Average F1-score comparison for the “University Campus” dataset.

Inlier Rate Interval RANSAC [2] VFC [7] RFM [9] LP-RANSAC [11] GLOF [16] Ours

[0.1, 0.5] 0.966 0.906 0.879 0.954 0.798 0.973
[0.5, 0.9] 0.958 0.986 0.980 0.951 0.981 0.958
[0.1, 0.9] 0.961 0.943 0.926 0.952 0.882 0.965

4.3. Execution Time Comparison Furthermore, Discussion

Based on the three testing datasets, the average execution time (in seconds) required
in each considered method is illustrated in Figure 9, where the x-axis denotes the ground
truth inlier rate and the y-axis denotes the required average execution time.
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4.3.1. Execution Time Comparison

Tables 4–6 tabulate the average execution time performance for the “Airport” dataset,
the “Small Village” dataset, and the “University Campus” dataset, respectively. From
Tables 4–6, we observe that under the two inlier rate intervals, namely [0.1, 0.5] and
[0.1, 0.9], VFC and LP-RANSAC require the least execution time, and the proposed GH-
COOSAC method is ranked third. Under the inlier rate interval [0.5, 0.9], the proposed
method requires the least execution time and is ranked first.

Figure 9. Execution time performance comparison of the considered six methods. (a) For “Airport”.
(b) For “Small Village”. (c) For “University Campus”.

4.3.2. Discussion

Proposition 3 indicates that the proposed GH-COOSAC takes less computational cost
relative to RANSAC [2]. No matter what the inlier rate interval is, Tables 4–6 always
justified the low computational cost merit of the proposed GH-COOSAC method relative
to RANSAC.

Equation (5) implies that to reach the specified confidence level, 99.5 %, for high inlier
rate cases, the probability of the event, namely IRtiny,GH,current < IRtiny,GH,new, is often
higher than that for low inlier rate cases in each round. On the other hand, under higher
inlier rate cases, the proposed GH-COOSAC method takes less iterations in each round than
that under low inlier rate cases. This can explain why in Tables 4–6, under the inlier rate
interval [0.5, 0.9], the proposed method achieves a clearly low computational cost benefit.

In summary, Tables 1–6 indicate that the proposed GH-COOSAC method achieves low
computational cost and high matching accuracy benefits when compared with RANSAC [2]
and the four state-of-the-art methods [7,9,11,16].

Table 4. Average execution time (in seconds) comparison for the “Airport” dataset.

Inlier Rate Interval RANSAC [2] VFC [7] RFM [9] LP-RANSAC [11] GLOF [16] Ours

[0.1, 0.5] 0.515 0.027 2.320 0.028 0.294 0.232
[0.5, 0.9] 0.004 0.010 0.303 0.009 0.108 0.001
[0.1, 0.9] 0.287 0.019 1.398 0.019 0.207 0.129
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Table 5. Average execution time (in seconds) comparison for the “Small Village” dataset.

Inlier Rate Interval RANSAC [2] VFC [7] RFM [9] LP-RANSAC [11] GLOF [16] Ours

[0.1, 0.5] 0.484 0.056 10.689 0.056 0.636 0.220
[0.5, 0.9] 0.003 0.022 1.681 0.021 0.248 0.002
[0.1, 0.9] 0.270 0.040 6.554 0.040 0.454 0.123

Table 6. Average execution time (in seconds) comparison for the “University Campus” dataset.

Inlier Rate Interval RANSAC [2] VFC [7] RFM [9] LP-RANSAC [11] GLOF [16] Ours

[0.1, 0.5] 0.438 0.061 12.339 0.061 0.708 0.222
[0.5, 0.9] 0.003 0.024 1.902 0.023 0.278 0.001
[0.1, 0.9] 0.244 0.044 7.548 0.043 0.505 0.124

5. Conclusions

The proposed GH-COOSAC method for remote sensing image matching has been
presented. In GH-COOSAC, the computational complexity analysis of the GH-based
mismatch removal strategy has been provided to show the low computational cost benefit
of the proposed strategy. In addition, a detailed computational complexity comparison
between the proposed GH-COOSAC method and the traditional RANSAC method is given
to show the computational cost superiority of the proposed method. No matter what the
inlier rate interval is, experimental results always justify the low computational cost merit
of the proposed method relative to RANSAC. In Section 4.3.2, the detailed discussion is
provided to explain why under the inlier rate interval [0.5, 0.9], the proposed method
achieves a clearly low computational cost benefit relative to all comparative methods.
Generally, thorough experimental results demonstrate that the proposed GH-COOSAC
method achieves low computational cost and high matching accuracy benefits relative to
RANSAC [2] and the four state-of-the-art image matching methods [7,9,11,16].
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