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Abstract: Inland water is an important part of the Earth’s water cycle. Mapping inland water is vital
for understanding surface hydrology and climate change. Spaceborne global navigation satellite
systems reflectometry (GNSS-R) has been proven to be an effective technique to detect inland water
bodies. This paper proposes a new method to map inland water bodies using the delay-Doppler
map (DDM) measurements provided by the GNSS-R platform Cyclone GNSS (CYGNSS). In this
new method, we develop a refined power ratio to identify the coherence in DDM caused by the
inland water. Processed with an image segmentation method, the refined power ratio is then applied
to discriminate the permanent inland water bodies from the land. Using CYGNSS data over the
Amazon Basin and the Congo Basin in 2020, we successfully generated water masks with a spatial
resolution of 0.01◦. Compared with the reference optical water masks, the overall detection accuracy
in the Amazon Basin is 94.48% and the water detection accuracy is 92.23%, and the corresponding
accuracies in the Congo Basin are 96.12% and 93.16%, respectively. Compared with the previous DDM
power-spread detector (DPSD) method, the new method’s false alarms and misses in the Amazon
Basin are reduced by 17.1% and 9.1%, respectively, while the false alarms and misses in the Congo
Basin are reduced by 10.2% and 22%, respectively. Moreover, our method is proven to be useful for
detecting short-term flood inundation.

Keywords: GNSS-R; CYGNSS; DDM; coherence; inland water detection; false alarms

1. Introduction

Climate change and human activities affect the location and extent of inland wa-
ter bodies [1]. In turn, inland water also affects human survival, biodiversity [2], and
climate [3]. Moreover, inland water bodies play an important role in the terrestrial water
cycle, affecting local hydrology and ecosystems. Obtaining the spatial distribution of the in-
land water is of great significance for understanding the interaction mechanism of regional
hydrology and climate change. Due to the complex variety of terrains and water surface
characteristics, mapping inland water bodies is challenging [4]. Satellite remote sensing
techniques including optical and microwave methods are commonly used for inland water
detection over large areas. Optical images derived from satellites such as Landsat are easy
to obtain with various sampling intervals, but they suffer from cloud cover and vegetation
canopy. This limitation is significant in tropical areas dominated by rainforests since many
small streams are fully covered by vegetation and cloud cover prevails in rainy seasons [5].
Microwaves can penetrate clouds, which is the advantage of microwave remote sensing
for flood detection. However, the revisit cycle of microwave remote sensing satellites is
typically long (>10 days) [6] and is susceptible to buildings, forest cover, etc. [7]. The emer-
gence of spaceborne global navigation satellite systems reflectometry (GNSS-R) provides
another method for inland water detection.
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GNSS-R is a passive bistatic radar technique. It observes Earth’s ground by receiving
GNSS L-band signals reflected from the ground surface. All GNSS satellites can be regarded
as signal sources, which greatly avoids the cost of instrument implementation. By deploying
the receiving system in low Earth orbit, spaceborne GNSS-R measures the signals scattered
in the forward direction from an area around the specular reflection point to the receiver
in constant changing geometry. UK-DMC-1 is the first experimental GNSS-R satellite
launched in 2003, demonstrating the potential of GNSS-R to observe land surfaces with a
small amount of raw sampled data [8]. As the following GNSS-R satellite, TechDemoSat-1
(TDS-1) began operation in 2015 in a polar orbit and provides accessible reflection data
to the public [9]. In December 2016, the National Aeronautics and Space Administration
(NASA) Cyclone Global Navigation Satellite System (CYGNSS) mission consisting of
eight small satellites was launched and has recorded abundant reflection observations
since then [10]. Although spaceborne GNSS-R has been extensively used to estimate the
wind speed on oceans [11,12], its land application is challenging. At present, most of
the applications of spaceborne GNSS-R on the land surface used DDM (delay-Doppler
map) measurements from the CYGNSS platform and focused on the hydrology variables
such as soil moisture [13,14], lake water level [15], wetland extent [16], soil freezing-
thawing [17], and flooding area [18–20]. GNSS-R has strong responses to the inland water
caused by coherent forward scattering, leading to studies on its ability for permanent
inland water detection. Zavorotny et al. [21] found that GNSS signals reflected from
water bodies contribute to a higher signal-to-noise ratio (SNR) in DDM than those from
the land. Based on the assumption that the peak value is only due to coherent forward
scattering from the area of the first Fresnel zone (FFZ), the DDM SNR is used to identify
the inland water bodies. Under this simple assumption, one can further derive the ground
surface reflectivity from the SNR peak value [20]. Loria et al. [22] corrected the SNR peak
value for antenna gain, geometry, and transmit power, and used the scattering model
to generate a map of the percentage of the water bodies. Morris et al. [16] introduced
thresholds on the SNR-based method to mitigate the overestimates of areas with low water
percentages. Ghasemigoudarzi et al. [23] used a machine learning approach to produce
a high-precision water map based on the corrected SNR. Gerlein-Safdi and Ruf [24] used
the SNR-derived surface reflectivity to produce a water mask of inland water bodies at
0.01◦ × 0.01◦ spatial resolution and found it could capture the seasonality of the flooding.
However, the SNR-based method ignores the fact that both the scatterings inside and
outside the FFZ contribute to the peak SNR. More recently, some scholars inferred the
scattering pattern of the ground surface by quantifying the power distribution of the DDM.
Al-Khaldi et al. [25] proposed a coherence detection method (DDM power-spread detector,
DPSD) for the detection of permanent inland water bodies. This method uses the power
ratio to quantify the power spread within the DDM and flag coherency by introducing an
empirical power ratio threshold. They believed that the coherent scattering of GNSS-R
on land mainly comes from the inland water bodies [26], while the incoherent scattering
comes from the land. Based on this idea, they generated dynamic water masks with two
spatial resolutions (i.e., 1 km and 3 km) [27].

In this study, we review the DPSD method and propose a new method to map the
inland water by detecting the coherence in the CYGNSS DDM. Using the proposed method,
we generate the coherence maps in the Amazon Basin and the Congo Basin with a spatial
resolution of 0.01◦. Then the coherence maps are processed using an image segmentation
method to generate the final water masks. The results are qualitatively and quantitatively
evaluated with the existing optical water data and compared with the water masks derived
from DPSD. Moreover, the effects of the large size of the water body on the coherence
method as well as the capacity of our method to detect shorter-lived flooding events
are discussed.
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2. Data and Methods
2.1. Study Areas

The Amazon Basin and the Congo Basin are selected as the representative areas to
perform the proposed method in this study. The Amazon Basin is located in the northern
part of South America. It is formed by the Andes, the Guyanese and Brazilian shields, and
the Amazon plain [28]. The latitude and longitude coverage ranges are [10◦S, 0◦N] and
[76◦W, 56◦W], respectively. The Amazon Basin is the world’s largest river basin with the
most tributaries. It drains about ~5% of global water land, making it the largest hydrological
system in the world [29]. This basin is highly interconnected by extensive floodplain-lined
river channels and contributes up to 15–20% to the total freshwater discharge to the world
oceans [30]. A large amount of open water bodies and flat terrain over the Amazon Basin
make it an ideal area to conduct water detection experiments, and it has been extensively
investigated by previous GNSS-R studies [20,22,23]. The relief over the Amazon Basin is
quite low with most parts below 600 m (Figure 1a). As the largest tropical rainforest in the
world, the Amazon Basin contains about 60% of the tropical rainforests in the world [31].
The main rivers along the Amazon Basin are covered by dense tropical rainforest [32]. The
size of the entire study area is approximately 2 million square kilometers.
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The Congo Basin is located in west-central Africa, covering an area of nearly 3.7 million km2.
It stretches from the coast of the Gulf of Guinea to the mountains of the Albertine Rift and
is crossed by the equator and the Inter-Tropical Convergence Zone (ITCZ) [33]. The Congo
Basin contributes to half of Africa’s freshwater discharge into the Atlantic Ocean [34]. It
includes the largest and most diverse forest massif on the African continent and the second
largest extent of tropical rainforest in the world, next to the Amazon Basin [35]. About 40%
of the Congo Basin is covered by the savannas, which are a significant part of the landscape
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in Central Africa [36]. The study area is in the Cuvette Centrale spanning from 2◦S to 3◦N
and from 17◦E to 25◦E (Figure 1b). The terrain over this area is relatively flat with slight
slopes (<2 cm km−1) [37].

2.2. Data
2.2.1. CYGNSS DDM

In this paper, we use the data from CYGNSS Level 1 Version 3.0. CYGNSS is a satellite
constellation launched by NASA in 2016, consisting of eight tiny satellites equipped with
GNSS-R receivers at an altitude of 510 km. The CYGNSS satellites are evenly spaced in
an orbit plane inclined at an angle of 35◦ [10]. Each satellite has four channels receiv-
ing GNSS reflected signals from the ground [10,38]. After July 2019, every satellite can
generate 32 DDMs at a sampling rate of 2 Hz. The footprint of a single DDM is about
3.5 km × 0.5 km under smooth surface conditions [39]. The short revisit cycle of CYGNSS
(median 2.8 h, mean 7.2 h) makes it possible to generate high-resolution water masks.
CYGNSS is primarily designed for monitoring sea winds in the Tropics so it only covers
the areas from 38◦S to 38◦N.

DDM is the principal observable of GNSS-R, which is generated by correlating the
reflected GNSS signal with the replica in the receiver. It is a two-dimensional correlation
function of time delay and Doppler frequency shift in complex form. A single DDM is
composed of 17 delay bins and 11 Doppler bins, of which the resolution of the Doppler bin
is 500 Hz and the resolution of the delay bin is 249.4 ns. Each CYGNSS DDM is generated
by a coherent integration of 1 ms and an incoherent accumulation of 1000 ms [14]. The
power scattered by the Earth’s surface is mapped in the DDM through lines of constant
delay (iso-delay ellipses) and constant Doppler shift (iso-Doppler parabolas) (Figure 2).
The power reaches its maximum at the specular point (SP). The application of DDMs for
inland water mapping is quite difficult because of the complexity of terrain properties.
The power spread of a DDM is affected by the local topography, vegetation coverage, and
surface roughness, presenting coherent/incoherent scatterings or mixing features. The
power spread of DDM dominated by incoherent scattering from the land is characterized by
the shape of a “horseshoe” (Figure 3a), while the power of DDM with coherent reflections
from inland water bodies is concentrated in the limited bins about the SP (Figure 3b).
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2.2.2. Global Surface Water Data

The Global Surface Water (GSW) data is a water dataset with a spatial resolution of
30 m generated from 3 million Landsat images. GSW comprehensively describes the spatial
and temporal dynamics of inland water bodies [40]. The latest GSW-derived seasonality
water mask in 2020 is used in this study to evaluate the performance of the proposed
method. For comparison, we resampled the original GSW to a 0.01◦ × 0.01◦ (about 1 km)
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grid. Each grid cell contains the percentage of water bodies averaged from original data
falling in it. The grid cells are labeled as water bodies when the water body percentage
exceeds 0.2.
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2.3. Method
2.3.1. DPSD Method

DPSD is a coherence method using the power ratio (PR) of DDM to detect inland
water bodies. According to [26], the DDM from inland water presents strong coherence
with power concentrated at the specular bin. While for the DDM from the land surface,
the scattering is incoherent with power distribution in a horseshoe shape, as shown in
Figure 2. Based on the coherence characteristic, Al-Khaldi developed the DPSD method for
the normalized DDM as follows [25]:

PR =
Cin
Cout

(1)

Cin =
1

∑
i=−1

2

∑
j=−2

DDM (τM + i, fM + j) (2)

Cout =
Nτ

∑
i=1

N f

∑
j=2

DDM (i, j)− Cin (3)

where Nτ is the number of delay bins in DDM, Nf is the number of Doppler bins, τM
and fM are the delay and Doppler positions of the DDM power maximum (specular
bin), respectively, Cin is the sum of the power of the 3 × 5 delay-Doppler region about
the specular bin, and Cout is the sum of all DDM power bins except Cin. Al-Khaldi
also proposed a noise exclusion method to reduce the thermal noise before calculat-
ing the PR [25]. The threshold of PR (PR = 2) is used to identify the inland water with
strong coherence.

2.3.2. New Coherence Detection Method

DPSD is an effective method to detect inland water, but it suffers from the problem
of significant false alarms. Figure 4 shows four example DDMs recorded on land. Details
of these DDMs are described in Table 1. Figure 4a shows the DDM from the inland water,
and Figure 4b–d show the DDMs from the land. The PR values of these four DDMs are
3.61, 2.91, 3.32, and 1.26, respectively. According to the DPSD water detection threshold
(i.e., PR = 2), DDMs (a and d) are correctly identified as inland water and land, respectively,
while DDMs (b and c) are mistakenly identified. DDM (d) shows significant power spread
to the horseshoe region, which is correctly detected as the land by the DPSD method. The
slight but obvious power spread is also identified in DDMs (b and c), which are incorrectly
detected as the land. Reducing the false alarms in inland water detection motivates us to
develop a new coherence detection method.
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Table 1. Information of the example DDMs.

No. Lon Lat SNR (dB) Type PR PHPR

(a) 65.375◦W 0.327◦S 12.47 Water 3.61 37.78
(b) 66.924◦W 2.327◦S 11.20 Land 2.91 11.08
(c) 67.098◦W 2.456◦S 12.96 Land 3.32 10.32
(d) 61.527◦W 8.414◦S 10.42 Land 1.26 3.22

The power distributes in two regions in DDM. One is the region about the peak and
the other one is the horseshoe region outside the peak region. The power ratio of the peak
region to the horseshoe region (PHPR) indicates the scattering types, which are defined as:

PHPR =
Cpeak

Chorseshoe
(4)

Cpeak =
∑2

i=−2 ∑1
j=−1 DDM(τM + i, fM + j)

5× 3
(5)

Chorseshoe =
∑Nτ

i=3 ∑3
j=−3 DDM(τM + i, fM + j))

6× 7
(6)

where τM and fM are the indices of peak power (at specular bin) in DDM. Cpeak is the 5 × 3
delay-Doppler where the peak power is located, and Chorseshoe is the 6 × 7 delay-Doppler
behind the peak value, as shown in Figure 5.
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new method.

Compared with coherent DDMs, incoherent DDMs have relatively small PHPR be-
cause of the power spread. The new method abandons the power values of the first
several delays in DDM, which are often regarded as background noise [41,42]. For the
determination of peak region Cpeak, we referred to the DDMA (DDM average) method in
sea-ice detection [43] to set a 5 × 3 delay-Doppler as the peak region, which is different
from the 3 × 5 delay-Doppler region used by the DPSD method. The determination of
5 × 3 delay-Doppler region is based on the fact that coherent DDMs resemble the Wood-
ward ambiguity function (WAF) without delay-Doppler spreading [44]. The WAF is defined
as the DDM response induced by a point scatter and can be approximated by a delay-
spreading function

∧
and a Doppler-spreading function S as [27].

χ2(τ, fD) ≈
2∧
(τ − τc) • | S( fD)|2 (7)

| S( fD)|2 =

∣∣∣∣ sin(π fDTi)

π fDTi

∣∣∣∣2 (8)

2∧
(τ) =


(

1− |τ|τc

)2
, |τ| ≤ τc

0, |τ| ≤ τc
(9)

where Ti is the coherent integration time, τc is 0.97 µs; τ is the received signal time delays,
and fD is the received signal Doppler frequency shift.

Figure 6 illustrates the WAF calculated in the same delay-Doppler domain as in
Figure 5. It can be seen that the main coherent power is concentrated in the central
5 × 3 delay-Doppler region. The overall similarity of WAF and DDM is often used to
determine whether DDM is coherent, with the power concentrative at a specific 5 × 3
delay-Doppler region.
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Figure 6. The Woodward ambiguity function in the same delay-Doppler domain as in Figure 5.

For the determination of the Chorseshoe, we chose the 6 × 7 delay-Doppler region as
shown in Figure 5. The power of incoherent DDMs mainly spread in the specific region
(e.g., Figures 3a and 4d), which approximately consists of a 5 × 3 peak region Cpeak and
a 6 × 7 delay-Doppler region. The power spread outside this region is very limited, so
we keep seven bins along the Doppler domain for Chorseshoe and exclude the first and last
two bins to increase the sensitivity of PHPR to the coherence reflection. The last column of
Table 1 shows the PHPR of the four DDMs. We can see that the PHPR of DDM (a) from
inland water is significantly larger than that of the other three DDMs, indicating that the
new method has much higher sensitivity to the inland water than the DPSD method.

2.3.3. Random Walker Segmentation

After the generation of the PHPR map using the proposed method, the next step is to
discriminate the inland water bodies from the land, which is a classification problem. In this
study, we applied an image processing-based technique (i.e., random walker segmentation)
to the PHPR map to identify inland water bodies [45]. Gerlein-Safdi and Ruf [24] used
this method to the CYGNSS-derived reflectivity to extract water bodies from the land
surface and achieved good performance. We followed Gerlein-Safdi and Ruf [24] to use
the scikit-image library in Python (https://scikit-image.org, accessed on 27 March 2022) to
implement random walker segmentation. In the random walker segmentation, positive
and negative samples need to be labeled by corresponding thresholds. The types of
rest grid cells are classified by their attributes combined with their similarities to the
neighboring samples.

As for the determination of the thresholds for the positive sample (water) and negative
sample (land), we experimented a small region ([5◦S, 0◦N], [65◦W, 70◦W]) clipped from
the study area. Taking the GSW as the reference, we calculated both the water and land
detection accuracies for various threshold combinations (Figure 7). From Figure 7a,b,
we can see that the water and land detection accuracies have opposite trends with the
threshold combinations. We overlaid their contours in Figure 7c and determined a threshold
combination (positive threshold = 28; negative threshold = 5) with relatively high accuracies
(~0.92) for both.

https://scikit-image.org
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2.4. Evaluation Indices

We used the confusion matrix to evaluate the performance of inland water detection,
which is defined in Table 2.

Table 2. Confusion matrix of the inland water detection.

Reference
Detected Results

Land Water

Land TN FP

Water FN TP
(Note that TP is “true positive”, FN is “false negative”, FP is “false positive”, and TN is “true negative”).

In the confusion matrix, TP means the grid cells identified as water in both GSW and
CYGNSS; TN means the grid cells identified as land in both data; FP means the grid cells
identified as water in CYGNSS but not in GSW; FN means the grid cells identified as land
in CYGNSS but not in GSW.
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We also used the probability of accurate detection in the study area to evaluate the
overall detection accuracy. It is the ratio of the number of correctly identified samples
(including both land and water samples) to the total samples, which is determined by:

Overall Accuracy =
TP + TN

TP + FN + FP + TN
(10)

2.5. Steps to Perform New Method

Appling the new method to CYGNSS data, we can detect the inland water bodies and
generate the water mask. The steps are summarized as follows (Figure 8):
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Figure 8. Flowchart of implementation of new coherence method for inland water bodies detection
in this study.

Step 1: DDM data from CYGNSS Level 1 Version 3.0 are obtained and each DDM
is normalized with its maximum power. Then the PHPR values are calculated with
Equations (4)–(6).

Step 2: The PHPR at specular reflection points are spatially scattered, so they are
gridded with a specific temporal resolution (0.01◦ in this study) for further mapping. For
specular reflection points falling in the same grid, the average is taken to represent the
PHPR value of this grid. The rest empty grid cells were interpolated from the nearest
neighbor grid cells.
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Step 3: PHPR map generated in step 2 is processed with the random walker segmen-
tation to discriminate the inland water bodies. The identified water bodies and land are
flagged with different signs to generate the water mask.

Step 4: Taking the GSW data as references, the confusion matrix and overall accuracy
of the PHPR water mask are calculated. For comparison, the evaluation metrics are also
calculated for the water mask derived from the DPSD method.

Figure 9 illustrates an example of map generation from step 1 to step 3 in a small
region. It can be seen that the water mask is successfully obtained with the water bodies
marked out.
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Figure 9. Example generation of PHPR water mask. (a) PHPR at specular reflection points.
(b) Gridded PHPR with a spatial resolution of 0.01◦. (c) PHPR map with empty grid cells filled
through nearest neighbor interpolation. (d) PHPR water mask obtained by random walker segmenta-
tion with water bodies marked with black color.

3. Results
3.1. Water Detection Results in the Amazon Basin

We used both the proposed new method and the DPSD method to detect inland water
bodies in the Amazon Basin. To evaluate the detection performance with the latest 2020
GSW data, we applied our method and the DPSD method to the DDM data through 2020.
The power ratio values calculated using both the proposed method and the DPSP method
were gridded with a resolution of 0.01◦ (about 1 km). The remaining empty grid cells were
interpolated from the nearest neighboring grid cells.

Figure 10a shows the GSW seasonality water percentages in 2020 over the Amazon
Basin and Figure 10b shows the GSW-derived water mask map. The distributions of
power ratio derived from our method and DPSD method are illustrated in Figure 10c,d,
respectively. It can be seen that the grid cells with a higher percentage of water bodies tend
to have higher power ratio values. The water mask maps derived from our method and the
DPSD method are shown in Figure 10e,f. Both our method and DPSD can identify the river
network in the Amazon Basin, highly consistent with the reference water mask (Figure 10b).
We overlaid the water masks obtained by the two methods with the reference water mask
and produced the error maps showing grid cells identified as the FN, FP, and Correct
(TP + TN), which are shown in Figure 10g,h. As we can see, nearly all water bodies are



Remote Sens. 2022, 14, 3195 12 of 20

identified by both methods but false positives (i.e., false alarms) are found in both. It can be
partly attributed to the intrinsic limitation of optical data used by GSW, which are obscured
by the dense vegetation in the Amazon Basin. Another possible reason is associated with
the coherent reflection footprint of a DDM (i.e., 3.5 km × 0.5 km). Since the power in DDM
will be dominated by the coherent reflection from even small water bodies in the footprint
and result in a power ratio above the water detection threshold, so the identified rivers in
the two methods are wider than that in the reference GSW. Figure 10i,j present the enlarged
views of the error maps for both methods. We can see that the false alarms in our method
are fewer than those in the DPSD method.
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Figure 10. Amazon Basin maps. (a) Seasonality water map in 2020 derived from GSW; (b) GSW water
mask (c,d) DPSD and PHPR maps; (e,f) water mask obtained from DPSD and PHRP result maps;
(g,h) error maps obtained by DPSD and PHPR methods; (i,j) enlarged views of the PHPR and DPSD
water mask error maps for the specified area indicated by the black rectangles in (g,h), respectively.
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We took the GSW as references and compared the detection performances of two
coherence methods in the Amazon Basin. The result shows that the overall detection
accuracies of the DPSD method and our method are 93.36% and 94.48%, respectively. Our
method performs slightly better (~1.1%) in terms of overall accuracy. The false alarm rate of
our method is 5.44%, which is improved by 17.1% when compared with the DPSD method
(6.56%). Moreover, our method significantly reduces the misidentified land grids as water
bodies by more than 20,000. The false negative (i.e., misses) rate of our method is 7.77%,
which is 9.12% lower than that of the DPSD (8.55%).

3.2. Water Detection Results in the Congo Basin

Figure 11 shows the detection results in the Congo Basin by using both our method and
DPSD method, as well as the reference GSW map. Similar to the results in the Amazon Basin,
the trunk stream and small tributaries are detected by both methods. Many detected small
tributaries are missing in the GSW map, which can be attributed to the vegetation cover
along the streams. However, false alarms are also found in the Congo Basin, contributing
to the main errors in the water detection.

Compared with the GSW data, the evaluation indices of our method and the DPSD
method are summarized in Table 3. It can be seen that our method still performs better
than the DPSD method in terms of each evaluation index. Specifically, the false alarms rate
is reduced by 10.2% from 4.22% to 3.79% and the false negative rate significantly decreases
by 22% from 8.77% to 6.84%. Compared with the results in the Amazon, the results in the
Congo Basin are slightly better with the overall accuracies of both methods exceeding 95.6%.
The performance improvement of water detection using CYGNSS data in the Congo Basin
over the Amazon Basin is also reported by [23]. The possible reason for this discrepancy is
that the Congo Basin area is flatter with small slopes and the rivers and streams are fewer,
contributing to the higher success rate in water bodies detection.

Table 3. Confusion matrices of the two methods and overall accuracies over the Amazon Basin and
the Congo Basin.

Study Area Method Reference
Detection *

Overall Accuracy
Land Water

Amazon Basin

PHPR
Land 94.56% (1,821,102) 5.44% (104,689)

94.48%Water 7.77% (5767) 92.23% (68,442)

DPSD
Land 93.43% (1,799,396) 6.56% (126,395)

93.36%Water 8.55% (6348) 91.45% (67,861)

Congo Basin

PHPR
Land 96.21% (374,256) 3.79% (14,760)

96.12%
Water 6.84% (751) 93.16% (10,233)

DPSD
Land 95.78% (372,616) 4.22% (16,400)

95.66%
Water 8.77% (963) 91.23% (10,021)

* The detection rates for classifications are listed with the corresponding number of grid cells in parentheses.
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mask; (c,d) DPSD and PHPR maps; (e,f) water mask obtained from DPSD and PHRP result maps; 
(g,h) error maps obtained by DPSD and PHPR methods. 
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cant power spread in the DDM. Figure 12 shows four tracks of derived PHPR over the Tai 
Lake area in China on 26 February 2020, overlaying with the Lansat-9 image. Three of the 
four tracks (i.e., numbers 2, 3, and 4) are across Tai Lake and track 1 goes through a small 
water body. We can see that PHPR significantly increases above the water threshold 
(PHPR = 28) when it crosses the small water bodies. In contrast to track 1, the PHPR values 
suddenly decrease below the land threshold (PHPR = 5) in Tai Lake, indicating the 
wrongly identified land with incoherent scattering. A previous study showed the high 
sensitivity of the reflected power in DDM to the wind in big inland water bodies [46]. 
Therefore, it has the potential to detect the big lakes over a long period by investigating 

Figure 11. Congo Basin maps. (a) Seasonality water map in 2020 derived from GSW; (b) GSW water
mask; (c,d) DPSD and PHPR maps; (e,f) water mask obtained from DPSD and PHRP result maps;
(g,h) error maps obtained by DPSD and PHPR methods.

4. Discussion
4.1. Limitation on Detecting Big Water Bodies

Our method performs well for inland water mapping by detecting the coherence in
the DDM. However, it is possible to fail in identifying the inland water bodies of large
sizes such as big lakes. Since wind-induced wave heights formed in the lakes will cause
incoherent scattering similar to the ocean scene with a rough surface, resulting in significant
power spread in the DDM. Figure 12 shows four tracks of derived PHPR over the Tai Lake
area in China on 26 February 2020, overlaying with the Lansat-9 image. Three of the
four tracks (i.e., numbers 2, 3, and 4) are across Tai Lake and track 1 goes through a
small water body. We can see that PHPR significantly increases above the water threshold
(PHPR = 28) when it crosses the small water bodies. In contrast to track 1, the PHPR values
suddenly decrease below the land threshold (PHPR = 5) in Tai Lake, indicating the wrongly
identified land with incoherent scattering. A previous study showed the high sensitivity of
the reflected power in DDM to the wind in big inland water bodies [46]. Therefore, it has
the potential to detect the big lakes over a long period by investigating the temporal power
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response to the wind. Further study on the wind-associated scattering pattern is needed to
develop an algorithm to identify the big lakes using CYGNSS DDMs.
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Figure 12. Tracks of the CYGNSS specular reflection points in the Tai Lake area in China on
26 February 2020 with the numbers marked. The corresponding PHPR values are indicated by
the color bar. The background image is a fusion of bands 7, 6, and 4 from the image acquired by
Landsat 9 on the same day.

4.2. Ability for Flood Inundation Detection

Besides the investigations on the CYGNSS’s ability to identify permanent inland water
bodies, many studies explored the possibility of monitoring shorter-lived inland water
bodies such as floods [18,19,47]. Obscured by cloud cover, optical images are often unusable
for water detection during floods. Taking the flood events in Henan Province, China in
July 2021 as an example, we discuss the possibility of our method to detect flood inundation
in this section.

Since 17 July 2021, extremely heavy rainfall hit the northern parts of Henan Province
and caused severe floods in Xinxiang. The floods lasted for over 10 days from the middle
to late July 2021. Figure 13 shows two optical images derived from MODIS (moderate-
resolution imaging spectroradiometer) before and after the rainfall in the northern parts
of Henan Province. We can see significant flood inundation in Xinxiang (red rectangles in
Figure 13) after the rainfall with coverage from 35◦N to 36◦N and from 113◦E to 115◦E. We
used the new coherence method to generate the water masks before and after the rainfall
in Henan. The spatial resolution of the water mask is 0.02◦. From Figure 14a,c, the PHPR
values in several areas of Henan Province increase significantly after rainfall. Especially
for the most severe flooding in Xinxiang (shown in the red box in Figures 13 and 14), the
PHPR values are very large and significantly exceed the water detection threshold (i.e., 28).
Figure 14b,d show the water masks of Henan before and after the rainfall. The area marked
by red boxes in Figure 14 is identical to that in Figure 13. We can see that the identified
water bodies are consistent overall with those in MODIS image (Figure 13b).
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Figure 13. Images of the northern part of Henan Province, China derived from MODIS on
8 July 2021 (a) and 26 July 2021 (b). Water bodies and clouds are in black color and purple color,
respectively. The flooding area in Xinxiang is marked out with red rectangle.

In this case, the PHPR were gridded into 0.02◦ instead of 0.01◦ used in the Amazon
Basin and the Congo Basin. This is because that data collected over half a month is
insufficient to generate the reliable gridded PHPR map with a resolution of 0.01◦, in which
substantial empty grid cells exhibit. Nevertheless, the method proposed in this paper
is feasible for flood inundation detection. A significant increase in the PHPR value was
found after the flooding. With a sufficient number of GNSS-R satellites in the future, daily
dynamic monitoring of flood changes could become possible.
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Figure 14. PHPR map (a) and PHPR water mask (b) of Henan before the rainfall (1 July 2021 to
16 July 2021). PHPR map (c) and PHPR water mask (d) of Henan after the rainfall (17 July 2021 to
31 July 2021). Red rectangle in each plot represents the flooding area in Xinxiang.

5. Conclusions

In this study, we proposed a new coherence detection method for CYGNSS data (i.e.,
DDM) based on the power ratio of the peak region to the horseshoe region in DDM. This
method is combined with an image segmentation technique to identify the inland water
bodies in the Amazon Basin and the Congo Basin in 2020. In the Amazon Basin, compared
to the reference GSW data, the overall detection accuracy of our method is 94.48%, which is
slightly better than that of the previous DPSD method (93.36%). Specifically, our method’s
false positive rate (5.44%) and true negative rate (7.77%) are reduced by 17.1% and 9.1%,
respectively, compared with the DPSD method, indicating fewer false alarms and misses
for inland water detection. In the Congo Basin, compared with the DPSD method, the
results show that the false alarm rate of our method is reduced by 10.2% from 4.22% to
3.79% and the false negative rate significantly decreases by 22% from 8.77% to 6.84%.
Moreover, the overall accuracies of our method (96.12%) and the DPSD method (95.66%)
in the Congo Basin are slightly improved compared with those in the Amazon Basin.
Our method works well in most inland areas except over large water bodies such as big
lakes, in which the significant wave heights cause incoherence in the DDM. Future study
needs to develop an algorithm to discriminate the incoherent scattering of large water
bodies from the incoherent scattering of the land in DDM. Besides the permanent water
bodies identification, our method was successfully applied to detect the flood inundation in
Henan, China in July 2021, proving the ability to monitor short-term inland water bodies.
Due to the L-band GNSS signals used in the CYGNSS, our method could be beneficial
when the common optical method is hindered by the cloud and vegetation cover, which
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can be applied to identify streams under thick vegetation or flood inundation under
cloudy weather.
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